
1/10/2020

1

Topic 1: Introduction and
Median Finding

David Woodruff

Course homepage:
http://www.cs.cmu.edu/~dwoodruf/teaching/15451-win20/cis.html

Grading and Course Policies

3 Written Homeworks 30% (10% each)

Class Participation 10%

1 Exam (in class) 20%

Research project 40%

Schedule of Lectures and Exams
• Fridays 7-10pm ET

• On zoom

• First four weeks the lectures will cover theoretical background

• Remaining weeks the lectures will be project-oriented

• Exam: second half of lecture on 1/31

Homework

• HW1: out 1/10, due 1/20 at 11:59pm China time

• HW2: out 1/21, due at 1/27 at 11:59pm China time

• HW3: out 1/28, due 2/3 at 11:59pm China tie

• For the homework, you will be asked to design and/or analyze algorithms. Your
solution should be written up formally – that is, you should prove your claims.

• You can work by yourself or with at most one other person - you must list your
collaborator (if you have one) and write the solutions yourself. You’re allowed to read
additional textbooks or online notes but must cite them.

1/10/2020

2

Schedule of Topics

• 1/10: median-finding and concrete upper and lower bounds

• 1/17: hashing and streaming

• 1/24: fingerprinting and game theory

• 1/31: linear programming and Exam

Goals of the Course

• Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing and data
structures, randomization, network flows, linear programming

• Analysis: recurrences, probabilistic analysis, amortized analysis, potential
functions

• Dual to Algorithms: complexity theory and lower bounds

• New Models: online algorithms, machine learning, data streams

Guarantees on Algorithms

• Want provable guarantees on the running time of algorithms

• Why?

• Composability: if we know an algorithm runs in time at most T on any
input, don’t have to worry what kinds of inputs we run it on

• Scaling: how does the time grow as the input size grows?

• Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array
aଵ, aଶ, … , a୬

and want the index i for which there are exactly ⌊n/2⌋ numbers larger than a୧

• How can we find the median?
• Check each item to see if it is the median: Θ nଶ time

• Sort items with MergeSort (deterministic) or QuickSort (randomized): Θ(n log n) time

• Can we find it faster? What about finding the k-th smallest number?

1/10/2020

3

QuickSelect Algorithm to Find the k-th Smallest Number

• Assume aଵ, aଶ, … , a୬ are all distinct for simplicity

• Choose a random element a୧ in the list – call this the “pivot”

• Compare each a୨ to a୧
• Let LESS = {a୨ such that a୨ < a୧}
• Let GREATER = {a୨ such that a୨ > a୧}

• If k ≤ |LESS|, find the k-th smallest element in LESS
• If k = LESS + 1, output the pivot a୧

• Else find the (k-|LESS|-1)-th smallest item in GREATER

• Similar to Randomized QuickSort, but only recurse on one side!

Bounding the Running Time

• Theorem: the expected number of comparisons for QuickSelect is at most 4n

• Let T n = max
୩

T n, k , where T(n,k) is the expected number of comparisons
to find the k-th smallest item in an array of length n, maximized over all arrays

• T(n) is a non-decreasing function of n

• Let’s show T(n) < 4n by induction

• Base case: T(1) = 0 < 4

• Inductive hypothesis: T(n-1) < 4(n-1)

Bounding the Running Time

• Suppose we have an array of length n

• Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + |GREATER| = n-1

• |LESS| is uniform in the set {0, 1, 2, 3, …, n-1}

• Since T i is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half

• T n ≤ n − 1 +
ଶ

୬
 ∑ T i

୧ୀ
౤

మ
,…,୬ିଵ

≤ n − 1 +
ଶ

୬
∑ 4i

୧ୀ
౤

మ
,…,୬ିଵ

by inductive hypothesis

 < n − 1 + 4
ଷ୬

ସ
since the average ଶ

୬
∑ i

୧ୀ
౤

మ
,…,୬ିଵ

 is at most 3n/4

< 4n completing the induction

What About Deterministic Algorithms?

• Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

• Idea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size ⌊୬

ଶ
⌋

• How to do that?

• Find the median and then partition around that
• Um... finding the median is the original problem we want to solve….

1/10/2020

4

Deterministically Finding a Pivot

• Idea: deterministically find a pivot with O(n) comparisons to partition the
input into two pieces LESS and GREATER each of size at least 3n/10

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
• Step 2 takes T(n/5) time
• Step 3 takes O(n) time

Claim: |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1

Running Time of DeterministicSelect
• Claim: |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1

• Example 1: If n = 15, we have three groups of 5:
{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}

medians: 3 6 9
median of medians p: 6

• There are g = n/5 groups, and at least ⌈୥

ଶ
⌉ of them have at least 3 elements at

most p. The number of elements less than or equal to p is at least

3
g

2
≥

3n

10
• Also at least 3n/10 elements greater than or equal to p

Running Time of DeterministicSelect

• DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

• Steps 1-3 take O(n) + T(n/5) time
• Since |LESS| ≥ 3n/10-1 and |GREATER| ≥ 3n/10-1, Step 4 takes at most T(7n/10) time

• So T n ≤ cn + T
୬

ହ
+ T

଻୬

ଵ଴
, for a constant c > 0

1/10/2020

5

Running Time of DeterministicSelect

• T n ≤ cn + T
୬

ହ
+ T

଻୬

ଵ଴

• Time is cn 1 +
ଽ

ଵ଴
+

ଽ

ଵ଴

ଶ
+ … ≤ 10cn

• Recurrence works because n/5 + 7n/10 < n

• For constants c and aଵ, aଶ, … a୰ with aଵ + aଶ + ⋯ a୰ < 1, the recurrence
T n ≤ T aଵn + T aଶn + … + T a୰n + cn solves to T n = O(n)

• If instead aଵ + aଶ + … + a୰ = 1, the recurrence solves to T(n) = O(n log n)
• If we use median of 3 in DeterministicSelect instead of median of 5, what happens?

