1. What is an algorithm with the smallest number of comparisons you can find for outputting both the maximum and the minimum of \(n \) numbers?

2. Suppose \(H \) is a 3-universal family of hash functions \(h \), where each function \(h \in H \) is a mapping from \(\{1, 2, \ldots, M\} \) to \(\{1, 2, \ldots, N\} \). Show that \(H \) is also a 2-universal family of hash functions.

3. Consider the following data stream algorithm for estimating counts of items. We choose a universal hash function \(h : \Sigma \rightarrow \{0, 1, 2, \ldots, r - 1\} \) and a 2-universal hash function \(s : \Sigma \rightarrow \{-1, 1\} \). We initialize an array \(A \) of length \(r \) to be all zeros. When we see the stream item \(a_i \), we set \(A[h(a_i)] = A[h(a_i)] + s(a_i) \). At the end of the stream, for an element \(e \in \Sigma \), suppose we output \(\text{est}(e) = s(e) \cdot A[h(e)] \).

 (a) Show that the expected value \(\mathbb{E}[\text{est}(e)] = \text{count}(e) \), where \(\text{count}(e) \) is the number of occurrences of \(e \) in the stream.

 (b) Recall the variance \(\text{Var}[X] \) of a random variable \(X \) is \(\mathbb{E}[(X - \mathbb{E}[X])^2] \), which is also equal to \(\mathbb{E}[X^2] - \mathbb{E}^2[X] \). The smaller the variance is, the more likely your random variable is to be close to its expected value. Show \(\text{Var}[\text{est}(e)] \leq \frac{1}{r} \sum_{e' \in \Sigma} \text{count}^2(e') \). It might help to use that for independent random variables \(X \) and \(Y \), it holds that \(\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y] \).