Algorithms, Winter 2020 at CIS

1. Suppose you are in the comparison-based model and you are given a list of n distinct numbers, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Define the rank of an item a_{j} to be its position i, in a sorted order of these numbers. So if π is a permutation from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$, and $a_{\pi(1)}<a_{\pi(2)}<\cdots<a_{\pi(n)}$, then the rank of a_{j} is equal to the index i for which $\pi(i)=j$.
Give a deterministic algorithm for outputting the entire set of items of rank 3^{i}, for $i=0,1,2,3,4, \ldots,\left\lfloor\log _{3} n\right\rfloor$. Your algorithm should use $O(n)$ comparisons.
2. Suppose you are in the comparison-based model are you are given a list of n distinct numbers, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. You are also given an integer B, and suppose B divides n. Your job is to arbitrarily partition these n numbers into B groups G_{1}, \ldots, G_{B}, so that
(a) each group G_{i} has n / B items, and
(b) inside of each group G_{i}, the numbers are sorted.

First argue that if $B=\Theta(n)$, then this can be done deterministically using $O(n)$ comparisons. Second, show that if $B=\Theta\left(n^{1 / 3}\right)$, then this requires $\Omega(n \log n)$ comparisons for any deterministic algorithm in the comparison-based model.
3. True or False: given a list a_{1}, \ldots, a_{n}, one can output a sorted list of the smallest $n^{1 / 3}$ items in $O(n)$ time.

