Topic 5: Fingerprinting

David Woodruff

How to Pick a Random Prime

- How to pick a random prime in the range {1, 2, ..., M}?
 - Pick a random integer X in the range $\{1, \ldots, M\}$.
 - Check if X is a prime. If so, output it. Else go back to the first step.
- How to pick a random integer X?
 - Pick a uniformly random bit string of length $\lfloor \log_2 M \rfloor + 1$
 - If it represents a number $\leq M$, output X. Else go back to the last step
 - In expectation, repeat this step at most twice
- How to check if X is prime?
 - · Miller-Rabin primality test very efficient but fails with tiny probability
 - Agrawal-Kayal-Saxena has a worse running time, but deterministic
- How likely is X to be prime?

Density of Primes

- Let $\pi(n)$ be the number primes in the set $\{1, 2, ..., n\}$
- Prime Number Theorem: $\lim_{n\to\infty}\frac{\pi(n)}{n/\ln}=1$
- Chebyshev: $\pi(n) > n/\ln n$ for every $n \geq 2$
 - If we want at least k primes in $\{1, 2, ..., n\}$, then $n \ge 2k \lg k$, if $k \ge 4$
- Dusart: For n > 60184, we have $\frac{n}{\ln n 1.1} > \pi(n) > \frac{n}{\ln n 1}$

String Equality Problem

Alice

Bob

^

- x and y are N-bit strings
- Alice and Bob want to exchange messages to decide if x = y
- Alice could send x to Bob but this takes N communication
 - Is there a more efficient scheme?

String Equality Problem

- Suppose we are OK if we achieve a probabilistic guarantee:
 - If x = y, then Pr[Bob says equal] = 1
 - If $x \neq y$, then Pr[Bob says unequal] $\geq 1 \delta$
- Protocol
 - Alice chooses a random prime p from $\{1, 2, ..., M\}$ for $M = [2 \cdot (5N) \cdot \lg(5N)]$
 - She sends Bob p and the value $h_p(x)=x\ mod\ p,$ where we think of x as an integer in {0, 1, 2, ..., $2^N\text{-}1}$
 - If $h_p(x) = y \mod p$, Bob says **equal**, else he says **unequal**

String Equality Problem

- Lemma: If x = y, then Bob always says equal
- Proof: If x = y, then x mod p = y mod p. So Bob's test will always succeed
- Lemma: If $x \neq y$, then Pr[Bob says equal] $\leq .2$
- Proof: Interpret $x, y \in \{0, 1, 2, ..., 2^N 1\}$

If Bob says **equal**, then $x \mod p = y \mod p$, i.e., $(x-y) = 0 \mod p$

So p divides D = |x-y|, and D < 2^N

D = $p_1 \cdot p_2 \cdots p_k$ for primes p_1, \dots, p_k which may repeat

Since each $p_i \ge 2$, we have k < N

 $Pr[p \text{ divides D}] \le \frac{N}{\text{number of primes in } \{1,2,...,M\}} \le \frac{N}{5N} = \frac{1}{5} \text{ why?}$

Communication Cost

- If Alice were to naively send x to Bob, would take N bits of communication
- Instead she sends a prime p and x mod p, where p is in $\{1, 2, ..., M\}$ and $M = [2 \cdot (5N) \cdot \lg(5N)]$
- Communication = O(log p) = O(log M) = O(log N + log log N) = O(log N) bits

Reducing the Error Probability

- We have 20% error probability, how to reduce it to δ ?
- Repeat the scheme $r = \log_5(\delta^{-1})$ times independently with primes $p_1, ..., p_r \in \{1, 2, ..., M\}$, and $M = [2 \cdot (5N) \cdot \lg(5N)]$
 - Bob outputs **equal** if and only if $x = y \mod p_i$ for each i
 - If x = y, Bob outputs equal with probability 1
 - If $x \neq y$, Bob outputs **equal** with probability at most $\left(\frac{1}{c}\right)^{\lg_S(\frac{1}{\delta})} \leq \delta$
 - Communication cost is $O(\log(1/\delta) \log N)$. Can we do better?
- If instead Alice sets M = $2 \cdot \text{sN lg(sN)}$, the number of primes in $\{1, 2, ..., M\}$ is at least sN, and so error probability is 1/s. Set $s = 1/\delta$.
 - Communication is O(log M) = O(log s + log N) = O(log(1/ δ) + log N)

Fingerprinting (the Karp-Rabin Method)

- In the string-matching problem, we have
 - A text T of length m
 - A pattern P of length n
- Goal: output all occurrences of the pattern P inside the text T
 - If T = abracadabra and P = ab, the output should be {0,7}

abracadabra

• Consider $h_p(x)=x$ mod p for $x\in\{0,1\}^n,$ where we think of x as an integer in {0, 1, 2, ..., 2^n -1}

Fingerprinting (the Karp-Rabin Method)

