
15-851 Algorithms for Big Data — Spring 2024

Problem Set 1
Due: Thursday, Februrary 8, before class

Please see the following link for collaboration and other homework policies:
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.

pdf

Problem 1: Sparse Regression (12 points)
For any 1 ≤ i1 < i2 < · · · < ik ≤ d, let Ui1,i2,...,ik = {Ax− b | xi = 0 if i ̸= i1, . . . , ik}.

Note that since the x here has at most k non-zeros entries lie on i1, i2, ..., ik, we have Ui1,i2,...,ik

is a (k+1)-dimensional vector space. Hence, from the lecture we have that a Gaussian matrix
S of s× n i.i.d Gaussian random variables N(0, 1/s) where s = O((k+ log(1/δ))/ε2) will be
a (1 + ε)-subspace embedding of Ui1,i2,...,ik with probability at least 1− δ.

Let U = {Ax − b | x ∈ Rd, ∥x∥0 ≤ k}, then we have U =
⋃(dk)

i=1 Ui where each Ui

corresponds to one choice of 1 ≤ i1 < i2 < · · · < ik ≤ d among all

(
d

k

)
choices. By setting

δ = 1/(10 ·
(
d
k

)
) and taking a union bound over all Ui, we get that with probability at least

0.9 , S is a (1± ε)-subspace embedding of U , which means we have

(1− ε)∥Ax− b∥2 ≤ ∥S(Ax− b)∥2 ≤ (1 + ε)∥Ax− b∥2

for any k-sparse x.
Suppose that x′ = argminx is k-sparse∥S(Ax − b)∥2 and x⋆ = argminx is k-sparse∥Ax − b∥2.

From the above we have that

∥Ax′ − b∥2 ≤ (1 + ε)∥SAx′ − Sb∥2 ≤ (1 + ε)∥SAx⋆ − Sb∥2 ≤ (1 +O(ε))∥Ax⋆ − b∥2.

Finally we compute the number of rows needed for S. Since δ = 1/(10 ·
(
d
k

)
) we have

k + log(1/δ)

ε2
≤ O

(
k + log

(
d
k

)
ε2

)
≤ O

(
k + log(ed/k)k

ε2

)
= O

(
k log(d/k)

ε2

)

which means that O
(

k log(d/k)
ε2

)
is enough.

Problem 2: Gaussian Subspace Embeddings with Exactly d Rows (13 points)

(1) Suppose that S has fewer than d rows. Since SA has d columns and fewer than d
rows, we have that rank(A) < d. Then we have that there must exist some y ∈ Rd such that
SAy = 0. However, since A is a n× d matrix with rank(A) = d. Then we have that Ay ̸= 0,
which is a contradiction.
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(2) Without loss of generality, we can assume that A has orthonormal columns. Then
from the property of Gaussian random variables, we have that each entry of SA is also drawn
from standard Gaussian distribution N(0, 1).

Now, as mentioned in the hint, for every diagonal entry of (SA)ii, we have that

Pr[|(SA)ii − 1| ≤ 1/poly(d)] ≥ Ω(1/poly(d)) = e−Θ(log d)

and for every off-diagonal entry (SA)ij, we have that

Pr[|(SA)ij| ≤ 1/poly(d)] ≥ Ω(1/poly(d)) = e−Θ(log d)

Recall that in lecture 1 we have shown that the entries of SA are independent. Hence,

we have that with probability at least
(
e−Θ(log d)

)d2
= e−Θ(d2 log d), we can write SA = I + T ,

where I is a d× d identity matrix and all the entries in T are at most 1/poly(d). Under this
condition, we have that for any unit vector x ∈ Rd, SAx = Ix+ Tx = x+ Tx and

∥x∥2 − ∥T∥2 ≤ ∥x∥2 − ∥Tx∥2 ≤ ∥SAx∥2 ≤ ∥x∥2 + ∥Tx∥2 ≤ ∥x∥2 + ∥T∥2 ,

Note that since the entries of T are all in [−1/poly(d), 1/poly(d)], we have that ∥T∥2 ≤
∥T∥F = 1/poly(d). From this we have

1− 1/poly(d) ≤ ∥SAx∥2 ≤ 1 + 1/poly(d) ,

which means that S is a (1± 1/poly(d))-subspace embedding.

