Lecture 20: The Multiplicative Weights Algorithm

David Woodruff

The Experts Problem

- n "experts" try to predict an outcome on each day
- Expert = someone with an opinion, not necessarily someone who knows anything
- For example, the experts could try to predict the stock market

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down
\ldots	\ldots	\ldots	\ldots	\ldots

The Experts Problem

- n "experts" predict an outcome on each of T days, $\mathrm{t}=1, \ldots, \mathrm{~T}$
- On day t, the i-th expert predicts outcome out t_{i}^{t}
- On day t, you see out ${ }_{1}^{\mathrm{t}}, \ldots$, out t_{n} and make your prediction guess ${ }^{\mathrm{t}}$
- Then you see the actual outcome out ${ }^{t}$ on day t
- You are correct if guess ${ }^{\mathrm{t}}=$ out $^{\mathrm{t}}$ and wrong otherwise

The Experts Problem

- Goal: if the best expert is wrong on M days, you want to be wrong on at most M days, plus a little bit
- Don't make assumptions on the input
- Don't assume future looks like the past
- Application: experts predict stock market, you want to do as well as the best single expert in hindsight

How should you choose your guess on each day?

Simpler Question

- Suppose at least one expert is perfect, i.e., never makes a mistake
- Don't know which one
- Suppose each expert predicts one of two values: 0 or 1
- E.g., stock market will go up or down
- Can we find a strategy that makes no more than $\left\lceil\lg _{2} \mathrm{n}\right\rceil$ mistakes?
- Majority-and-halving: On each day, take the majority vote of all experts
- Each time you're wrong, you can remove at least half the experts
- After $\left[\mathrm{lg}_{2} \mathrm{n}\right]$ mistakes you're left with the perfect expert
- Same guarantee if experts predict more than 2 values
- You choose most frequent prediction. If wrong, at least half the experts are wrong

Can You Do Better?

- Claim: in the worst case, any strategy makes at least $\lg _{2} \mathrm{n}$ mistakes
- Proof: adversary method
- Day 1 : make the first $\mathrm{n} / 2$ experts say 0 , and the second $\mathrm{n} / 2$ experts say 1
- If predictor outputs 0 , then say the best expert outputs 1
- If predictor outputs 1 , then say the best expert outputs 0
- Perfect expert is either in $[1, n / 2]$ or in $[n / 2+1, n]$
- Day 2 : in each interval $[1, n / 2]$ and $[n / 2+1, n]$, make first half of the experts say 0 and second half of the experts say 1
- If predictor outputs 0 , then say the best expert outputs 1
- If predictor outputs 1 , then say the best expert outputs 0
- Perfect expert is either in $[1, n / 4],[n / 4+1, n / 2],[n / 2+1,3 n / 4]$, or $[3 n / 4+1, n]$
- Any strategy is incorrect on at least $\lg _{2} \mathrm{n}$ days

No Perfect Expert

- Suppose best expert makes M mistakes
- How can we guarantee we make at most $(M+1)\left(\log _{2} n+1\right)$ mistakes?
- Run Majority-and-Halving, but after throwing away all experts, bring them all back in and start over
- In each "phase", each expert makes at least 1 mistake, and you make at most $\log _{2} n+1$ mistakes
- At most M finished phases, plus the last unfinished one

Doing Better

- If best expert makes M mistakes, we make at most $(\mathrm{M}+1)\left(\log _{2} \mathrm{n}+1\right)=$ $\mathrm{O}\left(\mathrm{M} \log _{2} \mathrm{n}\right)$ mistakes
- Can't do better than best expert, who makes M mistakes
- Suppose only one expert who always says 1 and is wrong M times
- Can't do better than $\log _{2} \mathrm{n}$ mistakes
- But can we make at most $\approx M+\log _{2} n$ mistakes instead of $\approx M \cdot \log _{2} n$?

