Algorithms, Winter 2020 at CIS

Homework 3

1. Suppose you are in the comparison-based model and you are given a list of n distinct numbers, $a_1, a_2, a_3, \ldots, a_n$. Define the rank of an item a_j to be its position i, in a sorted order of these numbers. So if π is a permutation from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, n\}$, and $a_{\pi(1)} < a_{\pi(2)} < \cdots < a_{\pi(n)}$, then the rank of a_j is equal to the index i for which $\pi(i) = j$.

Due: $1/21/20 \ 11:59 \text{pm}$ China time

- Give a deterministic algorithm for outputting the entire set of items of rank 3^i , for $i = 0, 1, 2, 3, 4, \ldots, \lfloor \log_3 n \rfloor$. Your algorithm should use O(n) comparisons.
- 2. Suppose you are in the comparison-based model are you are given a list of n distinct numbers, $a_1, a_2, a_3, \ldots, a_n$. You are also given an integer B, and suppose B divides n. Your job is to arbitrarily partition these n numbers into B groups G_1, \ldots, G_B , so that
 - (a) each group G_i has n/B items, and
 - (b) inside of each group G_i , the numbers are sorted.

First argue that if $B = \Theta(n)$, then this can be done deterministically using O(n) comparisons. Second, show that if $B = \Theta(n^{1/3})$, then this requires $\Omega(n \log n)$ comparisons for any deterministic algorithm in the comparison-based model.

3. True or False: given a list a_1, \ldots, a_n , one can output a sorted list of the smallest $n^{1/3}$ items in O(n) time.