Topic 11: Sketching Graphs

David Woodruff

Outline

• Sketching Model
 • Estimating the Euclidean norm of a vector
 • Finding a non-zero coordinate of a vector

• Graph sketching motivation
 • Boruvka’s spanning tree algorithm
 • Finding a spanning tree from a sketch

Sketching

• Random linear projection $S: \mathbb{R}^n \rightarrow \mathbb{R}^k$ that preserves properties of any $x \in \mathbb{R}^n$ with high probability, where $k \ll n$

\[
\begin{bmatrix}
S \\
x
\end{bmatrix}
\begin{bmatrix}
Sx
\end{bmatrix}
\rightarrow \text{answer}
\]

• The matrix S does not depend on x, e.g., S is a random matrix (typically, we require the entries of S be $O(\log n)$ bits)
Estimating the Norm of a Vector

- For a vector \(x \in \mathbb{R}^n \), its (squared) Euclidean norm is \(|x|^2 = \sum x_i^2 \)
- Want to output a number \(Z \) for which \(1 - \epsilon \leq Z \leq 1 + \epsilon \) \(|x|^2 \)
- Choose a 2-wise independent hash function \(h : [n] \rightarrow [k] \)
- Choose a 4-wise independent hash function \(\sigma : [n] \rightarrow \{-1,1\} \)

\[\sum_{i : h(i) = 2} \sigma_i x_i \]

CountSketch

- CountSketch is a linear map \(S : \mathbb{R}^n \rightarrow \mathbb{R}^k \)
- A row \(i \) of \(S \) is a hash bucket, and \((Sx)_i \) is the value in the bucket
- Output \(|Sx|^2 \)

\[E[|Sx|^2] = E[\sum \delta(h(i) = i) \sigma(i) x_i^2] \]
\[= \sum_{i,j} x_i x_j E[\delta(h(i) = j) \sigma(i) \sigma(j)] \]
\[= \sum x_i^2 E[\sum_{i,j} \delta(h(i) = j) \sigma(i) \sigma(j)] \]
\[= \frac{\sum x_i^2}{k} = |x|^2 \]

Estimating the Norm from CountSketch

- In recitation, you will show \(\text{Var}[|Sx|^2] = O(|x|^4/k) \)
- By Chebyshev’s inequality,

\[\Pr \left[|Sx|^2 - |x|^2 \geq \epsilon |x|^2 \right] \leq \frac{\text{Var}[|Sx|^2]}{\epsilon^2 |x|^4} \leq \frac{1}{10} \quad \text{provided} \quad k = \Theta\left(\frac{1}{\epsilon^2}\right) \]
- If \(S \) has \(k = \Theta\left(\frac{1}{\epsilon^2}\right) \) rows, can estimate \(|x|^2 \) from \(Sx \) up to a \((1 + \epsilon)\)-factor with probability at least 9/10

Outline

- Sketching Model
 - Estimating the Euclidean norm of a vector
 - Finding a non-zero coordinate of a vector
- Graph sketching motivation
 - Boruvka’s spanning tree algorithm
 - Finding a spanning tree from a sketch
A 1-Sparse Recovery Algorithm

- Underlying n-dimensional vector \(x \) initialized to \(0^n \)
- Stream of updates \(x_i \leftarrow x_i + \Delta_i \) for \(\Delta_i \in \{-1,1\} \)
- Promised that at all times, \(-\text{poly}(n) \leq x_i \leq \text{poly}(n)\)
- Want a procedure which with probability \(1 - 1/\text{poly}(n) \), if \(x \) is 1-sparse, i.e., has exactly one non-zero entry \(x_i \), it returns \((x_i, i)\)
- Otherwise output FAIL

A 1-Sparse Recovery Algorithm

- Choose 2-universal hash functions \(h_1, \ldots, h_{2\log n} \) each mapping \([n]\) to \(\{0,1\} \)
- Let \(x^{00} = x^{01} = x^{10} = 0 \) if \(h_j = 0 \), else \(x^{00} = x^{01} = x^{10} = 0 \)
- For each \(i \in \{1, 2, \ldots, 2\log n\} \), \(x = x^{10} + x^{11} \)
- Let \(S^{ab} \) be a CountSketch, and maintain \(S^{ab} \cdot x^{ab} \) for \(i \in [n] \) and \(b \in \{0,1\} \)

