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Topic 3: Hashing 

David Woodruff

Hashing

• Universal hashing

• Perfect hashing

Maintaining a Dictionary

• Let U be a universe of “keys” 
• U could be all strings of ASCII characters of length at most 80

• Let S be a subset of U, which is a small “dictionary”
• S could be all English words

• Support operations to maintain the dictionary
• Insert(x): add the key x to S
• Query(x): is the key x in S?
• Delete(x): remove the key x from S

Dictionary Models 

• Static: don’t support insert and delete operations, just optimize for fast 
query operations

• For example, the English dictionary does not change much
• Could use a sorted array with binary search

• Insertion-only: just support insert and query operations

• Dynamic: support insert, delete, and query operations 
• Could use a balanced search tree (AVL trees) to get O(log |S|) time per operation

• Hashing is an alternative approach, often the fastest and most convenient
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Formal Hashing Setup
• Universe U is very large

• E.g., set of ASCII strings of length 80 is 128

• Care about a small subset S ⊂ U. Let N = |S|. 
• S could be the names of all students in this class

• Our data structure is an array A of size M and a “hash function” h: U → {0, 1, …, M-1}.
• Typically M ≪ U, so can’t just store each key x in A[x]
• Insert(x) will try to place key x in A[h(x)]

• But what if h(x) = h(y) for x ≠ y? We let each entry of A be a linked list.
• To insert an element x into A[h(x)], insert it at the top of the list
• Hope linked lists are small

How to Choose the Hash Function h?

• Want it to be unlikely that h(x) = h(y) for different keys x and y
• Want our array size M to be O(N), where N is number of keys
• Want to quickly compute h(x) given x

• We will treat this computation as O(1) time

• How long do Query(x) and Delete(x) take?
• O(length of list A[h(x)]) time

• How long does Insert(x) take?
• O(1) time no matter what 

• How long can the lists A[h(x)] be?

Bad Sets Exist for any Hash Function

• Claim: For any hash function h: U -> {0, 1, 2, …, M-1}, if U ≥ N − 1 M + 1, 
there is a set S of N elements of U that all hash to the same location

• Proof: If every location had at most N-1 elements of U hashing to it, we would 
have U ≤ N − 1 M

• There’s no good hash function h that works for every S. Thoughts?

• Universal Hashing: Randomly choose h!
• Show for any sequence of insert, query, and delete operations, the expected number of 

operations, over a random h, is small

Universal Hashing

• Definition: A set H of hash functions h, where each h in H maps                    
U -> {0, 1, 2, …, M-1} is universal if for all x ≠ y, 

Pr
←

h x = h y ≤
1

M

• The condition holds for every x ≠ y, and the randomness is only over the 
choice of h from H

• Equivalently, for every x ≠ y, we have: ∈  |
≤
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Universal Hashing Examples Examples that are Not Universal

• Note that a and b collide with probability more than 1/M = 1/2

Universal Hashing Example

• The following hash function is universal with M = |{0,1,2}|

Using Universal Hashing

• Theorem: If H is universal, then for any set S ⊆ U with |S| = N, for any x ∈
S, if we choose h at random from H, the expected number of collisions 
between x and other elements in S is less than N/M. 

• Proof: For y ∈ S with y ≠ x, let C = 1 if h(x) = h(y), otherwise C = 0

Let C = ∑ C  be the total number of collisions with x

E C = Pr h x = h y ≤

By linearity of expectation, E C = ∑ E[C ]  ≤  
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Using Universal Hashing

• Corollary: If H is universal, for any sequence of L insert, query, and delete 
operations in which there are at most M keys in the data structure at any 
time, the expected cost of the L operations for a random h ∈ H is O(L) 

• Assumes the time to compute h is O(1)

• Proof: For any operation in the sequence, its expected cost is O(1) by the 
last theorem, so the expected total cost is O(L) by linearity of expectation 

But how to Construct a Universal Hash Family?

