Topic 3: Hashing

David Woodruff

Hashing

• Universal hashing
• Perfect hashing

Maintaining a Dictionary

• Let U be a universe of “keys”
 • U could be all strings of ASCII characters of length at most 80
• Let S be a subset of U, which is a small “dictionary”
 • S could be all English words
• Support operations to maintain the dictionary
 • Insert(x): add the key x to S
 • Query(x): is the key x in S?
 • Delete(x): remove the key x from S

Dictionary Models

• Static: don’t support insert and delete operations, just optimize for fast query operations
 • For example, the English dictionary does not change much
 • Could use a sorted array with binary search
• Insertion-only: just support insert and query operations
• Dynamic: support insert, delete, and query operations
 • Could use a balanced search tree (AVL trees) to get $O(\log |S|)$ time per operation
• Hashing is an alternative approach, often the fastest and most convenient
Formal Hashing Setup

- Universe U is very large
 - E.g., set of ASCII strings of length 80 is 128^{80}
- Care about a small subset $S \subseteq U$. Let $N = |S|$.
 - S could be the names of all students in this class
- Our data structure is an array A of size M and a "hash function" $h: U \rightarrow \{0, 1, ..., M-1\}$.
 - Typically $M \ll U$, so can't just store each key x in $A[x]$.
 - Insert(x) will try to place key x in $A[h(x)]$.

- But what if $h(x) = h(y)$ for $x \neq y$? We let each entry of A be a linked list.
 - To insert an element x into $A[h(x)]$, insert it at the top of the list.
 - Hope linked lists are small.

How to Choose the Hash Function h?

- Want it to be unlikely that $h(x) = h(y)$ for different keys x and y.
- Want our array size M to be $O(N)$, where N is number of keys.
- Want to quickly compute $h(x)$ given x.
 - We will treat this computation as $O(1)$ time.
- How long do Query(x) and Delete(x) take?
 - $O(\text{length of list } A[h(x)])$ time.
- How long does Insert(x) take?
 - $O(1)$ time no matter what.
- How long can the lists $A[h(x)]$ be?

Bad Sets Exist for any Hash Function

- Claim: For any hash function $h: U \rightarrow \{0, 1, 2, ..., M-1\}$, if $|U| \geq (N - 1)M + 1$, there is a set S of N elements of U that all hash to the same location.
- Proof: If every location had at most $N-1$ elements of U hashing to it, we would have $|U| \leq (N - 1)M$.
 - There's no good hash function h that works for every S. Thoughts?
- Universal Hashing: Randomly choose h!
 - Show for any sequence of insert, query, and delete operations, the expected number of operations, over a random h, is small.

Universal Hashing

- Definition: A set H of hash functions h, where each h in H maps $U \rightarrow \{0, 1, 2, ..., M-1\}$ is universal if for all $x \neq y$,
 $$\Pr_{h \in H}[h(x) = h(y)] \leq \frac{1}{M}$$
- The condition holds for every $x \neq y$, and the randomness is only over the choice of h from H.
- Equivalently, for every $x \neq y$, we have:
 $$\frac{|\{h \in H : h(x) = h(y)\}|}{|H|} \leq \frac{1}{M}.$$
Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set \(\{a, b\} \) to \(\{0, 1\} \) are universal, because at most \(1/M \) of the hash functions in them cause \(a \) and \(b \) to collide, were \(M = \{0, 1\} \):

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h_2)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(h_2)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_3)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes that \(a \) and \(b \) collide with probability more than \(1/M = 1/2 \)

Universal Hashing Example

• The following hash function is universal with \(M = \{0, 1, 2\} \):

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
| \(h_0 \) | 0 | 0 | 0 | Note!
| \(h_1 \) | 0 | 1 | 2 |
| \(h_2 \) | 1 | 2 | 0 |
| \(h_3 \) | 2 | 0 | 1 |

Examples that are Not Universal

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(h_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(h_3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Using Universal Hashing

• **Theorem:** If \(H \) is universal, then for any set \(S \subseteq U \) with \(|S| = N \), for any \(x \in S \), if we choose \(h \) at random from \(H \), the expected number of collisions between \(x \) and other elements in \(S \) is less than \(N/M \).

• **Proof:** For \(y \in S \) with \(y \neq x \), let \(C_{xy} = 1 \) if \(h(x) = h(y) \), otherwise \(C_{xy} = 0 \)

 Let \(C_x = \sum_{y \neq x} C_{xy} \) be the total number of collisions with \(x \)

 \[E[C_{xy}] = \Pr[h(x) = h(y)] \leq \frac{1}{M} \]

 By linearity of expectation, \(E[C_x] = \sum_{y \neq x} E[C_{xy}] \leq \frac{N-1}{M} \)
Using Universal Hashing

• Corollary: If H is universal, for any sequence of L insert, query, and delete operations in which there are at most M keys in the data structure at any time, the expected cost of the L operations for a random \(h \in H \) is \(O(L) \)
 • Assumes the time to compute \(h \) is \(O(1) \)

• Proof: For any operation in the sequence, its expected cost is \(O(1) \) by the last theorem, so the expected total cost is \(O(L) \) by linearity of expectation

But how to Construct a Universal Hash Family?

