Topic 4: The Data Stream Model

David Woodruff

\section*{Streaming Model

 | 4 | 3 | 7 | 3 | 1 | 1 | 2 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- Stream of elements $a_{1}, \ldots, a_{i}, \ldots$ each from an alphabet \sum and taking b bits to represent
- Single or small number of passes over the data
- Almost all algorithms are randomized and approximate
- Usually necessary to achieve efficiency
- Randomness is in the algorithm, not the input
- Goals: minimize space complexity (in bits), processing time

Data Streams

- A stream is a sequence of data, that is too large to be stored in available memory
- Examples
- Internet search logs
- Network Traffic
- Sensor network

- Scientific data streams (astronomical, genomics, physical simulations)...

Example Streaming Problems

- Let $a_{[1: t]}=<a_{1}, \ldots, a_{t}>$ be the first t elements of the stream
- Suppose a_{1}, \ldots, a_{t} are integers in $\left\{-2^{b}+1,-2^{b}+2, \ldots,-1,0,1,2, \ldots, 2^{b}-1\right\}$
- Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
- How many bits do we need to maintain $f\left(a_{[1: t]}\right)=\sum_{i=1, \ldots, t} a_{i}$?
- Outputs on example: $3,4,21,25,16,48,149,152,-570,-567,333,337,379$, ..
- $O(b+\log t)$
- How many bits do we need to maintain $f\left(a_{[1: t]}\right)=\max _{\mathrm{i}=1, \ldots, \mathrm{t}} \mathrm{a}_{\mathrm{i}}$?
- Outputs on example: $3,3,17,17,17,32,101,101,101,101,900,900,900$, ... - O(b) bits

Example Streaming Problems

- The median of all the numbers we've stored so far
- Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
- Median: 3, 1, 3, 3, 3, 3, 4, 3 ,
- This seems harder...
- The number of distinct elements we've seen so far?
- Outputs on example: $1,2,3,4,5,6,7,7,8,8,9,9,9, \ldots$
- The elements that have appeared at least an ϵ-fraction of the time? These are the ϵ-heavy hitters
- Cover today

Many Applications

- Internet router may want to figure out which IP connections are heavy hitters, e.g., the ones that use more than $.01 \%$ of your bandwidth
- Or maybe the router wants to know the median (or 90-th percentile) of the file sizes being transferred
- Hashing is a key technique

Finding ϵ-Heavy Hitters

- S_{t} is the multiset of items at time t, so $S_{0}=\emptyset, S_{1}=\left\{a_{1}\right\}, \ldots, S_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$, $\operatorname{count}_{\mathrm{t}}(\mathrm{e})=\mid\left\{i \in\{1,2, \ldots, \mathrm{t}\}\right.$ such that $\left.\mathrm{a}_{\mathrm{i}}=\mathrm{e}\right\} \mid$
- $\mathrm{e} \in \Sigma$ is an ϵ-heavy hitter at time t if $\operatorname{count}_{\mathrm{t}}(\mathrm{e})>\epsilon \cdot \mathrm{t}$
- Given $\epsilon>0$, can we output the ϵ-heavy hitters?
- Let's output a set of size $\frac{1}{\epsilon}$ containing all the ϵ-heavy hitters
- Note: can output "false positives" but not allowed to output "false negatives", i.e. not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding ϵ-Heavy Hitters

- Example: E, D, B, D, D5 D, B, A, C, B ${ }_{10}$ B, E, E, E, E E_{15}, E (the subscripts are just to help you count)
- At time 5 , the element D is the only $1 / 3$-heavy hitter
- At time 11 , both B and D are $1 / 3$-heavy hitters
- At time 15 , there is no $1 / 3$-heavy hitter
- At time 16 , only E is a $1 / 3$-heavy hitter

Can't afford to keep counts of all items, so how to maintain a short summary to output the ϵ-heavy hitters?

