Topic 5: Fingerprinting

David Woodruff

How to Pick a Random Prime

- How to pick a random prime in the range $\{1,2, \ldots, M\}$?
- Pick a random integer X in the range $\{1, \ldots, M\}$.
- Check if X is a prime. If so, output it. Else go back to the first step.
- How to pick a random integer X?
- Pick a uniformly random bit string of length $\left\lfloor\log _{2} M\right\rfloor+1$
- If it represents a number $\leq M$, output X. Else go back to the last step
- In expectation, repeat this step at most twice
- How to check if X is prime?
- Miller-Rabin primality test very efficient but fails with tiny probability
- Agrawal-Kayal-Saxena has a worse running time, but deterministic
- How likely is X to be prime?

String Equality Problem

- x and y are N -bit strings
- Alice and Bob want to exchange messages to decide if $x=y$
- Alice could send x to Bob but this takes N communication
- Is there a more efficient scheme?

String Equality Problem

- Suppose we are OK if we achieve a probabilistic guarantee:
- If $x=y$, then Pr[Bob says equal] $=1$
- If $x \neq y$, then $\operatorname{Pr}[$ Bob says unequal $] \geq 1-\delta$
- Protocol
- Alice chooses a random prime p from $\{1,2, \ldots, \mathrm{M}\}$ for $\mathrm{M}=\lceil 2 \cdot(5 \mathrm{~N}) \cdot \lg (5 \mathrm{~N})\rceil$
- She sends Bob p and the value $h_{p}(x)=x$ mod p, where we think of x as an integer in $\left\{0,1,2, \ldots, 2^{\mathrm{N}}-1\right\}$
- If $h_{p}(x)=y$ mod p, Bob says equal, else he says unequal

String Equality Problem

- Lemma: If $x=y$, then Bob always says equal
- Proof: If $x=y$, then $x \bmod p=y \bmod p$. So Bob's test will always succeed
- Lemma: If $\mathrm{x} \neq \mathrm{y}$, then $\operatorname{Pr[Bob~says~equal]~} \leq .2$
- Proof: Interpret $\mathrm{x}, \mathrm{y} \in\left\{0,1,2, \ldots, 2^{\mathrm{N}}-1\right\}$

If Bob says equal, then $x \bmod p=y \bmod p$, i.e., $(x-y)=0 \bmod p$ So p divides $D=|x-y|$, and $D<2^{N}$
$D=p_{1} \cdot p_{2} \cdots p_{k}$ for primes p_{1}, \ldots, p_{k} which may repeat
Since each $p_{i} \geq 2$, we have $k<N$
$\operatorname{Pr}[p$ divides D$] \leq \frac{\mathrm{N}}{\text { number of primes in }\{1,2, \ldots, \mathrm{M}\}} \leq \frac{\mathrm{N}}{5 \mathrm{~N}}=\frac{1}{5}$ why?

Reducing the Error Probability

- We have 20% error probability, how to reduce it to δ ?
- Repeat the scheme $r=\log _{5}\left(\delta^{-1}\right)$ times independently with primes
$p_{1}, \ldots, p_{r} \in\{1,2, \ldots, M\}$, and $M=\lceil 2 \cdot(5 N) \cdot \lg (5 N)\rceil$
- Bob outputs equal if and only if $x=y \bmod p_{i}$ for each i
- If $x=y$, Bob outputs equal with probability 1
- If $x \neq y$, Bob outputs equal with probability at most $\left(\frac{1}{5}\right)^{\lg _{5}\left(\frac{1}{\bar{\delta}}\right)} \leq \delta$
- Communication cost is $\mathrm{O}(\log (1 / \delta) \log \mathrm{N})$. Can we do better?
- If instead Alice sets $\mathrm{M}=2 \cdot \mathrm{sN} \lg (\mathrm{sN})$, the number of primes in $\{1,2, \ldots, \mathrm{M}\}$ is at least $s N$, and so error probability is $1 / \mathrm{s}$. Set $\mathrm{s}=1 / \delta$.
- Communication is $\mathrm{O}(\log \mathrm{M})=\mathrm{O}(\log \mathrm{s}+\log \mathrm{N})=\mathrm{O}(\log (1 / \delta)+\log \mathrm{N})$

Fingerprinting (the Karp-Rabin Method)