• Suppose \(|U| = 2^u \) and \(M = 2^m \)
 • Let \(A \) be a random \(m \times u \) binary matrix, and \(h(x) = Ax \mod 2 \)

\[
\begin{array}{c}
\text{A} \\
\hline
\text{x} \\
\hline
\end{array}
\quad - \quad \begin{array}{c}
\text{h(x)} = Ax \\
\hline
\end{array}
\]

• Claim: for \(x \neq y \), \(\Pr_{h}[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^m} \)

k-wise Independent Families

• Definition: A hash function family \(H \) is \(k \)-universal if for every set of \(k \) distinct keys \(x_1, \ldots, x_k \) and every set of \(k \) values \(v_1, \ldots, v_k \in \{0, 1, \ldots, M-1\} \),

\[
\Pr[h(x_1) = v_1 \text{ AND } h(x_2) = v_2 \text{ AND } \ldots \text{ AND } h(x_k) = v_k] = \frac{1}{M^k}
\]

• If \(H \) is 2-universal, then it is universal. Why?
 • \(h(x) = Ax \mod 2 \) for a random binary \(A \) is not 2-universal. Why?

• Exercise: Show \(Ax + b \mod 2 \) is 2-universal, where \(A \) in \(\{0,1\}^{m \times u} \) and \(b \) in \(\{0,1\}^m \) are chosen independently and uniformly at random
More Universal Hashing

• Given a key x, suppose x = [x₁, ..., xₖ] where each xᵢ ∈ {0, 1, ..., M − 1}

• Suppose M is prime

• Choose random r₁, ..., rₖ ∈ {0, 1, ..., M − 1} and define
 \[h(x) = r₁x₁ + r₂x₂ + ... + rₖxₖ \mod M \]

• Claim: the family of such hash functions is universal, that is,
 \[\Pr[h(x) = h(y)] \leq \frac{1}{M} \text{ for all distinct } x \text{ and } y \]

More Efficient Universal Hashing

• Claim: the family of such hash functions is universal, that is,
 \[\Pr[h(x) = h(y)] \leq \frac{1}{M} \text{ for all } x \neq y \]

• Proof: Since x ≠ y, there is an i* for which xᵢ* ≠ yᵢ*. Let h′(x) = \[\sum_{j \neq i*} r_jx_j \] and h(x) = h′(x) + rᵢ*xᵢ* \mod M
 If h(x) = h(y), then h′(x) + rᵢ*xᵢ* = h′(y) + rᵢ*yᵢ* \mod M
 So rᵢ*(xᵢ* - yᵢ*) = h′(y) - h′(x) \mod M, or
 \[rᵢ* = \frac{h′(y) - h′(x)}{xᵢ* - yᵢ*} \mod M \]
 This happens with probability exactly 1/M

Perfect Hashing

• If we fix the dictionary S of size N, can we find a hash function h so that all query(x) operations take constant time?

• Claim: If H is universal and M = N², then \[\Pr[h \text{ no collisions in } S] \geq \frac{1}{2} \]

• Proof: How many pairs {x, y} of distinct x, y in S are there?
 Answer: \[N(N-1)/2 \]
 For each pair, the probability of a collision is at most 1/M
 \[\Pr[\text{exists a collision}] \leq (N(N-1)/2)/M \leq \frac{1}{2} \]
 Just try a random h and check if there are any collisions

Problem: our hash table has M = N² space! How can we get O(N) space?

Perfect Hashing in O(N) Space – 2 Level Scheme

• Choose a hash function h: U → {1, 2, ..., N} from a universal family

• Let Lᵢ be the number of items x in S for which h(x) = i

• Choose N “second-level” hash functions h₁, h₂, ..., hₙ, where hᵢ: U → {1, ..., Lᵢ}

 By previous analysis, can choose hash functions h₁, h₂, ..., hₙ so that there are no collisions, so O(1) time

 Hash table size is \[\sum_{i=1}^{n} Lᵢ² \]
 How big is that??
Perfect Hashing in O(N) Space – 2 Level Scheme

• **Theorem:** If we pick h from a universal family H, then
 $$\Pr_{h \sim H}[\sum_{i=1}^{N} L_i^2 > 4N] \leq \frac{1}{2}$$

• **Proof:** It suffices to show $E[\sum_{i=1}^{N} L_i^2] < 2N$ and apply Markov’s inequality.

 Let $C_{xy} = 1$ if $h(x) = h(y)$. By counting collisions on both sides, $\sum_{i} L_i^2 = \sum_{x \neq y} C_{xy}$

 If $x = y$, then $C_{xy} = 1$. If $x \neq y$, then $E[C_{xy}] = Pr[C_{xy} = 1] \leq \frac{1}{N}$

 $E[\sum_{i} L_i^2] = \sum_{x \neq y} E[C_{xy}] = N + \sum_{x \neq y} E[C_{xy}] \leq N + N(N - 1)/N < 2N$

 So choose a random h in H, check if $\sum_{i=1}^{N} L_i^2 \leq 4N$, and if so, then choose $h_1, ..., h_N$