Topic 2: Concrete Models and Tight Upper and Lower Bounds

David Woodruff

Theme: Tight Upper and Lower Bounds

- Number of comparisons to sort an array
- Number of exchanges to sort an array
- Number of comparisons needed to find the largest and second-largest elements in an array
- Number of probes into a graph needed to determine if the graph is connected

Formal Model

- Look at models which specify exactly which operations may be performed on the input, and what they cost
 - E.g., performing a comparison, or swapping a pair of elements
- An upper bound of $f(n)$ means the algorithm takes at most $f(n)$ steps on any input of size n
- A lower bound of $g(n)$ means for any algorithm there exists an input for which the algorithm takes at least $g(n)$ steps on that input

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order
 An algorithm may compare two items (asking is $a_i > a_j$?) at a cost of 1
 - Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.
- Sorting: given an array $a = [a_1, ..., a_n]$, output a permutation π so that $[a_{\pi(1)}, ..., a_{\pi(n)}]$ in which the elements are in increasing order
Sorting Lower Bound

- **Theorem:** Any deterministic comparison-based sorting algorithm must perform at least \(\lg(n!) \) comparisons to sort \(n \) elements in the worst case.
- I.e., for any sorting algorithm \(A \) and \(n \geq 2 \), there is an input \(I \) of size \(n \) so that \(A \) makes \(\geq \lg(n!) = \Omega(n \log n) \) comparisons to sort \(I \).
- Need to rule out any possible algorithm.
- Proof is information-theoretic.

Proof: Suppose there is a problem with \(M \) possible outputs.

- For sorting, \(M = n! \) since for each possible output permutation \(\pi \), there is an input for which the output is \(\pi \).
- Suppose for each possible output, there is an input for which that output is the only correct answer.
- For sorting there are inputs for which \(\pi \) is the only correct answer.
- Then there is a lower bound of \(\lg M \).
- Consider a set of inputs in 1-to-1 correspondence with the \(M \) possible outputs.
- Algorithm needs to find out which of the \(M \) inputs we have.
- There’s a path removing at most half of the possible inputs at each node.

- **Information-theoretic:** need \(\lg(n!) \) bits of information about the input before we can correctly decide on the output.
 - \(\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + \ldots + \lg(1) < n \lg n \).
 - \(\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + \ldots + \lg(1) > \binom{n}{2} \lg \left(\frac{n}{2} \right) = \Omega(n \lg n) \).
 - \(n! \in \left(\frac{n^n}{e^n} , n^n \right) \), so \(n \lg e < \lg(n!) < n \lg n \).
 - \(n \lg n - 1.443n < \lg(n!) < n \lg n \).
 - \(\lg(n!) = (n \lg n) (1 - o(1)) \).
Sorting Upper Bounds

- Suppose for simplicity \(n \) is a power of 2

- Binary insertion sort: using binary search to insert each new element, the number of comparisons is \(\sum_{k=2}^{\lfloor \log n \rfloor} k \leq n \log n \)
 - **Note:** may need to move items around a lot, but only counting comparisons

- Mergesort: merging two sorted lists of \(n/2 \) elements requires at most \(n-1 \) comparisons
 - Unrolling the recurrence, total number of comparisons is
 \[
 (n - 1) + 2 \left(\frac{n}{2} - 1 \right) + \ldots + \frac{n}{2} (2 - 1) = n \log n - (n - 1) < n \log n
 \]

Selection in the Comparison Model

- How many comparisons are necessary and sufficient to find the maximum of \(n \) elements in the comparison model?
 - **Claim:** \(n-1 \) comparisons are sufficient
 - **Proof:** scan from left to right, keep track of the largest element so far

- For lower bounds, what does our earlier information-theoretic argument give?
 - Only \(\Omega(\log n) \), which is too weak
 - Also, we have to look at all elements, otherwise we may have not looked at the largest, but that can be done with \(n/2 \) comparisons, also not tight

Lower Bound for Finding the Maximum

- **Claim:** \(n-1 \) comparisons are needed in the worst-case to find the maximum of \(n \) elements

- **Proof:** suppose \(A \) is an algorithm which finds the maximum of \(n \) distinct elements using fewer than \(n-1 \) comparisons
 - Construct a graph \(G \) in which we join two elements by an edge if they are compared by \(A \)
 - \(G \) has at least 2 connected components \(C_1 \) and \(C_2 \)
 - Suppose \(A \) outputs element \(u \) as the maximum, and \(u \in C_1 \)
 - Add a large positive number to each element in \(C_2 \)
 - Does not change any of the comparisons made by \(A \), so will still output \(u \)
 - But now \(u \) is not the maximum, so \(A \) is incorrect

Lower Bound for Finding the Maximum

- **Recap:** upper and lower bounds match at \(n-1 \)

- **Argument different from information-theoretic bound for sorting**
 - Instead,
 - If algorithm makes too few comparisons on some input \(I_n \) and outputs \(O_t \),
 - Find another input \(I'_n \) where the algorithm makes the same comparisons and also outputs \(O_t \),
 - But \(O_t \) is not a correct output for \(I'_n \)
An Adversary Argument

• If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

• Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
 • If < 2 comparisons, some element not looked at and the algorithm is incorrect
 • After first comparison, 3 elements are w, l, and z, the winner and loser of the first comparison, as well as the uninvolved item
 • If the second query is between w and z, say w is larger
 • If the second query is between l and z, say l is smaller
 • Algorithm needs one more comparison for correctness

• Goal: answer comparisons so that (a) answers consistent with some input ln, (b) answers make the algorithm perform “many” comparisons

First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?

