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The Experts Problem
• n “experts” try to predict an outcome on each day

• Expert = someone with an opinion, not necessarily someone who 
knows anything

• For example, the experts could try to predict the stock market



The Experts Problem

• n “experts” predict an outcome on each of T days, t = 1, …, T

• On day t, the i-th expert predicts outcome 

• On day t, you see and make your prediction 

• Then you see the actual outcome on day t

• You are correct if  and wrong otherwise



The Experts Problem

• Goal: if the best expert is wrong on M days, you want to be wrong on at 
most M days, plus a little bit

• Don’t make assumptions on the input

• Don’t assume future looks like the past

• Application: experts predict stock market, you want to do as well as the 
best single expert in hindsight

How should you choose your guess on each day?



Simpler Question

• Suppose at least one expert is perfect, i.e., never makes a mistake
• Don’t know which one

• Suppose each expert predicts one of two values: 0 or 1 
• E.g., stock market will go up or down

• Can we find a strategy that makes no more than mistakes?

• Majority-and-halving: On each day, take the majority vote of all experts
• Each time you’re wrong, you can remove at least half the experts
• After mistakes you’re left with the perfect expert

• Same guarantee if experts predict more than 2 values
• You choose most frequent prediction. If wrong, at least half the experts are wrong



Can You Do Better?
• Claim: in the worst case, any strategy makes at least mistakes 

• Proof: adversary method

• Day 1: make the first n/2 experts say 0, and the second n/2 experts say 1
• If predictor outputs 0, then say the best expert outputs 1
• If predictor outputs 1, then say the best expert outputs 0
• Perfect expert is either in [1, n/2] or in [n/2+1, n]

• Day 2: in each interval [1, n/2] and [n/2+1, n], make first half of the experts say 0 and second 
half of the experts say 1

• If predictor outputs 0, then say the best expert outputs 1
• If predictor outputs 1, then say the best expert outputs 0
• Perfect expert is either in [1, n/4], [n/4+1, n/2], [n/2+1, 3n/4], or [3n/4+1, n]

• …
• Any strategy is incorrect on at least days



No Perfect Expert

• Suppose best expert makes M mistakes

• How can we guarantee we make at most (M+1)( mistakes?

• Run Majority-and-Halving, but after throwing away all experts, bring them 
all back in and start over

• In each “phase”, each expert makes at least 1 mistake, and you make at 
most mistakes

• At most M finished phases, plus the last unfinished one



Doing Better

• If best expert makes M mistakes, we make at most (M+1)(
mistakes

• Can’t do better than best expert, who makes M mistakes
• Suppose only one expert who always says 1 and is wrong M times

• Can’t do better than mistakes

• But can we make at most mistakes instead of ?



Weighted Majority Algorithm

• Throwing away an expert when it makes a mistake is too drastic

• Assign weight to i-th expert. Initialize all weights to 1

• On t-th day, compute sum of weights of experts who say 0, and sum 
of weights of experts who say 1 

• Choose outcome with larger weight

• If an expert is wrong on day t, cut its weight in half



Weighted Majority Algorithm

• Theorem: If the best expert makes M mistakes, then the weighted 
majority algorithm makes at most mistakes!

• Proof: Let   . Initially 

• When we make a mistake, 
• At least half of the weight (which made the majority prediction) gets halved 

(because it made a mistake)

• If we don’t make a mistake, 



Weighted Majority Algorithm

• If we’ve made m mistakes so far, 

• But best expert ∗ makes at most M mistakes, so ∗

• So  ,  or 

• Taking logs, 

• If best expert makes a mistake 10% of the time, we make a mistake 24% of the 
time (plus which is negligible with enough days)



Improved Weighted Majority Algorithm

• Only change: if an expert is wrong on day t, multiply its weight by 

• Still choose outcome given by the majority weight of experts in each day

• Theorem: If the best expert makes M mistakes, then the weighted 
majority algorithm makes at most mistakes



Improved Weighted Majority Algorithm

• Each time we make a mistake, 
• At least half of the weight gets scaled by 

• If we’ve made m mistakes so far, 

• ∗

• or  

• So 

• Use and   for , and divide both sides by 

•



Lower Bound for Deterministic Algorithms
• Theorem: If the best expert makes M mistakes, then the weighted majority algorithm makes at 

most mistakes!

• If best expert is wrong 10% of the time, we’re wrong 20% of the time

• 2-approximation is best possible for deterministic algorithms:

• Suppose we have two experts - one always says 0 and one always says 1

• If algorithm is deterministic, the adversary knows what prediction it will make on each day, so 
it can choose the opposite outcome

• So algorithm incorrect on all days, but one expert is correct on at least half of the days



Randomized Weighted Majority Algorithm

• Assign weight to i-th expert. Initialize all weights to 1

• On each day, predict 1 with probability 
∑ 

  

∑  , and predict 0 otherwise

• Equivalently, pick a random expert i with probability 
∑  and choose that 

expert’s outcome

• When an expert makes a mistake, multiply its weight by 



Randomized Weighted Majority Algorithm

• Theorem: If the best expert makes M mistakes, then the expected 
number of mistakes of the randomized weighted majority algorithm 
makes at most  

• Let   . Initially 

• Having fixed the outcome on all days, the potential varies 
deterministically 



Randomized Weighted Majority Algorithm

• Let be the fraction of total weight on the t-th day on experts that make 
a mistake on that day

• The expected number of mistakes we make is  

• On day t:   

•  
  ∑ 

using that for all x

• Also,  



Randomized Weighted Majority Algorithm

• Have shown:  
∑ 

• Taking natural logs,  

• Using for , and dividing both sides by we get:

Expected number of mistakes =  



Understanding the Error Rate

• Expected number of mistakes =  

• Best expert makes at most T mistakes, so  

• Let M/T be optimal “error rate”

• Our expected error rate is at most optimal error rate + 
 

• Setting 
/

our error rate optimal rate + 
/

• The last term is called the “regret”. As T gets larger, the regret goes to 0


