Topic 2: Concrete Models and Tight Upper and Lower Bounds

David Woodruff

Theme: Tight Upper and Lower Bounds

- Number of comparisons to sort an array
- Number of exchanges to sort an array
- Number of comparisons needed to find the largest and second-largest elements in an array
- Number of probes into a graph needed to determine if the graph is connected

Formal Model

- Look at models which specify exactly which operations may be performed on the input, and what they cost
 - E.g., performing a comparison, or swapping a pair of elements
- An upper bound of $f(n)$ means the algorithm takes at most $f(n)$ steps on any input of size n
- A lower bound of $g(n)$ means for any algorithm there exists an input for which the algorithm takes at least $g(n)$ steps on that input

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order
 - An algorithm may compare two items (asking is $a_i > a_j$?) at a cost of 1
 - Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.
- Sorting: given an array $a = [a_1, ..., a_n]$, output a permutation π so that $[a_{\pi(1)}, ..., a_{\pi(n)}]$ in which the elements are in increasing order
Sorting Lower Bound

- **Theorem:** Any deterministic comparison-based sorting algorithm must perform at least \(\lg(n!) \) comparisons to sort \(n \) elements in the worst case.

- I.e., for any sorting algorithm \(A \) and \(n \geq 2 \), there is an input \(I \) of size \(n \) so that \(A \) makes \(\geq \lg(n!) = \Omega(n \log n) \) comparisons to sort \(I \).

- Need to rule out any possible algorithm.

- **Proof:** Suppose there is a problem with \(M \) possible outputs.
 - For sorting, \(M = n! \) since for each possible output permutation \(\pi \), there is an input for which the output is \(\pi \).
 - Suppose for each possible output, there is an input for which that output is the only correct answer.
 - Then there is a lower bound of \(\lg M \).
 - Consider a set of inputs in 1-to-1 correspondence with the \(M \) possible outputs.
 - Algorithm needs to find out which of the \(M \) inputs we have.
 - There's a path removing at most half of the possible inputs at each node.

- **Information-theoretic:** need \(\lg(n!) \) bits of information about the input before we can correctly decide on the output.
 - \(\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + \ldots + \lg(1) < n \log n \)
 - \(n! \in [\left(\frac{n}{e}\right)^n, n^n] \), so \(n \log n - n \log e < \lg(n!) < n \log n \)
 - \(n \log n - 1.443n < \lg(n!) < n \log n \)
 - \(\lg(n!) = (n \log n)(1 - o(1)) \)
Sorting Upper Bounds

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2}^{\log n} \lceil \log k \rceil \leq n \log n$
 - Note: may need to move items around a lot, but only counting comparisons
- Mergesort: merging two sorted lists of $n/2$ elements requires at most $n-1$ comparisons
 - Unrolling the recurrence, total number of comparisons is

 \[
 (n - 1) + 2\left(\frac{n}{2} - 1\right) + \cdots + \frac{n}{2}(2 - 1) = n \log n - (n - 1) < n \log n
 \]

Selection in the Comparison Model

- How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?
 - Claim: $n-1$ comparisons are sufficient
 - Proof: scan from left to right, keep track of the largest element so far
- For lower bounds, what does our earlier information-theoretic argument give?
 - Only $\Omega(\log n)$, which is too weak
 - Also, we have to look at all elements, otherwise we may have not looked at the largest, but that can be done with $n/2$ comparisons, also not tight

Lower Bound for Finding the Maximum

- Claim: $n-1$ comparisons are needed in the worst-case to find the maximum of n elements
- Proof: suppose A is an algorithm which finds the maximum of n distinct elements using fewer than $n-1$ comparisons
 - Construct a graph G in which we join two elements by an edge if they are compared by A
 - G has at least 2 connected components C_1 and C_2
 - Suppose A outputs element u as the maximum, and $u \in C_1$
 - Add a large positive number to each element in C_2
 - Does not change any of the comparisons made by A, so will still output u
 - But now u is not the maximum, so A is incorrect

Recap: upper and lower bounds match at $n-1$

- Argument different from information-theoretic bound for sorting
 - Instead,
 - if algorithm makes too few comparisons on some input I_n and outputs O_n, find another input I_n' where the algorithm makes the same comparisons and also outputs O_n,
 - but O_n is not a correct output for I_n'
An Adversary Argument

- If algorithm makes “too few” comparisons, fool it into giving an incorrect answer.

