1. Suppose you are in the comparison-based model and you are given a list of \(n \) distinct numbers, \(a_1, a_2, a_3, \ldots, a_n \). Define the rank of an item \(a_j \) to be its position \(i \), in a sorted order of these numbers. So if \(\pi \) is a permutation from \(\{1, 2, \ldots, n\} \) to \(\{1, 2, \ldots, n\} \), and \(a_{\pi(1)} < a_{\pi(2)} < \cdots < a_{\pi(n)} \), then the rank of \(a_j \) is equal to the index \(i \) for which \(\pi(i) = j \).

Give a deterministic algorithm for outputting the entire set of items of rank \(3^i \), for \(i = 0, 1, 2, 3, 4, \ldots, \lfloor \log_3 n \rfloor \). Your algorithm should use \(O(n) \) comparisons.

2. Suppose you are in the comparison-based model are you are given a list of \(n \) distinct numbers, \(a_1, a_2, a_3, \ldots, a_n \). You are also given an integer \(B \), and suppose \(B \) divides \(n \). Your job is to arbitrarily partition these \(n \) numbers into \(B \) groups \(G_1, \ldots, G_B \), so that

(a) each group \(G_i \) has \(n/B \) items, and
(b) inside of each group \(G_i \), the numbers are sorted.

First argue that if \(B = \Theta(n) \), then this can be done deterministically using \(O(n) \) comparisons. Second, show that if \(B = \Theta(n^{1/3}) \), then this requires \(\Omega(n \log n) \) comparisons for any deterministic algorithm in the comparison-based model.

3. True or False: given a list \(a_1, \ldots, a_n \), one can output a sorted list of the smallest \(n^{1/3} \) items in \(O(n) \) time.