- In the string-matching problem, we have
- A text T of length m
- A pattern P of length n
- Goal: output all occurrences of the pattern P inside the text T - If $T=$ abracadabra and $P=a b$, the output should be $\{0,7\}$

abracadabra

- Consider $\mathrm{h}_{\mathrm{p}}(\mathrm{x})=\mathrm{x}$ mod p for $\mathrm{x} \in\{0,1\}^{\mathrm{n}}$, where we think of x as an integer in $\left\{0,1,2, \ldots, 2^{\mathrm{n}}-1\right\}$

Fingerprinting (the Karp-Rabin Method)

- $\mathrm{h}_{\mathrm{p}}(\mathrm{x})=\mathrm{x} \bmod \mathrm{p}$ for $\mathrm{x} \in\{0,1\}^{\mathrm{n}}$
- Create x^{\prime} by dropping the most significant bit of x, and appending a bit to the right
- E.g., if $x=0011001$, then x^{\prime} could be 0110010 or 0110011
- Given $h_{p}(x)=z$, can we compute $h_{p}\left(x^{\prime}\right)$ quickly?
- Suppose $\mathrm{x}_{\mathrm{lb}}^{\prime}$ is the lowest-order bit of x^{\prime}, and x_{hb} is the highest order bit of x
- $\mathrm{x}^{\prime}=2\left(\mathrm{x}-\mathrm{x}_{\mathrm{hb}} \cdot 2^{\mathrm{n}-1}\right)+\mathrm{x}_{\mathrm{lb}}{ }^{\prime}$
- Since $h_{p}(a+b)=\left(h_{p}(a)+h_{p}(b)\right) \bmod p$, and $h_{p}(2 a)=2 h_{p}(a) \bmod p$,

$$
\mathrm{h}_{\mathrm{p}}\left(\mathrm{x}^{\prime}\right)=\left(2 \mathrm{~h}_{\mathrm{p}}(\mathrm{x})-\mathrm{x}_{\mathrm{hb}} \cdot \mathrm{~h}_{\mathrm{p}}\left(2^{\mathrm{n}}\right)+\mathrm{x}_{\mathrm{lb}}^{\prime}\right) \bmod \mathrm{p}
$$

- Given $h_{p}(x)$ and $h_{p}\left(2^{n}\right)$, this is just $O(1)$ arithmetic operations mod p

Fingerprinting (the Karp-Rabin Method)

- T_{a}...b denotes the string from the a-th to b-th positions of T, inclusive - Goal: output all locations a in $\{0,1, \ldots, m-n\}$ such that $T_{a+\ldots+(n-1)}=P$

1. Pick a random prime $p \in\{1,2, \ldots, M\}$ with $M=\lceil 2 s n \lg (s n)]$ for some s
2. Compute $h_{p}(P)$ and $h_{p}\left(2^{n}\right)$ and store the results
3. Compute $h_{p}\left(T_{0 . . . n-1}\right)$ and check if it equals $h_{p}(P)$. If so, output match at location 0
4. For each $i \in\{0, \ldots, m-n-1\}$, compute $h_{p}\left(T_{i+1 \ldots i+n}\right)$ using $h_{p}\left(T_{i . . . i+n-1}\right)$ and $h_{p}\left(2^{n}\right)$. If $h_{p}\left(T_{i+1 \ldots i+n}\right)=h_{p}(P)$, output match at location $i+1$

Error Probability

- $m-n+1 \leq m$ comparisons, each with probability at most $1 / \mathrm{s}$ of failure
- By a union bound, the probability there is at least one failure is at most m / s
- If $s=100 m$, we succeed on all comparisons with probability $\geq 99 / 100$
- $M=\lceil 2 s n \lg (s n)\rceil=O(m n \log (m n))$, so $O(\log m+\log n)$ bits to store
- Since p in $\{1,2, \ldots, M\}, p$ takes $O(\log m+\log n)$ bits to store
- Assume unit-cost RAM model, so operations on $O(\log (m n))$ bits take $O(1)$ time

