Topic 3: Hashing

David Woodruff

Maintaining a Dictionary

- Let U be a universe of "keys"
- U could be all strings of ASCII characters of length at most 80
- Let S be a subset of U, which is a small "dictionary"
- S could be all English words
- Support operations to maintain the dictionary
- Insert(x): add the key x to S
- Query(x): is the key x in S?
- Delete (x) : remove the key x from S

Hashing

- Universal hashing
- Perfect hashing

Formal Hashing Setup

- Universe U is very large
- E.g., set of ASCII strings of length 80 is 128^{80}
- Care about a small subset $S \subset U$. Let $N=|S|$.
- S could be the names of all students in this class
- Our data structure is an array A of size M and a "hash function" $h: U \rightarrow\{0,1, \ldots, M-1\}$.
- Typically $M \ll U$, so can't just store each key x in $\mathrm{A}[\mathrm{x}]$
- Insert(x) will try to place key x in $\mathrm{A}[\mathrm{h}(\mathrm{x})$]
- But what if $h(x)=h(y)$ for $x \neq y$? We let each entry of A be a linked list.
- To insert an element x into $A[h(x)]$, insert it at the top of the list
- Hope linked lists are small

How to Choose the Hash Function h?

- Want it to be unlikely that $h(x)=h(y)$ for different keys x and y
- Want our array size M to be $O(N)$, where N is number of keys
- Want to quickly compute $h(x)$ given x
- We will treat this computation as $O(1)$ time
- How long do Query(x) and Delete(x) take?
- O(length of list A[h(x)]) time
- How long does Insert(x) take?
- O(1) time no matter what
- How long can the lists $A[h(x)]$ be?

Universal Hashing

- Definition: A set H of hash functions h, where each h in H maps $U->\{0,1,2, \ldots, M-1\}$ is universal if for all $x \neq y$,

$$
\underset{\mathrm{hr}}{\operatorname{Pr}}[\mathrm{~h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq \frac{1}{\mathrm{M}}
$$

- The condition holds for every $x \neq y$, and the randomness is only over the choice of h from H
- Equivalently, for every $x \neq y$, we have: $\frac{|h \in H| h(x)=h(y) \mid}{|H|} \leq \frac{1}{M}$

Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set $\{a, b\}$ to $\{0,1\}$ are universal, because at most $1 / M$ of the hash functions in them cause a and b to collide, were $M=|\{0,1\}|$.

- Note that a and b collide with probability more than $1 / M=1 / 2$

Universal Hashing Example

- The following hash function is universal with $M=|\{0,1,2\}|$

Examples that are Not Universal

	a	b
h_{1}	0	0
h_{3}	1	1

$$
\begin{array}{l||lll}
\hline & a & b & c \\
\hline h_{1} & 0 & 0 & 1 \\
h_{2} & 1 & 1 & 0 \\
h_{3} & 1 & 0 & 1 \\
\hline
\end{array}
$$

-

Using Universal Hashing

- Corollary: If H is universal, for any sequence of L insert, query, and delete operations in which there are at most M keys in the data structure at any time, the expected cost of the L operations for a random $h \in H$ is $O(L)$
- Assumes the time to compute h is $\mathrm{O}(1)$
- Proof: For any operation in the sequence, its expected cost is $O(1)$ by the last theorem, so the expected total cost is $\mathrm{O}(\mathrm{L})$ by linearity of expectation

But how to Construct a Universal Hash Family?

- Claim: For $\mathrm{x} \neq \mathrm{y}, \underset{\mathrm{h}}{\operatorname{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}=\frac{1}{2^{m}}$
- Proof: $\mathrm{A} \cdot \mathrm{x} \bmod 2=\sum_{i} \mathrm{~A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \bmod 2$, where A_{i} is the i -th column of A If $h(x)=h(y)$, then $A x=A y \bmod 2$, so $A(x-y)=0 \bmod 2$
If $x \neq y$, there exists an i^{*} for which $\mathrm{x}_{\mathrm{i}^{*}} \neq \mathrm{y}_{\mathrm{i}^{*}}$
Fix A_{j} for all $j \neq i^{*}$, which fixes $b=\sum_{j \neq i^{*}} A_{j}\left(x_{j}-y_{j}\right) \bmod 2$
$A(x-y)=0 \bmod 2$ if and only if $A_{i^{*}}=b$
$\operatorname{Pr}_{\mathrm{A}_{\mathrm{i}^{*}}}\left[\mathrm{~A}_{\mathrm{i}^{*}}=\mathrm{b}\right]=\frac{1}{2^{m}}=\frac{1}{\mathrm{M}}$
So $h(x)=A x \bmod 2$ is universal

But how to Construct a Universal Hash Family?

- Suppose $|\mathrm{U}|=2^{\mathrm{u}}$ and $\mathrm{M}=2^{\mathrm{m}}$
- Let A be a random $\mathrm{m} x$ u binary matrix, and $\mathrm{h}(\mathrm{x})=\mathrm{Ax} \bmod 2$

- Claim: for $\mathrm{x} \neq \mathrm{y}, \operatorname{Pr} \mathrm{h}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})]=\frac{1}{\mathrm{M}}=\frac{1}{2^{\mathrm{m}}}$

k-wise Independent Families

- Definition: A hash function family H is k -universal if for every set of k distinct keys $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ and every set of k values $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}} \in\{0,1, \ldots, \mathrm{M}-1\}$,

$$
\operatorname{Pr}\left[\mathrm{h}\left(\mathrm{x}_{1}\right)=\mathrm{v}_{1} \operatorname{AND~} \mathrm{~h}\left(\mathrm{x}_{2}\right)=\mathrm{v}_{2} \operatorname{AND} \ldots \operatorname{AND} \mathrm{~h}\left(\mathrm{x}_{\mathrm{k}}\right)=\mathrm{v}_{\mathrm{k}}\right]=\frac{1}{\mathrm{M}^{\mathrm{k}}}
$$