Output:

- If there’s an \(i \) with \(S^{10} \cdot x^{10} > 0 \) and \(S^{11} \cdot x^{11} > 0 \), output FAIL
- If for all \(i \), \(S^{10} \cdot x^{10} = S^{11} \cdot x^{11} = 0 \), output FAIL
- For each \(i \), if there’s a \(b \in \{0,1\} \) with \(S^{ab} \cdot x^{ab} > 0 \), let \(T^i = h^{-1}(b) \), else \(T^i = [n] \)
- If \(\cap_i T^i = 1 \), output the item in \(\cap_i T^i \), else output FAIL

A 1-Sparse Recovery Algorithm

- If there’s an \(i \) with \(S^{10} \cdot x^{10} > 0 \) and \(S^{11} \cdot x^{11} > 0 \), output FAIL
- If for all \(i \), \(S^{10} \cdot x^{10} = S^{11} \cdot x^{11} = 0 \), output FAIL
- For each \(i \), if there’s a \(b \in \{0,1\} \) with \(S^{1b} \cdot x^{1b} > 0 \), let \(T^i = h^{-1}(b) \), else \(T^i = [n] \)
- If \(\cap_i T^i = 1 \), output the item in \(\cap_i T^i \), else output FAIL

Outputting a Non-Zero Coordinate of a Vector

- Maintain \(S^{ab} \cdot x^{ab} \) for \(i \in [n] \) and \(b \in \{0,1\} \) in the stream
- Easy to maintain with positive and negative updates to coordinates
- \(O(\log^2 n) \) bits of space

- With probability \(1 - 1/n \), if \(x \) is 1-sparse, correctly output single non-zero coordinate \(j \)
- Otherwise, correctly output FAIL

- Call this algorithm 1-Sparse-Finder

 - Can we use 1-Sparse-Finder to find a non-zero item of \(x \) if \(x \) is not 1-sparse?
Outputting a Non-Zero Coordinate of a k-Sparse Vector

- If x is k-sparse, i.e., has k non-zero entries, use hashing
- Let h be a 2-universal hash function from $[n]$ to $[10k]$

\[
\begin{array}{cccccccc}
\text{x}_1 & \text{x}_2 & \text{x}_3 & \text{x}_4 & \text{x}_5 & \text{x}_6 & \text{x}_7 & \text{x}_8 & \cdots & \text{x}_n \\
\end{array}
\]

- In the j-th hash bucket, run 1-Sparse Finder

k-Sparse Algorithm Analysis

- In each bucket, we find a non-zero entry i or output FAIL, with probability $1 - 1/poly(n)$
 - What if all the non-zero items of x collide in a bucket?
 - Consider a non-zero entry i of x
 - Since h is 2-universal, with probability at least $1 - k/(10k) = 9/10$, $h(i) \neq h(j)$ for all $j \neq i$ for which $x_j \neq 0$
 - With $9/10$ probability, we output a non-zero entry i of x
 - We know when we fail to output a non-zero entry (except with probability $1/poly(n)$)

Reducing the Space

- Have a procedure which, if x is k-sparse, either outputs a non-zero item i of x or says FAIL
- Output a non-zero item with probability at least $9/10$
- Use $O(k \log n)$ bits of space
- Good if k is small, but how can we reduce the space for large k?

Subsampling

Uniformly sample the coordinates as nested subsets

$[n] = S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_{\log_2 n}$

Include each item from S_{i-1} in S_i independently with probability $1/2$

x_{S_i} is x restricted to coordinates in S_i
Algorithm for Finding a Non-Zero Item

- If \(x \) has \(k \) non-zero entries, what's the expected number of non-zero entries in \(x_{S_{1}} \)?
 - For each non-zero entry \(j \), let \(Z_{j} = 1 \) if \(j \in S_{1} \), and \(Z_{j} = 0 \) otherwise
 - \(Z = \sum Z_{j} \), and so \(E[Z] = k \cdot E[Z_{1}] = \frac{k}{2} \)