Weighted Majority Algorithm

- Throwing away an expert when it makes a mistake is too drastic
- Assign weight w_{i} to i -th expert. Initialize all weights to 1
- On t-th day, compute sum of weights of experts who say 0 , and sum of weights of experts who say 1
- Choose outcome with larger weight
- If an expert is wrong on day t, cut its weight in half

Weighted Majority Algorithm

- Theorem: If the best expert makes M mistakes, then the weighted majority algorithm makes at most $2.41\left(\mathrm{M}+\log _{2} \mathrm{n}\right)$ mistakes!
- Proof: Let $\Phi=\sum_{i} \mathrm{w}_{\mathrm{i}}$. Initially $\Phi=\mathrm{n}$
- When we make a mistake, $\Phi_{\text {new }} \leq \frac{3}{4}$. $\Phi_{\text {old }}$
- At least half of the weight (which made the majority prediction) gets halved (because it made a mistake)
- If we don't make a mistake, $\Phi_{\text {new }} \leq \Phi_{\text {old }}$

Weighted Majority Algorithm

- If we've made m mistakes so far, $\Phi_{\text {final }} \leq\left(\frac{3}{4}\right)^{\mathrm{m}} \cdot \Phi_{\text {init }}=\left(\frac{3}{4}\right)^{\mathrm{m}} \cdot \mathrm{n}$
- But best expert i^{*} makes at most M mistakes, so $\Phi_{\text {final }} \geq \mathrm{w}_{\mathrm{i}^{*}} \geq\left(\frac{1}{2}\right)^{\mathrm{M}}$
- So $\left(\frac{1}{2}\right)^{\mathrm{M}} \leq \Phi_{\text {final }} \leq\left(\frac{3}{4}\right)^{\mathrm{m}} \cdot \mathrm{n}$, or $\left(\frac{4}{3}\right)^{\mathrm{m}} \leq 2^{\mathrm{M}} \cdot \mathrm{n}$
- Taking logs, $m \leq \frac{\mathrm{M}+\log _{2} \mathrm{n}}{\log _{2}\left(\frac{4}{3}\right)}=2.41\left(\mathrm{M}+\log _{2} \mathrm{n}\right)$
- If best expert makes a mistake 10% of the time, we make a mistake 24% of the time (plus $\log _{2} \mathrm{n}$ which is negligible with enough days)

Improved Weighted Majority Algorithm

- Only change: if an expert is wrong on day t, multiply its weight by $1-\epsilon$
- Still choose outcome given by the majority weight of experts in each day
- Theorem: If the best expert makes M mistakes, then the weighted majority algorithm makes at most $2(1+\epsilon) M+O\left(\frac{\log _{2} n}{\epsilon}\right)$ mistakes

Improved Weighted Majority Algorithm

- Each time we make a mistake, $\Phi_{\text {new }} \leq\left(1-\frac{\epsilon}{2}\right) \cdot \Phi_{\text {old }}$
- At least half of the weight gets scaled by $1-\epsilon$
- If we've made m mistakes so far, $\Phi_{\text {final }} \leq\left(1-\frac{\epsilon}{2}\right)^{m} \cdot \Phi_{\text {init }}=\left(1-\frac{\epsilon}{2}\right)^{m} n$
- $\Phi_{\text {final }} \geq \mathrm{w}_{\mathrm{i}^{*}} \geq(1-\epsilon)^{\mathrm{M}}$
- $(1-\epsilon)^{\mathrm{M}} \leq \Phi_{\text {final }} \leq\left(1-\frac{\epsilon}{2}\right)^{\mathrm{m}} \mathrm{n}$ or $\frac{1}{\left(1-\frac{\epsilon}{2}\right)^{\mathrm{m}}} \leq \frac{\mathrm{n}}{(1-\epsilon)^{\mathrm{M}}}$
- So $m \ln \frac{1}{1-\frac{\epsilon}{2}} \leq M \cdot \ln \frac{1}{1-\epsilon}+\ln n$
- Use $\ln \frac{1}{1-\frac{\epsilon}{2}} \geq \frac{\epsilon}{2}$ and $\ln \frac{1}{1-\epsilon} \leq \epsilon+\epsilon^{2}$ for $\epsilon \in\left[0, \frac{1}{2}\right]$, and divide both sides by $\frac{2}{\epsilon}$
- $\mathrm{m} \leq 2 \mathrm{M}(1+\epsilon)+\frac{2 \ln \mathrm{n}}{\epsilon}$