Problem 3: Active Regression (13 points)
We first define our sampling matrix S.

Definition 1 Given a parameter number k, the sampling matrix S ∈ Rk×n that samples k
rows of a matrix A is defined as follows. For each row of S, we independently and uniformly
pick an index i ∈ [n] and set the value of this entry is

√
n/k, then set the values of the other

entires in this row as 0.

We will use the matrix Chernoff’s bound to show that if k = O(d log(d)/ε2), SA is
actually a (1 ± ε)-subspace embedding of the matrix A. Let i(j) denote the index of the
sampled row in the j-th trial and Xj = Id − nAT

i(j)Ai(j). Then, we have that

E [Xj] = Id −
∑
i

1

n
· nAT

i Ai = 0

since A has orthonormal columns.
Next, by triangle inequality we have that

∥Xj∥2 ≤ ∥Id∥+ n∥AT
i(j)Ai(j)∥2 = O(d)
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from the assumption that ∥Ai∥22 = O(d/n).
Lastly, for every j, we have that

E
[
XT

j Xj

]
= Id − 2nE

[
AT

i(j)Ai(j)

]
+ n2E

[
AT

i(j)Ai(j)A
T
i(j)Ai(j)

]
= Id − 2n · 1

n
Id + n2E

[
∥Ai(j)∥22AT

i(j)Ai(j)

]
≤ Id − 2Id + dId ≤ dId .

Note that 1/k · (
∑

j Xj) = Id−ATSTSA. Hence, from the matrix Chernoff’s bound we have
that

Pr
[
∥Id − ATSTSA∥2 > ε

]
≤ 2d · exp

(
−kε2

d+ dε

)
≤ 1/10

when k = O(d log(d)/ε2). Recall that for a symmetric matrix W we have that ∥W∥2 =
max∥x∥=1 x

TWx. Hence we get that it means ∥SA∥2 = (1± ε)∥Ax∥2 for all x ∈ Rd.
Suppose that S is the sampling matrix that uniformly samples O(d log d) rows of A. Then

we can see that to solve the regression problem minx∈Rd ∥SA − Sb∥2, we only need to read
O(d log d) entries of b. And from the above process we have that S is a (1 +O(1))-subspace
embedding of A with probability at least 0.95. Now, let xc = argminx∈Rd∥SAx − Sb∥2, we
have

∥Axc − b∥2 ≤ ∥Axc − Ax⋆∥2 + ∥Ax⋆ − b∥2 ≤ ∥Ax⋆ − b∥2 +O(∥SAxc − SAx⋆∥2) .

Also we have that

∥SAxc − SAx⋆∥2 ≤ ∥SAxc − Sb∥2 + ∥Sb− SAx⋆∥2 ≤ 2∥Sb− SAx⋆∥2 ,

The only remaining thing is to bound ∥Sb − SAx⋆∥2. In fact, let z = S(Ax⋆ − b), we have
that

E
[
∥S(Ax⋆ − b)∥22

]
=
∑
i

E[z2i ] =
n

k

k∑
i=1

n∑
j=1

1

n
(Ax⋆

j − b)2 = ∥Ax⋆ − b∥22

Since we have that E [∥Sb− SAx⋆∥22] = ∥Ax⋆ − b∥22, then by Markov’s inequality we
have that with probability at least 0.95, ∥Sb − SAx⋆∥22 ≤ 20∥Ax⋆ − b∥22, which means that
∥SAxc − SAx⋆∥2 ≤ O(∥Ax⋆ − b∥2). Put everything together and by taking a union bound,
we have that with probability at least 0.9

∥Axc − b∥2 ≤ C∥Ax⋆ − b∥2

for some constant C, which is what we need.

Problem 4: Fast High Probability Matrix Product (12 points)
We will use the following lemmas.
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Lemma 2 Let S be a k × n matrix of i.i.d normal random variables drawn from N(0, 1/k)
where k = O(log(1/δ)/ε2). Then given two unit vectors u, v ∈ Rn, we have with probability
at least 1− δ,

|⟨Sx, Sy⟩ − ⟨x, y⟩| ≤ ε .