- $h_p(x) = x \mod p \text{ for } x \in \{0,1\}^n$
- Create x' by dropping the most significant bit of x, and appending a bit to the right
 E.g., if x = 0011001, then x' could be 0110010 or 0110011
- Given $h_p(x) = z$, can we compute $h_p(x')$ quickly?
- \bullet Suppose x_{lb}^{\prime} is the lowest-order bit of x^{\prime}, and x_{hb} is the highest order bit of x
- $x' = 2(x x_{hb} \cdot 2^{n-1}) + x_{lb}'$
- Since $h_p(a+b) = (h_p(a) + h_p(b)) \mod p$, and $h_p(2a) = 2h_p(a) \mod p$, $h_p(x') = (2h_p(x) x_{hb} \cdot h_p(2^n) + x'_{lb}) \mod p$
- Given $h_p(x)$ and $h_p(2^n)$, this is just O(1) arithmetic operations mod p

Fingerprinting (the Karp-Rabin Method)

- T_{a...b} denotes the string from the a-th to b-th positions of T, inclusive
- Goal: output all locations a in $\{0, 1, ..., m-n\}$ such that $T_{a...a+(n-1)} = P$
- 1. Pick a random prime $p \in \{1,\,2,\,...,\,M\}$ with $M = \lceil 2s\,n\,\lg(sn) \rceil$ for some s
- 2. Compute $h_p(\mbox{\bf P})$ and $h_p(\mbox{\bf 2}^n)$ and store the results
- 3. Compute $h_p(T_{0\dots n-1})$ and check if it equals $h_p(P).$ If so, output $\mbox{\bf match}$ at location 0
- $\begin{array}{ll} \text{4. For each } i \in \{\text{0, ..., m-n-1}\}, \text{ compute } h_p(T_{i+1...i+n}) \text{ using } h_p(T_{i...i+n-1}) \\ \text{ and } h_p(2^n). \text{ If } h_p(T_{i+1...i+n}) = h_p(P), \text{ output } \textbf{match} \text{ at location } i+1 \\ \end{array}$

Error Probability

- $m n + 1 \le m$ comparisons, each with probability at most 1/s of failure
- By a union bound, the probability there is at least one failure is at most m/s
- If s = 100m, we succeed on all comparisons with probability $\geq 99/100$
- M = [2s n lg(sn)] = O(mn log(mn)), so O(log m + log n) bits to store
- Since p in {1, 2, ..., M}, p takes O(log m + log n) bits to store
- Assume unit-cost RAM model, so operations on O(log(mn)) bits take O(1) time

Running Time

- Computing h_p(x) for n-bit x can be done in O(n) time. Why?
 Generate powers of 2, or use shifting given h_p(2ⁿ)
- • So $h_p(P)$, $h_p(2^n)$, and $h_p(T_{0,\dots,n-1})$ can be computed in O(n) time
- • Computing $h_p(T_{i+1\dots i+n})$ using $h_p(T_{i\dots i+n-1})$ and $\ h_p(2^n)$ can be done in O(1) time!
- Total time is O(m + n), which is optimal

Fingerprinting Extensions

- Fingerprinting also works for strings $x \in \{0, 1, 2, ..., q 1\}^n$
- Think of x as an integer $\sum_{i=0,\dots,n-1}q^i\cdot x_i$ in its q-ary representation
- Drop the leftmost digit of x to create x', and append a digit to the right
 - $\bullet \text{ If } x = \ x_{n-1}, x_{n-2}, x_{n-3}, \dots, x_0 \text{, then } x' = x_{n-2}, x_{n-3}, \dots, x_0, x_0'$
- $x' = q(x x_{n-1} \cdot q^{n-1}) + x_0'$
- $h_p(x') = (q \cdot h_p(x) x_{n-1} \cdot h_p(q^n) + x'_0) \mod p$
- Given $h_p(x)$ and $h_p(q^n),$ if q < p, computing $h_p(x^\prime)$ requires O(1) arithmetic operations mod p

Extensions

- How would you solve the following?
- Given an m_1x m_2 -bit rectangular binary text T, and an n_1x n_2 bit pattern P, where $n_1 \le m_1$ and $n_2 \le m_2$, find all occurrences of P inside T. Show how to do this in $O(m_1m_2)$ time
- Assume you can do modular arithmetic of integers at most $poly(m_1m_2)$ in O(1) time

Extensions

- Walk through the columns of T, and create fingerprints $h_q(T_{[i,i+n_1-1],j})$ of the $n_1 \text{values}$

$$T_{i,j},T_{i+1,j},\ldots,T_{i+n_1-1,j}$$

- $q \le poly(m_1m_2n_1)$
- Walk through the rows of T, and for the (i,j)-th entry, create a fingerprint of the n_2 values $h_q(T_{[i,i+n_1-1],j}), h_q(T_{[i,i+n_1-1],j+1}), \dots, h_q(T_{[i,i+n_1-1],j+n_2-1})$
- Note: the fingerprints are of q-ary instead of binary strings, but when fingerprinting these strings we can use a prime $p \le poly(m_1m_2n_1n_2)$. Show this!
- Walking through the columns and rows and creating the fingerprints, and comparing with the hash of the pattern P, takes $O(m_1m_2)$ time