
7/14/2019

1

Topic 4: The Data
Stream Model

David Woodruff

Data Streams

• A stream is a sequence of data, that is too large to be stored in available memory

• Examples

• Internet search logs

• Network Traffic

• Sensor networks

• Scientific data streams (astronomical, genomics, physical simulations)…

Streaming Model

• Stream of elements a1, …, ai, … each from an alphabet Σ and
taking b bits to represent

• Single or small number of passes over the data

• Almost all algorithms are randomized and approximate
• Usually necessary to achieve efficiency
• Randomness is in the algorithm, not the input

• Goals: minimize space complexity (in bits), processing time

…2113734

Example Streaming Problems
• Let a : =< a , … , a > be the first t elements of the stream

• Suppose a , … , a are integers in {-2 + 1, -2 + 2, …, -1, 0, 1, 2, …, 2 -1}
• Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

• How many bits do we need to maintain f(a :)= ∑ a
,…, ?

• Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, …
• O(b + log t)

• How many bits do we need to maintain f(a :)= max
,…,

a ?

• Outputs on example: 3, 3, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900, …
• O(b) bits

7/14/2019

2

Example Streaming Problems

• The median of all the numbers we’ve stored so far
• Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
• Median: 3, 1, 3, 3, 3, 3, 4, 3, …
• This seems harder…

• The number of distinct elements we’ve seen so far?
• Outputs on example: 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9, …

• The elements that have appeared at least an ϵ-fraction of the time?
These are the ϵ-heavy hitters
• Cover today

Many Applications

• Internet router may want to figure out which IP connections are heavy
hitters, e.g., the ones that use more than .01% of your bandwidth

• Or maybe the router wants to know the median (or 90-th percentile)
of the file sizes being transferred

• Hashing is a key technique

• S is the multiset of items at time t, so S = ∅, S = a , … , S = a , … , a ,
count e = | i ∈ 1, 2, … , t such that a = e |

• e ∈ Σ is an ϵ-heavy hitter at time t if count e > ϵ ⋅ t

• Given ϵ > 0, can we output the ϵ-heavy hitters?
• Let’s output a set of size containing all the ϵ-heavy hitters

• Note: can output “false positives” but not allowed to output “false negatives”, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding ϵ-Heavy Hitters Finding ϵ-Heavy Hitters

• Example: E, D, B, D, D D, B, A, C, B B, E, E, E, E , E
(the subscripts are just to help you count)

• At time 5, the element D is the only 1/3-heavy hitter
• At time 11, both B and D are 1/3-heavy hitters
• At time 15, there is no 1/3-heavy hitter
• At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short
summary to output the 𝜖-heavy hitters?

7/14/2019

3

Finding a Majority Element
• First find a .5-heavy hitter, that is, a majority element:

memory ← empty and counter ← 0
when element a arrives

if (counter == 0)
memory ← a and counter ← 1

else
if a = memory

counter + +
else

counter - -
(discard a)

• At end of the stream, return the element in memory

3 1 2 1 1
Memory = 3, Count = 1
Memory = 3, Count = 0
Memory = 2, Count = 1
Memory = 2, Count = 0
Memory = 1, Count = 1

Analysis of Finding a Majority Element

• If there is no majority element, we output a false positive, which is OK

• If there is a majority element, we will output it. Why?

• When we discard an element a , we throw away a different element

• Every time we throw away a copy of a majority element, we throw
away another element, but majority element is more than half the
total number of elements, so can’t throw away all of them

Extending to ϵ-Heavy Hitters

Set k = − 1

Array T[1, …, k], where each location can hold one element from Σ
Array C[1, …, k], where each location can hold a non-negative integer
C[i] ← 0 and T i ←⊥ for all i

If there is j ∈ 1, 2, … , k such that a = T[j], then C j + +

Else if some counter C[j] = 0 then T j ← a and C[j] ← 1

Else decrement all counters by 1 (and discard element a)

est e = C j if e == T[j] for some j, and est e = 0 otherwise

7/14/2019

4

Analyzing Counts

• Lemma: 0 ≤ count e − est e ≤ ≤ ϵ ⋅ t

• Proof: count e ≥ est (e) since we never increase a counter for e unless
we see e

If we don’t increase est e by 1 when we see an update to e, we decrement k
counters and discard the current update to e

So we drop k+1 distinct stream updates, but there are t total updates, so we
won’t increase est e by 1, when we should, at most ≤ ϵ ⋅ t times

Heavy Hitters Guarantee

• At any time t, all ϵ-heavy hitters e are in the array T. Why?