Finding a Majority Element

- First find a .5-heavy hitter, that is, a majority element: memory \leftarrow empty and counter $\leftarrow 0$
when element a_{t} arrives
if (counter $==0$)
memory $\leftarrow \mathrm{a}_{\mathrm{t}}$ and counter $\leftarrow 1$
else
if $a_{t}=$ memory counter + + else counter -(discard a_{t})
- At end of the stream, return the element in memory

31211

Memory $=3$, Count $=1$
Memory $=3$, Count $=0$
Memory $=2$, Count $=1$
Memory $=2$, Count $=0$
Memory = 1, Count = 1

Analysis of Finding a Majority Element

- If there is no majority element, we output a false positive, which is OK
- If there is a majority element, we will output it. Why?
- When we discard an element a_{t}, we throw away a different element
- Every time we throw away a copy of a majority element, we throw away another element, but majority element is more than half the total number of elements, so can't throw away all of them

Extending to ϵ-Heavy Hitters

Set $\mathrm{k}=\left\lceil\frac{1}{\epsilon}\right\rceil-1$
Array $\mathrm{T}[1, \ldots, \mathrm{k}]$, where each location can hold one element from Σ Array $\mathrm{C}[1, \ldots, \mathrm{k}]$, where each location can hold a non-negative integer $\mathrm{C}[\mathrm{i}] \leftarrow 0$ and $\mathrm{T}[\mathrm{i}] \leftarrow \perp$ for all i

If there is $\mathrm{j} \in\{1,2, \ldots, \mathrm{k}\}$ such that $\mathrm{a}_{\mathrm{t}}=\mathrm{T}[\mathrm{j}]$, then $\mathrm{C}[\mathrm{j}]++$
Else if some counter $\mathrm{C}[\mathrm{j}]=0$ then $\mathrm{T}[\mathrm{j}] \leftarrow \mathrm{a}_{\mathrm{t}}$ and $\mathrm{C}[\mathrm{j}] \leftarrow 1$
Else decrement all counters by 1 (and discard element a_{t})
est $_{t}(e)=C[j]$ if $e=T[j]$ for some j, and est $t_{t}(e)=0$ otherwise

Analyzing Counts

- Lemma: $0 \leq \operatorname{count}_{\mathrm{t}}(\mathrm{e})-\mathrm{est}_{\mathrm{t}}(\mathrm{e}) \leq \frac{\mathrm{t}}{\mathrm{k}+1} \leq \epsilon \cdot \mathrm{t}$
- Proof: $\operatorname{count}_{t}(e) \geq e^{2} t_{t}(e)$ since we never increase a counter for e unless we see e

If we don't increase est $t_{t}(\mathrm{e})$ by 1 when we see an update to e , we decrement k counters and discard the current update to e

So we drop $k+1$ distinct stream updates, but there are t total updates, so we won't increase $e^{2}(\mathrm{e})$ by 1 , when we should, at most $\frac{t}{\mathrm{k}+1} \leq \epsilon \cdot \mathrm{t}$ times

Heavy Hitters Guarantee

- At any time t, all ϵ-heavy hitters e are in the array T. Why?
- For an ϵ-heavy hitter e, we have $\operatorname{count}_{t}(e)>\epsilon \cdot t$
- But est ${ }_{t}(\mathrm{e}) \geq$ count $_{\mathrm{t}}(\mathrm{e})-\epsilon \cdot \mathrm{t}$
- So est ${ }_{t}(e)>0$, so e is in array T
- Space is $\mathrm{O}(\mathrm{k}(\log (\Sigma)+\log \mathrm{t}))=\mathrm{O}(1 / \epsilon)(\log (\Sigma)+\log \mathrm{t})$ bits

