7/14/2019

Topic 4: The Data
Stream Model

David Woodruff

Data Streams

* Astream is a sequence of data, that is too large to be stored in available memory

* Examples

* Internet search logs

* Network Traffic
O sensor Node|

Gateway

* Sensor networks Sensor Node

« Scientific data streams (astronomical, genomics, physical simulations)...

Streaming Model

|

Stream of elements a,, ..., a;, ... each from an alphabet X and
taking b bits to represent

Single or small number of passes over the data

Almost all algorithms are randomized and approximate
* Usually necessary to achieve efficiency
* Randomness s in the algorithm, not the input

Goals: minimize space complexity (in bits), processing time

Example Streaming Problems

* Letajy.q =< ay, ..., a¢ > be the first t elements of the stream

* Suppose aq, ..., a; are integers in {—Zb +1,-26+2,..,-1,0,1,2, ..., Zb—l}
* Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

* How many bits do we need to maintain f(a[1.q)= Xi=1,_¢ai?

* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

* O(b+logt)

* How many bits do we need to maintain f(aj1.q)= ,mlaxtai?
i=1,...,

* Outputs on example: 3, 3,17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900, ...

* O(b) bits

* The median of all the numbers we’ve stored so far
* Example stream: 3, 1,17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
* Median:3,1,3,3,3,3,4,3, ..
* This seems harder...

* The number of distinct elements we’ve seen so far?
¢ Outputson example: 1,2,3,4,5,6,7,7,8,8,9,9,9, ..

* The elements that have appeared at least an e-fraction of the time?
These are the e-heavy hitters
* Cover today

7/14/2019

* Internet router may want to figure out which IP connections are heavy
hitters, e.g., the ones that use more than .01% of your bandwidth

* Or maybe the router wants to know the median (or 90-th percentile)
of the file sizes being transferred

* Hashing is a key technique

* S, is the multiset of items at time t,so Sy = 0, S; = {a;}, ..., S; = {a1, .., a;},
count(e) = |{i € {1,2,...,t} such that a; = e}|

* e € Yis an e-heavy hitter at time t if count(e) > € -t

* Given € > 0, can we output the e-heavy hitters?

1 - .
* Let’s output a set of size ~ containing all the e-heavy hitters

* Note: can output “false positives” but not allowed to output “false negatives”, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

* Example: E, D, B, D, D5 D, B, A, C, By B, E, E, E, E5, E
(the subscripts are just to help you count)

* At time 5, the element D is the only 1/3-heavy hitter
* At time 11, both B and D are 1/3-heavy hitters

* At time 15, there is no 1/3-heavy hitter

* At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short
summary to output the e-heavy hitters?

* First find a .5-heavy hitter, that is, a majority element:
memory < empty and counter < 0
when element a, arrives
if (counter == 0)
memory < a; and counter « 1
else
if a, = memory
counter + +
else
counter --
(discard a;)
* At end of the stream, return the element in memory

7/14/2019

31211

Memory = 3, Count =

Memory =3, Count =0
Memory =2, Count =1
Memory =2, Count =0
Memory =1, Count=1

* If there is no majority element, we output a false positive, which is OK

* If there is a majority element, we will output it. Why?

* When we discard an element a;, we throw away a different element

* Every time we throw away a copy of a majority element, we throw
away another element, but majority element is more than half the
total number of elements, so can’t throw away all of them

Setk = E] -1
Array T[1, ..., k], where each location can hold one element from X
Array C[1, ..., k], where each location can hold a non-negative integer

Cli]<0 and T[i] «L foralli
If there isj € {1,2, ..., Kk} such that a; = T[j], then C[j] + +
Else if some counter C[j] = 0 then T[j] < a;and C[j] « 1

Else decrement all counters by 1 (and discard element a;)

est.(e) = C[j] if e == TJj] for some j, and est.(e) = 0 otherwise

7/14/2019

* Lemma: 0 < count,(e) — esty(e) < ﬁ <e-t

* Proof: count(e) = est,(e) since we never increase a counter for e unless
we see e

