Algorithms, May-June 2020 at CIS

Homework 3

1. Suppose N is a power of 2 . Recall a primitive N-th root of unity is a possibly complex number g for which $g^{0}, g^{1}, g^{2}, \ldots, g^{N-1}$ are all distinct and $g^{0}=g^{N}=1$, and the N-th roots of unity are $e^{-2 \pi i j / N}$ for $j=0,1,2, \ldots, N-1$. How many primitive N-th roots of unity are there?
2. Show that if $\operatorname{DFT}_{N}[j, k]=\omega^{k j}$, where ω is a primitive N-th root of unity, then show that $\operatorname{IDFT}_{N}[j, k]=\frac{1}{N} \omega^{-k j}$ is the inverse matrix.
3. Suppose you have a string $s=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)$ of length n with entries in $\{-1,1\}$ and a string $t=\left(t_{0}, t_{1}, \ldots, t_{10 n-1}\right)$ of length $10 n$ with entries in $\{-1,1\}$. We say position k of t is a match if $t_{k}=s_{n-1}, t_{k-1}=s_{n-2}, \ldots, t_{k-n+1}=s_{0}$. Note if $k-n+1<0$, there is no match at position k. Show how to use the FFT to find all matches in $O(n \log n)$ time. Hint: if you have two polynomials $p=\sum_{i=0}^{n-1} a_{i} x^{i}$ and $q=\sum_{i=0}^{10 n-1} b_{i} x^{i}$, then the k-th coefficient of $p \cdot q$ is $\sum_{i \leq k} a_{i} b_{k-i}$.