- Any deterministic algorithm sorting 3 elements requires at least 3 comparisons.
 - If < 2 comparisons, some element not looked at and the algorithm is incorrect.
 - After first comparison, 3 elements are w, l, and z, the winner and loser of the first comparison, as well as the uninvolved item.
 - If the second query is between w and z, say w is larger.
 - If the second query is between l and z, say l is smaller.
 - Algorithm needs one more comparison for correctness.

- **Goal:** answer comparisons so that (a) answers consistent with some input ln, (b) answers make the algorithm perform “many” comparisons.

First and Second Largest of n Elements

- How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?

- **Claim:** n-1 comparisons are needed in the worst-case.

- **Proof:** need to at least find the maximum.

What about Upper Bounds?

- **Claim:** 2n-3 comparisons are sufficient to find the first and second-largest of n elements.

- **Proof:** find the largest using n-1 comparisons, then find the largest of the remainder using n-2 comparisons, so 2n-3 total.

- Upper bound is 2n-3, and lower bound n-1, both are \(\Theta(n) \) but can we get tight bounds?

Second Largest of n Elements Upper Bound

- **Claim:** \(n + \lg n - 2 \) comparisons are sufficient to find the first and second-largest of n elements.

- **Proof:** find the maximum element using n-1 comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing.

- What can we say about the second maximum?
 - Must have been directly compared to the maximum and lost, so \(\lg(n) - 1 \) additional comparisons suffice. Kislitsyn (1964) shows this is optimal.
Sorting in the Exchange Model
• Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?

• In the exchange model, you have n items and the only operation allowed on the items is to swap a pair of them at a cost of 1 step.
 • All other work is free, e.g., the items can be examined and compared.
 • How many exchanges are necessary and sufficient?

Sorting in the Exchange Model
• Claim: $n-1$ exchanges is sufficient.
• Proof: here’s an algorithm:
 • In first step, swap the smallest item with the item in the first location.
 • In second step, swap the second smallest item with the item in the second location.
 • In k-th step, swap the k-th smallest item with the item in the k-th location.
 • If no swap is necessary, just skip a given step.
 • No swap ever undoes our previous work.
 • At the end, the last item must already be in the correct location.

Lower Bound for Sorting in Exchange Model
• Claim: $n-1$ exchanges are necessary in the worst case.
• Proof: create a directed graph in which the edge (i,j) means the book in location i must end up in location j.

 ![Figure 1: Graph for input $abcde$](image)

 • Graph is a set of cycles.
 • Indegree and Outdegree of each node is 1.

Lower Bound for Sorting in Exchange Model
• What is the effect of exchanging any two elements in the same cycle?
 • Suppose we have edges (i_1,j_1) and (i_2,j_2) and swap elements in locations i_1 and i_2.
 • This replaces these edges with (i_2,j_1) and (i_1,j_2) since now the item in position i_2 need to go to j_1 and item in position i_1 need to go to j_2.
 • Since i_1 and i_2 in the same cycle, now we get two disjoint cycles.
Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in different cycles?
 - If we swap elements i_1 and i_2 in different cycles, similar argument shows this merges two cycles into one cycle.

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
 - $G[i,j] = 1$ if there is an edge between i and j, else $G[i,j] = 0$
 - In 1 step, we can query any element of G. All other computation is free
 - How many queries do we need to tell if G is connected?
 - **Claim:** $n(n-1)/2$ queries suffice
 - **Proof:** Just query every pair $[i,j]$ to learn G, then check if G is connected

 - **What about lower bounds?**

Connectivity is an Evasive Graph Property

- **Theorem:** $n(n-1)/2$ queries are necessary to determine connectivity
- **Proof:** adversary strategy: given a query $G[u,v]$, answer 0 unless that would cause the graph to become disconnected
 - Invariant: for any unasked pair (u,v), the graph revealed so far has no path from u to v
 - Reason: consider the last edge (u',v') revealed on that path. Could have answered 0 and kept same connectivity by having edge (u,v) be present
Connectivity is an Evasive Graph Property

- **Theorem:** \(n(n-1)/2 \) queries are necessary to determine connectivity
- **Proof:** adversary strategy: given a query \(G[u,v] \), answer 0 *unless* that would cause the graph to become disconnected
- **Invariant:** for any unasked pair \((u,v) \), the graph revealed so far has no path from \(u \) to \(v \)
- Suppose there is some unasked pair \((u,v) \) by the algorithm
 - If algorithm says "connected", we place all 0s on unasked pairs
 - If algorithm says "disconnected", we place all 1s on unasked pairs
- So algorithm needs to query every pair