We have

⟨Sx, Sy⟩ = ∥Sx+ Sy∥22 − ∥Sx− Sy∥22
4

and

⟨x, y⟩ = ∥x+ y∥22 − ∥x− y∥22
4

As we did in class, by Johnson-Lindenstrauss lemma, we have with probability at least 1− δ
we have that ∥S(x + y)∥22 = (1 ± 1

2
ε)∥x + y∥22 and ∥S(x − y)∥22 = (1 ± 1

2
ε)∥x − y∥22. Hence

we have that

|⟨Sx, Sy⟩ − ⟨x, y⟩| =
∣∣∣∣∥Sx+ Sy∥22 − ∥x+ y∥22

4
+

∥x− y∥22 − ∥Sx− Sy∥22
4

∣∣∣∣
≤ 1

2
ε ·
(
∥x+ y∥22

4
+

∥x− y∥22
4

)
≤ ε

Lemma 3 Let S be a k × n matrix of i.i.d normal random variables drawn from N(0, 1/k)
where k = O(log n/ε2). Then for any matrix A,B ∈ Rn×n, we have with probability at least
1− 1/n,

∥ATSTSB − ATB∥F ≤ ε∥A∥F∥B∥F .

let Ai denote the i-th column of A and Bj denote the j-column of B. For a Gaussian matrix
a with O(log n/ε2) rows, from Lemma 2 we have that with probability at least 1 − 1/n3,
|⟨SAi, SBj⟩ − ⟨Ai, Bj⟩| ≤ ε∥Ai∥2∥Bj∥2. Taking a union bound of all (i, j) pair we have that
with probability at least 1− 1/n,

∥ATSTSB − ATB∥2F ≤
∑
i

∑
j

ε2∥Ai∥22∥Bj∥22 = ε2∥A∥2F∥B∥2F ,

which means
∥ATSTSB − ATB∥F ≤ ε∥A∥F∥B∥F .

Lemma 4 Let S be a k × n Count-Sketch matrix of where k = O(1/(δε2)). Then for any
matrix A ∈ Rn×d, we have with probability at least 1− δ,

∥SA∥2F = (1± ε)∥A∥2F .

The proof was given in the Problem 3 in https://www.cs.cmu.edu/afs/cs/user/dwoodruf/
www/teaching/15859-fall17/ps1sol.pdf by replace r with O(1/(δε2)).
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Back to the original problem. Now we design the S = S1S2 where S1 is the Gaussian
matrix with O(log n) rows, and S2 is the CountSketch matrix with O(n0.99) rows (where
both correspond to ε = 1/100 and δ = 1/(3n0.99) in Lemma 2 and Lemma 3). We first have
with probability at least 1− 1/(3n0.99)

∥ATST
2 S

T
1 S1S2B − ATST

2 S2B∥F ≤ 1

100
∥ATST

2 ∥F∥S2B∥F .

Since S2 is a Count-Sketch matrix, from Lemma 4 we have that with probability at least
1−1/(3n0.99), ∥ATST

2 ∥2F = (1±0.01)∥A∥2F and ∥S2B∥2F = (1±0.01)∥B∥2F , which means that

∥ATST
2 S

T
1 S1S2B − ATST

2 S2B∥F ≤ 1

100
∥ATST

2 ∥F∥S2B∥F ≤ 1

50
∥A∥F∥B∥F .

Next, from Lemma 2 we have that with probability at least 1− 1/(3n0.99),

∥ATST
2 S2B − ATB∥F ≤ 1

100
∥A∥F∥B∥F

Putting these two things together and by triangle inequality we have that with probability
at least 1− 1/n0.99 (after taking a union bound),

∥ATST
2 S

T
1 S1S2B − ATB∥F ≤ 1

10
∥A∥F∥B∥F .

Now we consider the time complexity of the above sketching matrix. First, since S2 is a
CountSketch matrix, hence we can use O(n2) time to get S2A and S2B. Next, since S2A
and S2B have n0.99 rows and S1 has O(log n) rows. Hence we can get S1S2A and S1S2B in
time O(log n · n1.99) = O(n2), which is a total O(n2) time.
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