Data Structure for Approximate Counts

- Query "What is $\operatorname{count}_{t}(e)$?", should output est $_{t}(e)$ with: $\operatorname{Pr}\left[\mid \operatorname{est}_{t}(\mathrm{e})-\right.$ count $\left._{\mathrm{t}}(\mathrm{e})|\leq \epsilon| \mathrm{S}_{\mathrm{t}} \mid\right] \geq 1-\delta$
- Want space close to our previous $\mathrm{O}(1 / \epsilon)(\log (\Sigma)+\log t)$ bits
- Let $\mathrm{h}: \Sigma \rightarrow\{0,1,2, \ldots, \mathrm{k}-1\}$ be a hash function (will specify later)
- Maintain an array $A[0,1, \ldots, k-1]$ to store non-negative integers
when update a_{t} arrives:
if $\mathrm{a}_{\mathrm{t}}=($ add, e$)$ then $\mathrm{A}[\mathrm{h}(\mathrm{e})]++$
else $a_{t}=(d e l, e)$, and $A[h(e)]--$
- $\mathrm{est}_{\mathrm{t}}(\mathrm{e})=\mathrm{A}[\mathrm{h}(\mathrm{e})]$

Data Structure for Approximate Counts

- $\mathrm{A}[\mathrm{h}(\mathrm{e})]=\sum_{\mathrm{e}^{\prime} \in \Sigma} \operatorname{count}_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot \mathbf{1}\left(\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})\right)$, where $\mathbf{1}$ (condition) evaluates to 1 if the condition is true, and evaluates to 0 otherwise
- $\mathrm{A}[\mathrm{h}(\mathrm{e})]=\operatorname{count}_{\mathrm{t}}(\mathrm{e})+\sum_{\mathrm{e}^{\prime} \neq \mathrm{e}} \operatorname{count}_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot \mathbf{1}\left(\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})\right)$,
- $\operatorname{est}_{\mathrm{t}}(\mathrm{e})-\operatorname{count}_{\mathrm{t}}(\mathrm{e})=\sum_{\mathrm{e}^{\prime} \neq \mathrm{e}} \operatorname{count}_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot \mathbf{1}\left(\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})\right)$
- Since we have a small array A with k locations, there are likely many $\mathrm{e}^{\prime} \neq \mathrm{e}$ with $\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})$, but can we bound the expected error?

Data Structure for Approximate Counts

- Recall: Family H of hash functions $\mathrm{h}: \mathrm{U}->\{0,1, \ldots, \mathrm{k}-1\}$ is universal if for all $\mathrm{x} \neq \mathrm{y}$,

$$
\operatorname{Pr}_{\mathrm{h} \leftarrow \mathrm{H}}[\mathrm{~h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq \frac{1}{\mathrm{k}}
$$

- Gave a simple family where h can be specified using $O(\log |U|)$ bits. Here, $|U|=|\Sigma|$
- $E\left[e s t_{t}(\mathrm{e})-\operatorname{count}_{\mathrm{t}}(\mathrm{e})\right]=\mathrm{E}\left[\sum_{\mathrm{e}^{\prime} \neq \mathrm{e}} \operatorname{count}_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot \mathbf{1}\left(\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})\right)\right]$
$=\sum_{\mathrm{e}^{\prime} \neq \mathrm{e}} \operatorname{count}_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot \mathrm{E}\left[\mathbf{1}\left(\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})\right)\right]$
$=\sum_{\mathrm{e}^{\prime} \neq \mathrm{e}} \operatorname{count}_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot \operatorname{Pr}\left[\mathrm{h}\left(\mathrm{e}^{\prime}\right)=\mathrm{h}(\mathrm{e})\right]$
$\leq \sum_{\mathrm{e}^{\prime} \neq \mathrm{e}}$ counnt $_{\mathrm{t}}\left(\mathrm{e}^{\prime}\right) \cdot\left(\frac{1}{\mathrm{k}}\right)$
$=\frac{\left|\mathrm{S}_{\mathrm{t}}\right|-\operatorname{count}_{\mathrm{t}_{\mathrm{t}}(\mathrm{e})}}{\mathrm{k}} \leq \frac{\left|\mathrm{S}_{\mathrm{t}}\right|}{\mathrm{k}}$
$k=1 / \epsilon$ makes this at most $\epsilon \cdot\left|S_{t}\right|$. Space is $O\left(\frac{1}{\epsilon}\right)$ counters plus storing hash function

