15-851 Algorithms for Big Data — Spring 2024

Problem Set 1

Due: Thursday, Februrary 8, before class

Please see the following link for collaboration and other homework policies: http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15851-spring24/grading.pdf

Problem 1: Sparse Regression (12 points)

For any $1 \leq i_1 < i_2 < \cdots < i_k \leq d$, let $U_{i_1,i_2,\dots,i_k} = \{Ax - b \mid x_i = 0 \text{ if } i \neq i_1,\dots,i_k\}$. Note that since the x here has at most k non-zeros entries lie on i_1,i_2,\dots,i_k , we have U_{i_1,i_2,\dots,i_k} is a (k+1)-dimensional vector space. Hence, from the lecture we have that a Gaussian matrix S of $s \times n$ i.i.d Gaussian random variables N(0,1/s) where $s = O((k + \log(1/\delta))/\varepsilon^2)$ will be a $(1+\varepsilon)$ -subspace embedding of U_{i_1,i_2,\dots,i_k} with probability at least $1-\delta$.

Let $U = \{Ax - b \mid x \in \mathbb{R}^d, \|x\|_0 \le k\}$, then we have $U = \bigcup_{i=1}^{\binom{d}{k}} U_i$ where each U_i corresponds to one choice of $1 \le i_1 < i_2 < \dots < i_k \le d$ among all $\binom{d}{k}$ choices. By setting $\delta = 1/(10 \cdot \binom{d}{k})$ and taking a union bound over all U_i , we get that with probability at least 0.9, S is a $(1 \pm \varepsilon)$ -subspace embedding of U, which means we have

$$(1 - \varepsilon) \|Ax - b\|_2 \le \|S(Ax - b)\|_2 \le (1 + \varepsilon) \|Ax - b\|_2$$

for any k-sparse x.

Suppose that $x' = \operatorname{argmin}_{x \text{ is } k\text{-sparse}} \|S(Ax - b)\|_2$ and $x^* = \operatorname{argmin}_{x \text{ is } k\text{-sparse}} \|Ax - b\|_2$. From the above we have that

$$||Ax' - b||_2 \le (1 + \varepsilon)||SAx' - Sb||_2 \le (1 + \varepsilon)||SAx^* - Sb||_2 \le (1 + O(\varepsilon))||Ax^* - b||_2.$$

Finally we compute the number of rows needed for S. Since $\delta = 1/(10 \cdot {d \choose k})$ we have

$$\frac{k + \log(1/\delta)}{\varepsilon^2} \le O\left(\frac{k + \log\binom{d}{k}}{\varepsilon^2}\right) \le O\left(\frac{k + \log(ed/k)^k}{\varepsilon^2}\right) = O\left(\frac{k \log(d/k)}{\varepsilon^2}\right)$$

which means that $O\left(\frac{k\log(d/k)}{\varepsilon^2}\right)$ is enough.

Problem 2: Gaussian Subspace Embeddings with Exactly d Rows (13 points)

(1) Suppose that S has fewer than d rows. Since SA has d columns and fewer than d rows, we have that $\operatorname{rank}(A) < d$. Then we have that there must exist some $y \in \mathbb{R}^d$ such that SAy = 0. However, since A is a $n \times d$ matrix with $\operatorname{rank}(A) = d$. Then we have that $Ay \neq 0$, which is a contradiction.

(2) Without loss of generality, we can assume that A has orthonormal columns. Then from the property of Gaussian random variables, we have that each entry of SA is also drawn from standard Gaussian distribution N(0,1).

Now, as mentioned in the hint, for every diagonal entry of $(SA)_{ii}$, we have that

$$\mathbf{Pr}[|(SA)_{ii} - 1| < 1/\text{poly}(d)] > \Omega(1/\text{poly}(d)) = e^{-\Theta(\log d)}$$

and for every off-diagonal entry $(SA)_{ij}$, we have that

$$\mathbf{Pr}[|(SA)_{ij}| < 1/\text{poly}(d)] > \Omega(1/\text{poly}(d)) = e^{-\Theta(\log d)}$$

Recall that in lecture 1 we have shown that the entries of SA are independent. Hence, we have that with probability at least $\left(e^{-\Theta(\log d)}\right)^{d^2} = e^{-\Theta(d^2 \log d)}$, we can write SA = I + T, where I is a $d \times d$ identity matrix and all the entries in T are at most $1/\operatorname{poly}(d)$. Under this condition, we have that for any unit vector $x \in \mathbb{R}^d$, SAx = Ix + Tx = x + Tx and

$$||x||_2 - ||T||_2 \le ||x||_2 - ||Tx||_2 \le ||SAx||_2 \le ||x||_2 + ||Tx||_2 \le ||x||_2 + ||T||_2$$

Note that since the entries of T are all in [-1/poly(d), 1/poly(d)], we have that $||T||_2 \le ||T||_F = 1/\text{poly}(d)$. From this we have

$$1 - 1/\text{poly}(d) \le ||SAx||_2 \le 1 + 1/\text{poly}(d)$$
,

which means that S is a $(1 \pm 1/\text{poly}(d))$ -subspace embedding.

