Algorithms, Winter 2020 at CIS

1. Let $U=2^{u}$ and $M=2^{m}$. Prove that the family of hash functions $A \cdot x+b \bmod 2$, where $A \in\{0,1\}^{m \times u}$ is a random binary matrix, and $b \in\{0,1\}^{m}$ is a random binary vector, is a 2 -universal family.
2. Suppose Alice has a bit string $x \in\{0,1\}^{n}$ and Bob has a bit string $y \in\{0,1\}^{n}$. They are promised that there is exactly one index $i \in\{1,2,3, \ldots, n\}$ for which $x_{i} \neq y_{i}$, and for all $j \neq i, x_{j}=y_{j}$. Alice sends a single message to Bob, and Bob needs to figure out what the value of i is with probability at least $4 / 5$. Show that there is a way to do this where Alice's message length is only $O(\log n)$ bits long.
3. Consider the following 2-player zero sum game:

$$
\left[\begin{array}{cc}
-2 & 3 \\
3 & -4
\end{array}\right]
$$

Calculate the minimax optimal strategies of the row player and the column player, as well as the value of the game.