- What's the variance of \(Z \)?
 - \(\text{Var}[Z] = \sum \text{Var}[Z_{j}] = k \cdot \text{Var}[Z_{1}] = k \left(\frac{1}{2} \right) \left(1 - \frac{1}{2} \right) \leq \frac{k}{2} \)
 - If \(i = \lfloor \log_{2} k \rfloor - 5 \), then \(32 \leq E[Z] < 64 \) and \(\text{Var}[Z] < 64 \)
 - By Chebyshev, \(\Pr[Z - E[Z] \geq 32] \leq \frac{\text{Var}[Z]}{32^2} \leq \frac{1}{16} \)
 - If we run a \(k' \)-sparse algorithm with \(k' = 96 \) on \(x_{S_{1}} \), we recover a non-zero item of \(x_{S_{1}} \) with probability at least \(4/5 \), or output FAIL

- But we don't know \(i \)?

Outline

- Sketching Model
 - Estimating the Euclidean norm of a vector
 - Finding a non-zero coordinate of a vector

- Graph sketching motivation
 - Boruvka's spanning tree algorithm
 - Finding a spanning tree from a sketch

Algorithm for Finding a Non-Zero Item

- Run a \(k' = 96 \)-sparse vector algorithm on every \(x_{S_{1}} \)!

- For each \(x_{S_{1}} \), our algorithm either returns a non-zero item of \(x_{S_{1}} \), and hence of \(x \), or outputs FAIL

- For \(i = \lfloor \log_{2} k \rfloor - 5 \), with probability at least \(4/5 \), we output a non-zero item of \(x_{S_{1}} \), and hence of \(x \)

- Space is \((\log_{2} n) \cdot O(k' \log n) = O(\log^{3} n) \) bits!

Sketching Graphs

Are there sketches for graphs? Here \(A_{G} \) is the \(n \times n \) adjacency matrix

- \((A_{G})_{ij} = 1 \) if \((i,j) \) is an edge, and \((A_{G})_{ij} = 0 \) otherwise

\[
\begin{pmatrix}
S \\
A_{G}
\end{pmatrix}
=
\begin{pmatrix}
S A_{G} \\
\end{pmatrix}
\rightarrow \text{answer}
\]

- Is there a distribution on random matrices \(S \) with \(\text{poly}(\log n) \) rows so that you can output a spanning tree of \(G \) given \(SA_{G} \), with high probability?
Application: Graph Streams

• Want to process a graph stream, where you see the edges of a graph \(e_1, \ldots, e_m \) one at a time, in an arbitrary order. Assume the vertices are labeled 1, 2, ..., \(n \).

\[e_3 \quad e_{10} \quad e_1 \quad e_2 \quad e_5 \quad e_7 \quad e_6 \quad \ldots \]

• Can only make 1 pass over the stream
• Trivially store stream using \(O(n^2) \) bits of memory.
• Want to instead use \(n \cdot \text{poly}(\log n) \) bits of memory

• How would you compute a spanning forest?

Computing a Spanning Forest

• For each edge \(e \) in the stream
 • If ____________________, store edge \(e \)
 • ____________________ is “doesn’t form a cycle”

 • Store at most \(n-1 \) edges, so \(O(n \log n) \) bits of memory

 • But what if you are allowed to delete edges? This is called a dynamic stream

Handling Deletions with Sketching

• Given \(S \cdot A_G \), replace it with \(S \cdot A_{G-e} = S \cdot A_G - S \cdot A_e \)

• Memory required to store \(S \cdot A_G \) is (# of rows of \(S \)) \cdot n \cdot \log n \) bits
 • Also need to store \(S \), which is (# of rows of \(S \)) \cdot n \cdot \log n \)

• Goal: find a distribution on matrices \(S \) with a small # of rows so that given \(S \cdot A_G \), can output a spanning tree of \(G \) with high probability

• Theorem: there is a distribution on \(S \) with only \(\text{poly}(\log n) \) rows!