Lower Bound for Deterministic Algorithms

- Theorem: If the best expert makes M mistakes, then the weighted majority algorithm makes at most $2(1+\epsilon) M+O\left(\frac{\log _{2} n}{\epsilon}\right)$ mistakes!
- If best expert is wrong 10% of the time, we're wrong 20% of the time
- 2-approximation is best possible for deterministic algorithms:
- Suppose we have two experts - one always says 0 and one always says 1
- If algorithm is deterministic, the adversary knows what prediction it will make on each day, so it can choose the opposite outcome
- So algorithm incorrect on all days, but one expert is correct on at least half of the days

Randomized Weighted Majority Algorithm

- Assign weight w_{i} to i -th expert. Initialize all weights to 1
- On each day, predict 1 with probability $\frac{\sum_{\mathrm{i} \text { says } 1} \mathrm{w}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}}$, and predict 0 otherwise
- Equivalently, pick a random expert i with probability $\frac{w_{i}}{\sum_{j} w_{j}}$ and choose that expert's outcome
- When an expert makes a mistake, multiply its weight by $1-\epsilon$

Randomized Weighted Majority Algorithm

- Theorem: If the best expert makes M mistakes, then the expected number of mistakes of the randomized weighted majority algorithm makes at most $(1+\epsilon) M+\frac{\ln n}{\epsilon}$
- Let $\Phi=\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}$. Initially $\Phi=\mathrm{n}$
- Having fixed the outcome on all days, the potential varies deterministically

Randomized Weighted Majority Algorithm

- Let F_{t} be the fraction of total weight on the t -th day on experts that make a mistake on that day
- The expected number of mistakes we make is $\sum_{t} F_{t}$
- On day t: $\Phi_{\text {new }}=\Phi_{\text {old }} \cdot\left(1-\mathrm{F}_{\mathrm{t}}\right)+\Phi_{\text {old }} \cdot \mathrm{F}_{\mathrm{t}}(1-\epsilon)=\Phi_{\text {old }}\left(1-\epsilon \cdot \mathrm{F}_{\mathrm{t}}\right)$
- $\Phi_{\text {final }} \leq \mathrm{n} \cdot \prod_{\mathrm{t}}\left(1-\epsilon \cdot \mathrm{F}_{\mathrm{t}}\right) \leq \mathrm{n} \cdot \mathrm{e}^{-\epsilon \sum_{\mathrm{t}} \mathrm{F}_{\mathrm{t}}}$ using that $1+\mathrm{x} \leq \mathrm{e}^{\mathrm{x}}$ for all x
- Also, $\Phi_{\text {final }} \geq(1-\epsilon)^{\mathrm{M}}$

Randomized Weighted Majority Algorithm

- Have shown: $(1-\epsilon)^{\mathrm{M}} \leq \Phi_{\text {final }} \leq \mathrm{n} \cdot \mathrm{e}^{-\epsilon \Sigma_{\mathrm{t}} \mathrm{F}_{\mathrm{t}}}$
- Taking natural logs, $\epsilon \sum_{\mathrm{t}} \mathrm{F}_{\mathrm{t}} \leq \mathrm{M} \ln \frac{1}{1-\epsilon}+\ln \mathrm{n}$
- Using $\ln \frac{1}{1-\epsilon} \leq \epsilon+\epsilon^{2}$ for $\epsilon \in\left[0, \frac{1}{2}\right]$, and dividing both sides by ϵ we get:

Expected number of mistakes $=\sum_{t} F_{t} \leq M(1+\epsilon)+\frac{\ln n}{\epsilon}$

Understanding the Error Rate

- Expected number of mistakes $=\sum_{t} F_{t} \leq M(1+\epsilon)+\frac{\ln n}{\epsilon}$
- Best expert makes at most T mistakes, so $\sum_{t} F_{t} \leq M+\epsilon T+\frac{\ln n}{\epsilon}$
- Let M / T be optimal "error rate"
- Our expected error rate is at most optimal error rate $+\epsilon+\frac{\ln n}{\epsilon T}$
- Setting $\epsilon=\left(\frac{\ln n}{T}\right)^{1 / 2}$, our error rate \leq optimal rate $+2\left(\frac{\ln n}{T}\right)^{1 / 2}$
- The last term is called the "regret". As T gets larger, the regret goes to 0

