## Algorithms, May-June 2020 at CIS

## Homework 1

1. Suppose you have two length- $n$ binary integers $a$ and $b$ and $n$ is a power of 3 , and you would like to multiply $a$ and $b$ quickly. Suppose, in $O(n)$ time, you could create 5 length- $n / 3$ numbers $p_{1}, \ldots, p_{5}$ and 5 length- $n / 3$ numbers $q_{1}, \ldots, q_{5}$, so that after computing $p_{1} \cdot q_{1}, p_{2} \cdot q_{2}, \ldots, p_{5} \cdot q_{5}$ you could combine the results, in $O(n)$ time, to compute $a \cdot b$. What is the overall big-Oh running time of your algorithm to multiply $a$ and $b$ ?
2. Suppose you could multiply two arbitrary $4 \times 4$ matrices $A$ and $B$ using 31 multiplications and 71 additions. Using this to devise a divide and conquer algorithm, along the lines of Strassen's, what would your running time be for multiplying two $n \times n$ matrices? Big-Oh notation is fine.
3. Suppose you have a degree-2 polynomial $p(x)$ for which $p(0)=5, p(1)=2$, and $p(2)=3$. Then $p(x)=a x^{2}+b x+c$. Solve for $a, b$, and $c$.