If we don’t increase est(e) by 1 when we see an update to e, we decrement k
counters and discard the current update to e

So we drop k+1 distinct stream updates, but there are t total updates, so we
won'’t increase est,(e) by 1, when we should, at most ﬁ < e-ttimes

* At any time t, all e-heavy hitters e are in the array T. Why?
* For an e-heavy hitter e, we have count,(e) >e- t

* But est(e) = count(e) —e-t
*Soesty(e)>0,soeisinarray T

* Space is O(k (log(X) + log t)) = O(1/ €) (log(Z) + log t) bits

* Suppose we can delete elements e that have already appeared
* Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

* Multisets at different times
So=0,S; ={A},S, = {A B},S; = {A,A B}, S, = {A A}, Ss = {A},
Se = {AC}, ...

* “active” set Sy has size |S¢| = Y5 count,(e) and can grow and shrink

* Query “What is count(e)?”, should output est.(e) with:
Pr[|est.(e) — count,(e)| < €|S;|]] =1-6

* Want space close to our previous O(1/ €) (log(Z) + log t) bits
e Leth:X - {0,1,2, ...,k — 1} be a hash function (will specify later)
* Maintain an array A[Q, 1, ..., k-1] to store non-negative integers

when update a; arrives:
ifa, = (add, e) then A[h(e)] + +
else a, = (del, e), and A[h(e)] — —

- est,(e) = A[h(e)]

* Alh(e)] = Xorex counti(e”) - 1(h(e") = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to 0 otherwise

* A[h(e)] = counti(e) + X, counti(e”) - 1(h(e") = h(e)),
* esti(e) — count(e) = X, county(e’) - 1(h(e") = h(e))

* Since we have a small array A with k locations, there are likely many
e’ # e with h(e’) = h(e), but can we bound the expected error?

7/14/2019

* Recall: Family H of hash functionsh: U->{0, 1, ..., k—%} is universal if for all x # y,
= <—
Pr[h() =h(y)] <
* Gave a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z|

* E[est¢(e) — count(e)] = E[X ¢/, counti(e’) - 1(h(e") = h(e))]
= Yerzecounte(e’) - E[1(h(e’) = h(e))]
= Yerze county(e’) - Prfh(e’) = h(e)]

1
< Yerzecounty(e’) - (i)
_ |St|— countt(e) < ISel

k = 1/€ makes this at most € - |S¢|. Space is O(%) counters plus storing hash function

* Have 0 < est.(e) — count,(e) < |S;|/k in expectation from CountMin
* With probability 1/2, est.(e) — count.(e) < 2|S;|/k Why?

* Can we make the success probability 1-6?
* Independent repetition: pick m hash functions hy, ..., h;, with
h;:Z = {0,1,2, ...,k — 1} independently from H. Create array A; for h;
when update a; arrives:
foreachifrom1ltom
if a, = (add, e) then A;[h;(e)] + +
else a, = (del, e) and A;[h;(e)] — —

What is our new estimate of count;(e)?
H‘t
besty(e) := min Ailhi(e)].
=

Each A;[h;(e)] is an overestimate to count;(e)
m
By independence, Pr[for all i, A;[h;(e)] = 2|S|/k] < (%)

Fork = % and m = log, (%), the error is at most €|S;| with probability 1-8

og(2) |
Space: m - k = O(——%) counters each of O(Ig t) bits

€

m - O(log |Z]) = O(log (%) log|Z|) bits to store hash functions

7/14/2019

* Our new estimate best(e) satisfies
Pr[|best.(e) — count (e)| < €|S|]] =1-8

log(3) logt
and uses O(w + log (%) log |Z]) bits of space

* What if we want with probability 9/10, simultaneously for all e,
|best;(e) — count(e)| < €[S¢|?

*Setd = %lzland apply a union bound overalle €