High Probability Bounds for CountMin

- Have $0 \leq \operatorname{est}_{\mathrm{t}}(\mathrm{e})-\operatorname{count}_{\mathrm{t}}(\mathrm{e}) \leq\left|\mathrm{S}_{\mathrm{t}}\right| / \mathrm{k}$ in expectation from CountMin
- With probability $1 / 2$, est $_{\mathrm{t}}(\mathrm{e})-$ count $_{\mathrm{t}}(\mathrm{e}) \leq 2\left|\mathrm{~S}_{\mathrm{t}}\right| / \mathrm{k}$ Why?
- Can we make the success probability 1- δ ?
- Independent repetition: pick m hash functions $\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{m}}$ with
$h_{i}: \Sigma \rightarrow\{0,1,2, \ldots, k-1\}$ independently from H. Create array A_{i} for h_{i} when update a_{t} arrives:
for each ifrom 1 to m
if $\mathrm{a}_{\mathrm{t}}=(\mathrm{add}, \mathrm{e})$ then $\mathrm{A}_{\mathrm{i}}\left[\mathrm{h}_{\mathrm{i}}(\mathrm{e})\right]++$
else $\mathrm{a}_{\mathrm{t}}=($ del, $e)$ and $\mathrm{A}_{\mathrm{i}}\left[\mathrm{h}_{\mathrm{i}}(\mathrm{e})\right]--$

High Probability Bounds and Overall Space

What is our new estimate of count $_{\mathrm{t}}(\mathrm{e})$?

$$
\operatorname{best}_{t}(e):=m_{i=1}^{m} A_{i}\left[h_{i}(e)\right] \text {. }
$$

- Each $\mathrm{A}_{\mathrm{i}}\left[\mathrm{h}_{\mathrm{i}}(\mathrm{e})\right]$ is an overestimate to count $\mathrm{t}_{\mathrm{t}}(\mathrm{e})$
- By independence, $\operatorname{Pr}\left[\right.$ for all $\left.\mathrm{i}, \mathrm{A}_{\mathrm{i}}\left[\mathrm{h}_{\mathrm{i}}(\mathrm{e})\right] \geq 2\left|\mathrm{~S}_{\mathrm{t}}\right| / \mathrm{k}\right] \leq\left(\frac{1}{2}\right)^{m}$
- For $\mathrm{k}=\frac{2}{\epsilon}$ and $\mathrm{m}=\log _{2}\left(\frac{1}{\delta}\right)$, the error is at most $\epsilon\left|\mathrm{S}_{\mathrm{t}}\right|$ with probability 1- δ
- Space: $\mathrm{m} \cdot \mathrm{k}=\mathrm{O}\left(\frac{\log \left(\frac{1}{\delta}\right)}{\epsilon}\right)$ counters each of $\mathrm{O}(\lg \mathrm{t})$ bits
$\mathrm{m} \cdot \mathrm{O}(\log |\Sigma|)=\mathrm{O}\left(\log \left(\frac{1}{\delta}\right) \log |\Sigma|\right)$ bits to store hash functions

ϵ-Heavy Hitters

- Our new estimate best $_{t}(\mathrm{e})$ satisfies
$\operatorname{Pr}\left[\mid\right.$ best $\left._{t}(\mathrm{e})-\operatorname{count}_{\mathrm{t}}(\mathrm{e})|\leq \epsilon| \mathrm{S}_{\mathrm{t}} \mid\right] \geq 1-\delta$
and uses $O\left(\frac{\log \left(\frac{1}{\delta}\right) \log t}{\epsilon}+\log \left(\frac{1}{\delta}\right) \log |\Sigma|\right)$ bits of space
- What if we want with probability $9 / 10$, simultaneously for all e, \mid best $_{t}(\mathrm{e})-$ count $_{\mathrm{t}}(\mathrm{e})|\leq \epsilon| \mathrm{S}_{\mathrm{t}} \mid$?
- Set $\delta=\frac{1}{10|\Sigma|}$ and apply a union bound over all e $\in \Sigma$