• Claim: for x ≠ y, Pr h x = h y = =

• Suppose U = 2 and M = 2

• Let A be a random m x u binary matrix, and h(x) = Ax mod 2

But how to Construct a Universal Hash Family?

• Claim: For x ≠ y, Pr h x = h y = =

• Proof: A ⋅ x mod 2 = ∑ A x  mod 2, where A is the i-th column of A
If h(x) = h(y), then Ax=Ay mod 2, so A(x-y) = 0 mod 2
If x ≠ y, there exists an i∗ for which x ∗ ≠ y ∗

Fix A for all j ≠ i∗, which fixes b = ∑ A (x −y ) 
∗ mod 2

A(x-y) = 0 mod 2 if and only if A ∗= b
Pr

∗
A ∗ = b = =

So h(x) = Ax mod 2 is universal

k-wise Independent Families

• Definition: A hash function family H is k-universal if for every set of k distinct 
keys x , … , x and every set of k values v , … , v ∈ 0, 1, … , M − 1 , 

Pr[h x = v  AND h x = v  AND …  AND h x = v ] = 

• If H is 2-universal, then it is universal. Why?

• h(x) = Ax mod 2 for a random binary A is not 2-universal. Why?

• Exercise: Show Ax + b mod 2 is 2-universal, where A in 0,1   and b ∈
0,1 are chosen independently and uniformly at random 



7/14/2019

5

More Universal Hashing

• Given a key x, suppose x = [x , … , x ] where each x ∈ {0, 1, … , M − 1}

• Suppose M is prime 

• Choose random r , . . , r ∈ 0, 1, … , M − 1 and define
h x = r x + r x + … + r x  mod M

• Claim: the family of such hash functions is universal, that is,       
Pr h x = h y ≤ for all distinct x and y

More Efficient Universal Hashing

• Claim: the family of such hash functions is universal, that is,            
Pr h x = h y ≤ for all x ≠ y

• Proof: Since x ≠ y, there is an i∗ for which x ∗ ≠ y ∗

Let h x = ∑ r x 
∗ , and h(x) = h’(x) + r ∗x ∗ mod M

If h(x) = h(y), then h’(x) + r ∗x ∗= h’(y) + r ∗y ∗ mod M

So r ∗ x ∗ − y ∗ = h y − h x mod M, or r ∗ =
∗ ∗

mod M

This happens with probability exactly 1/M

Perfect Hashing

• If we fix the dictionary S of size N, can we find a hash function h so that all query(x) 
operations take constant time?

• Claim: If H is universal and M = N , then Pr
←

[ no collisions in S] ≥

• Proof: How many pairs {x,y} of distinct x,y in S are there?
Answer: N(N-1)/2
For each pair, the probability of a collision is at most 1/M

Pr[exists a collision]≤ (N(N-1)/2)/M ≤

Just try a random h and check if there are any collisions
Problem: our hash table has M = N space! How can we get O(N) space?

Perfect Hashing in O(N) Space – 2 Level Scheme
• Choose a hash function h: U → {1, 2, … , N} from a universal family

• Let L be the number of items x in S for which h(x) = i

• Choose N “second-level” hash functions h , h , … , h , where h : U → {1, … , L }

By previous analysis, can 
choose hash functions   
h , h , … , h so that there are 
no collisions, so O(1) time

Hash table size is ∑ L 
,…,

How big is that??
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Perfect Hashing in O(N) Space – 2 Level Scheme
• Theorem: If we pick h from a universal family H, then

Pr
←

[ L > 4N] ≤
1

2

 

,…,

• Proof: It suffices to show E[∑ L ] < 2N  and apply Markov’s inequality

Let C , = 1 if h(x) = h(y). By counting collisions on both sides, ∑ L  = ∑ C ,   
,

If x = y, then C , = 1. If x ≠ y, then E C , = Pr C , = 1 ≤

E[∑ L ] = ∑ E C , = N + ∑ E C , ≤ N + N(N − 1)/N  
,

  < 2N

So choose a random h in H, check if ∑ L 
,…, ≤ 4N, and if so, then choose h , … , h