Problem 3: Active Regression (13 points)

We first define our sampling matrix S.

Definition 1 Given a parameter number k, the sampling matrix $S \in \mathbb{R}^{k \times n}$ that samples k rows of a matrix A is defined as follows. For each row of S, we independently and uniformly pick an index $i \in [n]$ and set the value of this entry is $\sqrt{n/k}$, then set the values of the other entires in this row as 0.

We will use the matrix Chernoff's bound to show that if $k = O(d \log(d)/\varepsilon^2)$, SA is actually a $(1 \pm \varepsilon)$ -subspace embedding of the matrix A. Let i(j) denote the index of the sampled row in the j-th trial and $X_j = I_d - nA_{i(j)}^T A_{i(j)}$. Then, we have that

$$\mathbb{E}\left[X_{j}\right] = I_{d} - \sum_{i} \frac{1}{n} \cdot nA_{i}^{T} A_{i} = 0$$

since A has orthonormal columns.

Next, by triangle inequality we have that

$$||X_j||_2 \le ||I_d|| + n||A_{i(j)}^T A_{i(j)}||_2 = O(d)$$

from the assumption that $||A_i||_2^2 = O(d/n)$.

Lastly, for every j, we have that

$$\mathbb{E}\left[X_{j}^{T}X_{j}\right] = I_{d} - 2n\mathbb{E}\left[A_{i(j)}^{T}A_{i(j)}\right] + n^{2}\mathbb{E}\left[A_{i(j)}^{T}A_{i(j)}A_{i(j)}^{T}A_{i(j)}\right]$$

$$= I_{d} - 2n \cdot \frac{1}{n}I_{d} + n^{2}\mathbb{E}\left[\|A_{i(j)}\|_{2}^{2}A_{i(j)}^{T}A_{i(j)}\right]$$

$$\leq I_{d} - 2I_{d} + dI_{d} \leq dI_{d}.$$

Note that $1/k \cdot (\sum_j X_j) = I_d - A^T S^T S A$. Hence, from the matrix Chernoff's bound we have that

$$\Pr\left[\|I_d - A^T S^T S A\|_2 > \varepsilon\right] \le 2d \cdot \exp\left(\frac{-k\varepsilon^2}{d + d\varepsilon}\right) \le 1/10$$

when $k = O(d \log(d)/\varepsilon^2)$. Recall that for a symmetric matrix W we have that $||W||_2 = \max_{||x||=1} x^T W x$. Hence we get that it means $||SA||_2 = (1 \pm \varepsilon) ||Ax||_2$ for all $x \in \mathbb{R}^d$.

Suppose that S is the sampling matrix that uniformly samples $O(d \log d)$ rows of A. Then we can see that to solve the regression problem $\min_{x \in \mathbb{R}^d} ||SA - Sb||_2$, we only need to read $O(d \log d)$ entries of b. And from the above process we have that S is a (1 + O(1))-subspace embedding of A with probability at least 0.95. Now, let $x_c = \operatorname{argmin}_{x \in \mathbb{R}^d} ||SAx - Sb||_2$, we have

$$||Ax_c - b||_2 \le ||Ax_c - Ax^*||_2 + ||Ax^* - b||_2 \le ||Ax^* - b||_2 + O(||SAx_c - SAx^*||_2)$$
.

Also we have that

$$||SAx_c - SAx^*||_2 \le ||SAx_c - Sb||_2 + ||Sb - SAx^*||_2 \le 2||Sb - SAx^*||_2$$

The only remaining thing is to bound $||Sb - SAx^*||_2$. In fact, let $z = S(Ax^* - b)$, we have that

$$\mathbb{E}\left[\|S(Ax^{\star} - b)\|_{2}^{2}\right] = \sum_{i} \mathbb{E}[z_{i}^{2}] = \frac{n}{k} \sum_{i=1}^{k} \sum_{j=1}^{n} \frac{1}{n} (Ax_{j}^{\star} - b)^{2} = \|Ax^{\star} - b\|_{2}^{2}$$

Since we have that $\mathbb{E}[\|Sb - SAx^*\|_2^2] = \|Ax^* - b\|_2^2$, then by Markov's inequality we have that with probability at least 0.95, $\|Sb - SAx^*\|_2^2 \le 20\|Ax^* - b\|_2^2$, which means that $\|SAx_c - SAx^*\|_2 \le O(\|Ax^* - b\|_2)$. Put everything together and by taking a union bound, we have that with probability at least 0.9

$$||Ax_c - b||_2 \le C||Ax^* - b||_2$$

for some constant C, which is what we need.

Problem 4: Fast High Probability Matrix Product (12 points) We will use the following lemmas.

Lemma 2 Let S be a $k \times n$ matrix of i.i.d normal random variables drawn from N(0, 1/k) where $k = O(\log(1/\delta)/\varepsilon^2)$. Then given two unit vectors $u, v \in \mathbb{R}^n$, we have with probability at least $1 - \delta$,

$$|\langle Sx, Sy \rangle - \langle x, y \rangle| \le \varepsilon$$
.