Parallel Computing
Outline

• Sketching Model
 • Estimating the Euclidean norm of a vector
 • Finding a non-zero coordinate of a vector

• Graph sketching motivation
 • Boruvka’s spanning tree algorithm
 • Finding a spanning tree from a sketch

Boruvka’s Spanning Tree Algorithm (Modified)

• For simplicity, assume the input graph is connected

• Initialize edgeset E' to \emptyset

• Create a list L of n groups of vertices, each initialized to a single vertex

• While the list has more than one group
 • For each group G, put an edge e from a vertex in G to a vertex not in G into E'
 • Merge any groups connected by an edge in the previous step

• Find a spanning tree among the edges in E'

Input Graph

Groups at Beginning of Round 1

List of Groups

• A
• B
• C
• D
• E
• F
• G
• H
• I
• J
Round 1

Group C

Round 1

Edge C-F

Round 1

Group D

Round 1

Edge D-A
Round 1

Group I

Round 1

Edge I-G

Group J

Round 1

Edge J-H
Round 1 Ends

List of Edges Added

- A-D
- B-A
- C-F
- D-B
- E-C
- F-C
- G-E
- H-J

List of Groups

Groups at Beginning of Round 2

List of Groups

- D-A-B
- F-C-E-G-I
- H-J

Round 2

Group D-A-B

Round 2

Edge B-C
Round 2

Group F-C-E-G-I

Round 2

Edge I-J

Round 2

Group H-J

Round 2

Edge J-I
Analysis

- If G_1, G_2, \ldots, G_r are the groups of vertices in an iteration, for each G_i, there is a G_j, $i \neq j$, and an edge (u,v) from a vertex $u \in G_i$ to a vertex $v \in G_j$
 - Otherwise, graph is disconnected

- If t groups at start of an iteration, at most $t/2$ groups at end of iteration
 - Consider graph H with vertex set G_1, G_2, \ldots, G_r and r edges, where the edges correspond to the groups we connect
 - Number of groups at most number of connected components in H. Why?

- After $\log_2 n$ iterations, one group left
 - At most $n + n/2 + n/4 + \ldots + 1 \leq 2n$ edges chosen in E'

- E' contains a spanning tree
 - Invariant: the vertices in each group in each iteration are connected

Outline

- Sketching Model
 - Estimating the Euclidean norm of a vector
 - Finding a non-zero coordinate of a vector

- Graph sketching motivation
 - Boruvka’s spanning tree algorithm
 - Finding a spanning tree from a sketch
Representing a Graph

• For node i, let a_i be a vector indexed by node pairs

• If $\{i, j\}$ is an edge, $a_i[i, j] = 1$ if $j > i$, and $a_i[i, j] = -1$ if $j < i$

• If $\{i, j\}$ is not an edge, $a_i[i, j] = 0$

\[
a_1 = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}
\]

\[
a_2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

Spanning Tree Algorithm

• Compute $O(\log n)$ sketches $C_i(a_j)$, ..., $C_{O(\log n)}(a_j)$ for each a_j

• Each sketch $C_i(a_j)$ can output a non-zero item of a_j with probability at least $4/5$, otherwise returns FAIL

• Idea: Run Boruvka’s algorithm in sketch space

• For each node j, use $C_j(a_j)$ to get incident edge on each node j

• For $i = 2$, ..., $O(\log n)$
 • To get incident edge on group $G \subseteq V$, use

\[
\sum_{j \in S} C_i a_j = C_i \left(\sum_{j \in S} a_j \right) \rightarrow e \in \text{support}(\sum_{j \in S} a_j) = E(S, V \setminus S)
\]

Spanning Tree Wrapup

• $O(n \log n)$ total sketches $C_i(a_j)$, as i and j vary, so $O(n \log^4 n)$ space

• Note: a $1/5$ fraction of sketches fail in each iteration in expectation, but Boruvka’s algorithm guarantees that on the remaining $4/5$ fraction of vertices, the number of connected components halves

• Expected number of iterations still $O(\log n)$

• Since sketches are linear, they can be maintained with insertions and deletions of edges in a stream

• Overall $O(n \log^4 n)$ bits of space to output a spanning tree!
 • Can be improved to $O(n \log^5 n)$ bits