- If H is 2 -universal, then it is universal. Why?
- $\mathrm{h}(\mathrm{x})=\mathrm{Ax} \bmod 2$ for a random binary A is not 2 -universal. Why?
- Exercise: Show $A x+b \bmod 2$ is 2-universal, where A in $\{0,1\}^{m x u}$ and $b \in$ $\{0,1\}^{\mathrm{m}}$ are chosen independently and uniformly at random

More Universal Hashing

- Given a key x , suppose $\mathrm{x}=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right]$ where each $\mathrm{x}_{\mathrm{i}} \in\{0,1, \ldots, \mathrm{M}-1\}$
- Suppose M is prime
- Choose random $\mathrm{r}_{1}, . ., \mathrm{r}_{\mathrm{k}} \in\{0,1, \ldots, \mathrm{M}-1\}$ and define

$$
h(x)=r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{k} x_{k} \bmod M
$$

- Claim: the family of such hash functions is universal, that is, $\underset{\mathrm{h}}{\mathrm{Pr}}[\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y})] \leq \frac{1}{\mathrm{M}}$ for all distinct x and y

More Efficient Universal Hashing

- Claim: the family of such hash functions is universal, that is, $\underset{h}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{1}{M}$ for all $x \neq y$
- Proof: Since $\mathrm{x} \neq \mathrm{y}$, there is an i^{*} for which $\mathrm{x}_{\mathrm{i}^{*}} \neq \mathrm{y}_{\mathrm{i}^{*}}$

Let $h^{\prime}(x)=\sum_{j \neq i^{*}} r_{j} x_{j}$, and $h(x)=h^{\prime}(x)+r_{i^{*} x_{i^{*}}} \bmod M$
If $h(x)=h(y)$, then $h^{\prime}(x)+r_{i^{*}} x_{i^{*}}=h^{\prime}(y)+r_{i^{*} *} \mathrm{y}^{*}{ }^{*} \bmod M$
So $r_{i^{*}}\left(x_{i^{*}}-y_{i^{*}}\right)=h^{\prime}(y)-h^{\prime}(x) \bmod M$, or $r_{i^{*}}=\frac{h^{\prime}(y)-h^{\prime}(x)}{x_{i^{*}-}-y_{i^{*}}} \bmod M$
This happens with probability exactly $1 / M$

Perfect Hashing

- If we fix the dictionary S of size N , can we find a hash function h so that all query (x) operations take constant time?
- Claim: If H is universal and $\mathrm{M}=\mathrm{N}^{2}$, then $\underset{\mathrm{h} \leftarrow \mathrm{H}}{\operatorname{Pr}}[$ no collisions in S$] \geq \frac{1}{2}$
- Proof: How many pairs $\{x, y\}$ of distinct x, y in S are there?

Answer: $\mathrm{N}(\mathrm{N}-1) / 2$
For each pair, the probability of a collision is at most $1 / M$
$\operatorname{Pr}[$ exists a collision $] \leq(N(N-1) / 2) / M \leq \frac{1}{2}$
Just try a random h and check if there are any collisions
Problem: our hash table has $M=N^{2}$ space! How can we get $\mathrm{O}(\mathrm{N})$ space?

Perfect Hashing in $\mathrm{O}(\mathrm{N})$ Space - 2 Level Scheme

- Choose a hash function h: $\mathrm{U} \rightarrow\{1,2, \ldots, \mathrm{~N}\}$ from a universal family
- Let L_{i} be the number of items x in S for which $\mathrm{h}(\mathrm{x})=\mathrm{i}$
- Choose N "second-level" hash functions $h_{1}, h_{2}, \ldots, h_{N}$, where $h_{i}: U \rightarrow\left\{1, \ldots, L_{i}^{2}\right\}$

By previous analysis, can
choose hash functions
$\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{\mathrm{N}}$ so that there are
no collisions, so O(1) time
Hash table size is $\sum_{i=1, \ldots, n} L_{i}^{2}$
How big is that??

Perfect Hashing in $O(N)$ Space -2 Level Scheme

- Theorem: If we pick h from a universal family H , then

$$
\operatorname{Pr}_{\mathrm{h} \leftarrow \mathrm{H}}\left[\sum_{\mathrm{i}=1, \ldots, \mathrm{~N}} \mathrm{~L}_{\mathrm{i}}^{2}>4 \mathrm{~N}\right] \leq \frac{1}{2}
$$

- Proof: It suffices to show $\mathrm{E}\left[\sum_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}^{2}\right]<2 \mathrm{~N}$ and apply Markov's inequality Let $C_{x, y}=1$ if $h(x)=h(y)$. By counting collisions on both sides, $\sum_{i} L_{i}^{2}=\sum_{x, y} C_{x, y}$ If $x=y$, then $C_{x, y}=1$. If $x \neq y$, then $E\left[C_{x, y}\right]=\operatorname{Pr}\left[C_{x, y}=1\right] \leq \frac{1}{N}$ $E\left[\sum_{i} L_{i}^{2}\right]=\sum_{x, y} E\left[C_{x, y}\right]=N+\sum_{x \neq y} E\left[C_{x, y}\right] \leq N+N(N-1) / N<2 N$

So choose a random h in H , check if $\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{L}_{\mathrm{i}}^{2} \leq 4 \mathrm{~N}$, and if so, then choose $\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{N}}$