• Claim: n-1 comparisons are needed in the worst-case

• Proof: need to at least find the maximum

What about Upper Bounds?

• Claim: 2n-3 comparisons are sufficient to find the first and second-largest of n elements

• Proof: find the largest using n-1 comparisons, then find the largest of the remainder using n-2 comparisons, so 2n-3 total

• Upper bound is 2n-3, and lower bound n-1, both are Θ(n) but can we get tight bounds?

Second Largest of n Elements Upper Bound

• Claim: n + lg n − 2 comparisons are sufficient to find the first and second-largest of n elements

• Proof: find the maximum element using n-1 comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

• What can we say about the second maximum?
 • Must have been directly compared to the maximum and lost, so lg(n)-1 additional comparisons suffice. Kisliutsyn (1964) shows this is optimal
Sorting in the Exchange Model

- Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?

- In the exchange model, you have n items and the only operation allowed on the items is to swap a pair of them at a cost of 1 step

 - All other work is free, e.g., the items can be examined and compared

 - How many exchanges are necessary and sufficient?

Claim: $n-1$ exchanges is sufficient

Proof: here's an algorithm:

- In first step, swap the smallest item with the item in the first location
- In second step, swap the second smallest item with the item in the second location
- In k-th step, swap the k-th smallest item with the item in the k-th location
 - If no swap is necessary, just skip a given step
 - No swap ever undoes our previous work
 - At the end, the last item must already be in the correct location

Lower Bound for Sorting in Exchange Model

- Claim: $n-1$ exchanges are necessary in the worst case

Proof: create a directed graph in which the edge (i,j) means the book in location i must end up in location j

- Graph is a set of cycles
 - Indegree and Outdegree of each node is 1

What is the effect of exchanging any two elements in the same cycle?

- Suppose we have edges (i_1,j_1) and (i_2,j_2) and swap elements in locations i_1 and i_2
- This replaces these edges with (i_2,j_1) and (i_1,j_2) since now the item in position i_2 need to go to j_1 and item in position i_1 need to go to j_2
- Since i_1 and i_2 in the same cycle, now we get two disjoint cycles
Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in different cycles?
 - If we swap elements i_1 and i_2 in different cycles, similar argument shows this merges two cycles into one cycle.

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
 - $G[i,j] = 1$ if there is an edge between i and j, else $G[i,j] = 0$
 - In 1 step, we can query any element of G. All other computation is free
 - How many queries do we need to tell if G is connected?
 - **Claim:** $n(n-1)/2$ queries suffice
 - **Proof:** Just query every pair $\{i,j\}$ to learn G, then check if G is connected

- What about lower bounds?

Lower Bound for Sorting in Exchange Model

- What is the effect of exchanging any two elements in the same cycle?
 - Get two disjoint cycles
- What is the effect of exchanging any two elements in different cycles?
 - Merges two cycles into one cycle
 - Corner cases also result in self loop and create two disjoint cycles
- How many cycles are in the final sorted array?
 - n cycles
- Suppose we begin with an array $[n, 1, 2, ..., n-1]$ with one big cycle
 - Each step increases the number of cycles by at most 1, so need $n-1$ steps

Connectivity is an Evasive Graph Property

- **Theorem:** $n(n-1)/2$ queries are necessary to determine connectivity
 - **Proof:** adversary strategy: given a query $G[u,v]$, answer 0 unless that would cause the graph to become disconnected
 - **Invariant:** for any unasked pair $\{u,v\}$, the graph revealed so far has no path from u to v
 - **Reason:** consider the last edge (u',v') revealed on that path. Could have answered 0 and kept same connectivity by having edge (u,v) be present
Connectivity is an Evasive Graph Property

• **Theorem:** \(n(n-1)/2 \) queries are necessary to determine connectivity
• **Proof:** adversary strategy: given a query \(G[u,v] \), answer 0 unless that would cause the graph to become disconnected
• Invariant: for any unasked pair \((u,v) \), the graph revealed so far has no path from \(u \) to \(v \)
• Suppose there is some unasked pair \((u,v) \) by the algorithm
 • If algorithm says "connected", we place all 0s on unasked pairs
 • If algorithm says "disconnected", we place all 1s on unasked pairs
• So algorithm needs to query every pair