
Lecture 20: The Multiplicative
Weights Algorithm

David Woodruff

The Experts Problem
• n “experts” try to predict an outcome on each day

• Expert = someone with an opinion, not necessarily someone who
knows anything

• For example, the experts could try to predict the stock market

The Experts Problem

• n “experts” predict an outcome on each of T days, t = 1, …, T

• On day t, the i-th expert predicts outcome

• On day t, you see and make your prediction

• Then you see the actual outcome on day t

• You are correct if and wrong otherwise

The Experts Problem

• Goal: if the best expert is wrong on M days, you want to be wrong on at
most M days, plus a little bit

• Don’t make assumptions on the input

• Don’t assume future looks like the past

• Application: experts predict stock market, you want to do as well as the
best single expert in hindsight

How should you choose your guess on each day?

Simpler Question

• Suppose at least one expert is perfect, i.e., never makes a mistake
• Don’t know which one

• Suppose each expert predicts one of two values: 0 or 1
• E.g., stock market will go up or down

• Can we find a strategy that makes no more than mistakes?

• Majority-and-halving: On each day, take the majority vote of all experts
• Each time you’re wrong, you can remove at least half the experts
• After mistakes you’re left with the perfect expert

• Same guarantee if experts predict more than 2 values
• You choose most frequent prediction. If wrong, at least half the experts are wrong

Can You Do Better?
• Claim: in the worst case, any strategy makes at least mistakes

• Proof: adversary method

• Day 1: make the first n/2 experts say 0, and the second n/2 experts say 1
• If predictor outputs 0, then say the best expert outputs 1
• If predictor outputs 1, then say the best expert outputs 0
• Perfect expert is either in [1, n/2] or in [n/2+1, n]

• Day 2: in each interval [1, n/2] and [n/2+1, n], make first half of the experts say 0 and second
half of the experts say 1

• If predictor outputs 0, then say the best expert outputs 1
• If predictor outputs 1, then say the best expert outputs 0
• Perfect expert is either in [1, n/4], [n/4+1, n/2], [n/2+1, 3n/4], or [3n/4+1, n]

• …
• Any strategy is incorrect on at least days

No Perfect Expert

• Suppose best expert makes M mistakes

• How can we guarantee we make at most (M+1)(mistakes?

• Run Majority-and-Halving, but after throwing away all experts, bring them
all back in and start over

• In each “phase”, each expert makes at least 1 mistake, and you make at
most mistakes

• At most M finished phases, plus the last unfinished one

Doing Better

• If best expert makes M mistakes, we make at most (M+1)(
mistakes

• Can’t do better than best expert, who makes M mistakes
• Suppose only one expert who always says 1 and is wrong M times

• Can’t do better than mistakes

• But can we make at most mistakes instead of ?

Weighted Majority Algorithm

• Throwing away an expert when it makes a mistake is too drastic

• Assign weight to i-th expert. Initialize all weights to 1

• On t-th day, compute sum of weights of experts who say 0, and sum
of weights of experts who say 1

• Choose outcome with larger weight

• If an expert is wrong on day t, cut its weight in half

Weighted Majority Algorithm

• Theorem: If the best expert makes M mistakes, then the weighted
majority algorithm makes at most mistakes!

• Proof: Let . Initially

• When we make a mistake,
• At least half of the weight (which made the majority prediction) gets halved

(because it made a mistake)

• If we don’t make a mistake,

Weighted Majority Algorithm

• If we’ve made m mistakes so far,

• But best expert ∗ makes at most M mistakes, so ∗

• So , or

• Taking logs,

• If best expert makes a mistake 10% of the time, we make a mistake 24% of the
time (plus which is negligible with enough days)

Improved Weighted Majority Algorithm

• Only change: if an expert is wrong on day t, multiply its weight by

• Still choose outcome given by the majority weight of experts in each day

• Theorem: If the best expert makes M mistakes, then the weighted
majority algorithm makes at most mistakes

Improved Weighted Majority Algorithm

• Each time we make a mistake,
• At least half of the weight gets scaled by

• If we’ve made m mistakes so far,

• ∗

• or

• So

• Use and for , and divide both sides by

•

Lower Bound for Deterministic Algorithms
• Theorem: If the best expert makes M mistakes, then the weighted majority algorithm makes at

most mistakes!

• If best expert is wrong 10% of the time, we’re wrong 20% of the time

• 2-approximation is best possible for deterministic algorithms:

• Suppose we have two experts - one always says 0 and one always says 1

• If algorithm is deterministic, the adversary knows what prediction it will make on each day, so
it can choose the opposite outcome

• So algorithm incorrect on all days, but one expert is correct on at least half of the days

Randomized Weighted Majority Algorithm

• Assign weight to i-th expert. Initialize all weights to 1

• On each day, predict 1 with probability
∑

∑ , and predict 0 otherwise

• Equivalently, pick a random expert i with probability
∑ and choose that

expert’s outcome

• When an expert makes a mistake, multiply its weight by

Randomized Weighted Majority Algorithm

• Theorem: If the best expert makes M mistakes, then the expected
number of mistakes of the randomized weighted majority algorithm
makes at most

• Let . Initially

• Having fixed the outcome on all days, the potential varies
deterministically

Randomized Weighted Majority Algorithm

• Let be the fraction of total weight on the t-th day on experts that make
a mistake on that day

• The expected number of mistakes we make is

• On day t:

•
 ∑

using that for all x

• Also,

Randomized Weighted Majority Algorithm

• Have shown:
∑

• Taking natural logs,

• Using for , and dividing both sides by we get:

Expected number of mistakes =

Understanding the Error Rate

• Expected number of mistakes =

• Best expert makes at most T mistakes, so

• Let M/T be optimal “error rate”

• Our expected error rate is at most optimal error rate +

• Setting
/

our error rate optimal rate +
/

• The last term is called the “regret”. As T gets larger, the regret goes to 0