Running Time

- Computing $h_{p}(x)$ for n-bit x can be done in $O(n)$ time. Why?
- Generate powers of 2 , or use shifting given $h_{p}\left(2^{\mathrm{n}}\right)$
- So $h_{p}(P), h_{p}\left(2^{n}\right)$, and $h_{p}\left(T_{0, \ldots, n-1}\right)$ can be computed in $O(n)$ time
- Computing $h_{p}\left(T_{i+1 \ldots i+n}\right)$ using $h_{p}\left(T_{i . . . i+n-1}\right)$ and $h_{p}\left(2^{n}\right)$ can be done in O(1) time!
- Total time is $\mathrm{O}(\mathrm{m}+\mathrm{n})$, which is optimal

Fingerprinting Extensions

- Fingerprinting also works for strings $\mathrm{x} \in\{0,1,2, \ldots, \mathrm{q}-1\}^{\mathrm{n}}$
- Think of x as an integer $\sum_{i=0, \ldots, n-1} q^{i} \cdot x_{i}$ in its q-ary representation
- Drop the leftmost digit of x to create x^{\prime}, and append a digit to the right
- If $\mathrm{x}=\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-3}, \ldots, \mathrm{x}_{0}$, then $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-3}, \ldots, \mathrm{x}_{0}, \mathrm{x}_{0}^{\prime}$
- $\mathrm{x}^{\prime}=\mathrm{q}\left(\mathrm{x}-\mathrm{x}_{\mathrm{n}-1} \cdot \mathrm{q}^{\mathrm{n}-1}\right)+\mathrm{x}_{0}{ }^{\prime}$
- $\mathrm{h}_{\mathrm{p}}\left(\mathrm{x}^{\prime}\right)=\left(\mathrm{q} \cdot \mathrm{h}_{\mathrm{p}}(\mathrm{x})-\mathrm{x}_{\mathrm{n}-1} \cdot \mathrm{~h}_{\mathrm{p}}\left(\mathrm{q}^{\mathrm{n}}\right)+\mathrm{x}_{0}^{\prime}\right) \bmod \mathrm{p}$
- Given $h_{p}(x)$ and $h_{p}\left(q^{n}\right)$, if $q<p$, computing $h_{p}\left(x^{\prime}\right)$ requires $O(1)$ arithmetic operations $\bmod p$

Extensions

- How would you solve the following?
- Given an $\mathrm{m}_{1} \times \mathrm{m}_{2}$-bit rectangular binary text T , and an $\mathrm{n}_{1} \times \mathrm{n}_{2}$ - bit pattern P , where $\mathrm{n}_{1} \leq \mathrm{m}_{1}$ and $\mathrm{n}_{2} \leq \mathrm{m}_{2}$, find all occurrences of P inside T. Show how to do this in $\mathrm{O}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)$ time
- Assume you can do modular arithmetic of integers at most poly $\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)$ in $\mathrm{O}(1)$ time

Extensions

- Walk through the columns of T, and create fingerprints $h_{q}\left(T_{\left[i, i+n_{1}-1\right], j}\right)$ of the n_{1} values

$$
\mathrm{T}_{\mathrm{i}, \mathrm{j},} \mathrm{~T}_{\mathrm{i}+1, \mathrm{j}}, \ldots, \mathrm{~T}_{\mathrm{i}+\mathrm{n}_{1}-1, \mathrm{j}}
$$

- $\mathrm{q} \leq \operatorname{poly}\left(\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{n}_{1}\right)$
- Walk through the rows of T , and for the (i, j)-th entry, create a fingerprint of the n_{2} values

$$
\mathrm{h}_{\mathrm{q}}\left(\mathrm{~T}_{\left[i, i+n_{1}-1\right], \mathrm{j}}\right), \mathrm{h}_{\mathrm{q}}\left(\mathrm{~T}_{\left[i, i+n_{1}-1\right], j+1}\right), \ldots, \mathrm{h}_{\mathrm{q}}\left(\mathrm{~T}_{\left[\mathrm{i}, i+n_{1}-1\right], \mathrm{j}+\mathrm{n}_{2}-1}\right)
$$

- Note: the fingerprints are of q-ary instead of binary strings, but when fingerprinting these strings we can use a prime $\mathrm{p} \leq \operatorname{poly}\left(\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{n}_{1} \mathrm{n}_{2}\right)$. Show this!
- Walking through the columns and rows and creating the fingerprints, and comparing with the hash of the pattern P , takes $\mathrm{O}\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right)$ time