• For an ϵ-heavy hitter e, we have count e > ϵ ⋅ t

• But est e ≥ count e − ϵ ⋅ t

• So est e > 0, so e is in array T

• Space is O(k (log(Σ) + log t)) = O(1/ ϵ) (log(Σ) + log t) bits

Heavy Hitters with Deletions
• Suppose we can delete elements e that have already appeared

• Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

• Multisets at different times
S = ∅, S = A , S = A, B , S = A, A, B , S = A, A , S = A ,
S = A, C , …

• “active” set S has size S = ∑ count e
∈ and can grow and shrink

Data Structure for Approximate Counts
• Query “What is count e ?”, should output est (e) with:

Pr est e − count e ≤ ϵ S ≥ 1 − δ

• Want space close to our previous O(1/ ϵ) (log(Σ) + log t) bits
• Let h: Σ → 0,1,2, … , k − 1 be a hash function (will specify later)
• Maintain an array A[0, 1, …, k-1] to store non-negative integers

when update a arrives:
if a = (add, e) then A h e + +

else a = (del, e), and A h e − −

• est e = A[h e]

7/14/2019

5

Data Structure for Approximate Counts

• A h e = ∑ count e ⋅ 𝟏(h e = h e)
∈ , where 1(condition)

evaluates to 1 if the condition is true, and evaluates to 0 otherwise

• A h e = count e + ∑ count e ⋅ 𝟏(h e = h e),

• est e − count e = ∑ count e ⋅ 𝟏(h e = h e)

• Since we have a small array A with k locations, there are likely many
e ≠ e with h(e’) = h(e), but can we bound the expected error?

Data Structure for Approximate Counts
• Recall: Family H of hash functions h: U -> {0, 1, …, k-1} is universal if for all x ≠ y,

Pr
←

h x = h y ≤
1

k
• Gave a simple family where h can be specified using O(log |U|) bits. Here, |U| = Σ

• E[est e − count e] = E[∑ count e ⋅ 𝟏(h e = h e)]
= ∑ count e ⋅ E[𝟏(h e = h e)]
= ∑ count e ⋅ Pr[h e = h e]

≤ ∑ count e ⋅

=
≤

k = 1/ϵ makes this at most ϵ ⋅ S . Space is O() counters plus storing hash function

High Probability Bounds for CountMin

• Have 0 ≤ est e − count e ≤ S /k in expectation from CountMin
• With probability 1/2, est e − count e ≤ 2 S /k Why?

• Can we make the success probability 1-δ?
• Independent repetition: pick m hash functions h , … , h with

h : Σ → {0, 1, 2, … , k − 1} independently from H. Create array A for h
when update a arrives:

for each i from 1 to m
if a = (add, e) then A h e + +

else a = (del, e) and A h e − −

High Probability Bounds and Overall Space

What is our new estimate of count e ?

• Each A [h e] is an overestimate to count e

• By independence, Pr[for all i, A h e ≥ 2 S /k] ≤

• For k = and m = log , the error is at most ϵ S with probability 1-δ

• Space: m ⋅ k = O() counters each of O(lg t) bits

m ⋅ O(log |Σ|) = O(log log Σ) bits to store hash functions

7/14/2019

6

ϵ-Heavy Hitters

• Our new estimate best e satisfies
Pr best e − count e ≤ ϵ S ≥ 1 − δ

and uses O(+ log log |Σ|) bits of space

• What if we want with probability 9/10, simultaneously for all e,
best e − count e ≤ ϵ S ?

• Set δ = and apply a union bound over all e ∈ Σ