We have

$$\langle Sx, Sy \rangle = \frac{\|Sx + Sy\|_2^2 - \|Sx - Sy\|_2^2}{4}$$

and

$$\langle x, y \rangle = \frac{\|x + y\|_2^2 - \|x - y\|_2^2}{4}$$

As we did in class, by Johnson-Lindenstrauss lemma, we have with probability at least $1 - \delta$ we have that $||S(x+y)||_2^2 = (1 \pm \frac{1}{2}\varepsilon)||x+y||_2^2$ and $||S(x-y)||_2^2 = (1 \pm \frac{1}{2}\varepsilon)||x-y||_2^2$. Hence we have that

$$\begin{aligned} |\langle Sx, Sy \rangle - \langle x, y \rangle| &= \left| \frac{\|Sx + Sy\|_2^2 - \|x + y\|_2^2}{4} + \frac{\|x - y\|_2^2 - \|Sx - Sy\|_2^2}{4} \right| \\ &\leq \frac{1}{2} \varepsilon \cdot \left(\frac{\|x + y\|_2^2}{4} + \frac{\|x - y\|_2^2}{4} \right) \leq \varepsilon \end{aligned}$$

Lemma 3 Let S be a $k \times n$ matrix of i.i.d normal random variables drawn from N(0, 1/k) where $k = O(\log n/\varepsilon^2)$. Then for any matrix $A, B \in \mathbb{R}^{n \times n}$, we have with probability at least 1 - 1/n,

$$||A^T S^T S B - A^T B||_F \le \varepsilon ||A||_F ||B||_F.$$

let A_i denote the *i*-th column of A and B_j denote the *j*-column of B. For a Gaussian matrix a with $O(\log n/\varepsilon^2)$ rows, from Lemma 2 we have that with probability at least $1 - 1/n^3$, $|\langle SA_i, SB_j \rangle - \langle A_i, B_j \rangle| \le \varepsilon ||A_i||_2 ||B_j||_2$. Taking a union bound of all (i, j) pair we have that with probability at least 1 - 1/n,

$$||A^T S^T S B - A^T B||_F^2 \le \sum_i \sum_j \varepsilon^2 ||A_i||_2^2 ||B_j||_2^2 = \varepsilon^2 ||A||_F^2 ||B||_F^2$$
,

which means

$$||A^T S^T S B - A^T B||_F \le \varepsilon ||A||_F ||B||_F.$$

Lemma 4 Let S be a $k \times n$ Count-Sketch matrix of where $k = O(1/(\delta \varepsilon^2))$. Then for any matrix $A \in \mathbb{R}^{n \times d}$, we have with probability at least $1 - \delta$,

$$||SA||_F^2 = (1 \pm \varepsilon)||A||_F^2$$
.

The proof was given in the Problem 3 in https://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall17/ps1sol.pdf by replace r with $O(1/(\delta \varepsilon^2))$.

Back to the original problem. Now we design the $S = S_1 S_2$ where S_1 is the Gaussian matrix with $O(\log n)$ rows, and S_2 is the CountSketch matrix with $O(n^{0.99})$ rows (where both correspond to $\varepsilon = 1/100$ and $\delta = 1/(3n^{0.99})$ in Lemma 2 and Lemma 3). We first have with probability at least $1 - 1/(3n^{0.99})$

$$||A^T S_2^T S_1^T S_1 S_2 B - A^T S_2^T S_2 B||_F \le \frac{1}{100} ||A^T S_2^T ||_F ||S_2 B||_F.$$

Since S_2 is a Count-Sketch matrix, from Lemma 4 we have that with probability at least $1 - 1/(3n^{0.99})$, $||A^T S_2^T||_F^2 = (1 \pm 0.01)||A||_F^2$ and $||S_2 B||_F^2 = (1 \pm 0.01)||B||_F^2$, which means that

$$||A^T S_2^T S_1^T S_1 S_2 B - A^T S_2^T S_2 B||_F \le \frac{1}{100} ||A^T S_2^T ||_F ||S_2 B||_F \le \frac{1}{50} ||A||_F ||B||_F.$$

Next, from Lemma 2 we have that with probability at least $1 - 1/(3n^{0.99})$,

$$||A^T S_2^T S_2 B - A^T B||_F \le \frac{1}{100} ||A||_F ||B||_F$$

Putting these two things together and by triangle inequality we have that with probability at least $1 - 1/n^{0.99}$ (after taking a union bound),

$$||A^T S_2^T S_1^T S_1 S_2 B - A^T B||_F \le \frac{1}{10} ||A||_F ||B||_F.$$

Now we consider the time complexity of the above sketching matrix. First, since S_2 is a CountSketch matrix, hence we can use $O(n^2)$ time to get S_2A and S_2B . Next, since S_2A and S_2B have $n^{0.99}$ rows and S_1 has $O(\log n)$ rows. Hence we can get S_1S_2A and S_1S_2B in time $O(\log n \cdot n^{1.99}) = O(n^2)$, which is a total $O(n^2)$ time.