Topic 3: Graph Compression

David Woodruff

Motivating Questions

• You have an unweighted, undirected graph $G = (V, E)$ on n vertices

• Given vertices u and v, want to find a shortest path between u and v
 • Routing packets on a network
 • GPS: Fastest way to get from source to destination

• Problem: G may be a huge graph, and you can’t afford to store it

Outline

• Motivating Questions

• Spanners
 • Multiplicative
 • Additive

Shortest Path Queries

• $G = (V, E)$ is an unweighted, undirected graph on n vertices

• $|E|$ can be $\Theta(n^2)$, so want to “compress” G to fit in memory, but still want to answer shortest path queries

• Replace G with a subgraph $H = (V, E')$
 • Store H instead of G
 • Given query $d_G(u, v)$, respond with $d_H(u, v)$

• Suppose $G = (V, E)$ is a clique
 • If (u, v) not in H, what is $d_G(u, v)$ and what is $d_H(u, v)$?

• Can we find a small subgraph H to approximate $d_G(u, v)$ for all u, v?
Outline

• Motivating Questions

• Spanners
 • Multiplicative
 • Additive

Spanners

• G = (V, E) is undirected, unweighted graph on n vertices

• \(d_G(u, v) \) is shortest path distance from u to v

• A (k, b)-spanner of G is a subgraph H = (V, E') such that for all u, v in V
 \[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b \]

• If b = 0, H is a multiplicative spanner

• If k = 1, H is an additive spanner

• Do there exist (k,b)-spanners H with small |E'|?

Application of Spanners

• Shortest path query \(d_G(u, v) \)

 • Replace G with a (k, b)-spanner H with |E'| edges

 • Output \(d_H(u, v) \)

 • Approximation: \(d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b \)

 • Space: O(|E'| + n) instead of O(|E| + n)

 • Time: O(|E'| + n) instead of O(|E| + n)

 • Faster if |E'| \ll |E|, but have to account for the time to create H

Outline

• Motivating Questions

• Spanners
 • Multiplicative
 • Additive
Multiplicative Spanners

- A (k, b)-spanner of G is a subgraph H = (V, E') such that for all u, v in V:
 \[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b \]

 - If b = 0, then \[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) \]
 - \[H = (V, E') \] is a k-multiplicative spanner
 - How small can |E'| be?

- If \[d_G(u, v) = 1 \], then \[d_H(u, v) \leq k \]

 Conversely, if \[d_H(u, v) \leq k \] for all edges \{u, v\} of G, then for any vertices \(u', v' \in V \), \[d_H(u', v') \leq k \cdot d_G(u', v') \]

- To construct H, just need for all edges \(\{u, v\} \) in E, \[d_H(u, v) \leq k \]

Greedy Algorithm for Multiplicative Spanners

- Let’s build H = (V, E') by walking through the edges of G
- Initialize H = (V, ∅)
- For each edge e in G
 - If ____________________, then include e in H
- That’s the algorithm! What should ______________________ be?
 - “If e doesn’t form a cycle of length at most k+1 with the edges you’ve already included”
- Why is this correct?
 - For each edge not included, there’s a path of length at most k between its endpoints
 - How many edges does H have?

Bounding the Number of Edges in H

- H doesn’t have a cycle of length at most k+1. Why?

 - Minimum cycle length is called the girth

 - What’s the maximum number of edges in a graph with girth at least k+2?
 - What if k = 2?
 - A complete bipartite graph has \(\Omega(n^2) \) edges, and girth 4
 - What if k = 3?
 - At most \(O(n^2) \) edges!
 - For k=2t or k=2t-1 for an integer t, at most \(O(n^{t+\frac{1}{t}}) \) edges, so H is tiny!

Bounding the Number of Edges in H

- Theorem: for k=2t or k=2t-1, a graph with girth at least k+2 has \(O(n^{t+\frac{1}{t}}) \) edges
- Lemma: let \(\bar{d} = 2m/n \) be the average degree in a graph G with m edges and n nodes. There is a non-empty subgraph G' of G with minimum degree \(\bar{d}/2 \)
 - Proof: Initialize \(V_0 = V \) and \(E_0 = E \)
 - i = 0
 - While there is a vertex v of degree at most \(|E_i|/|V_i| \),
 - \(i \leftarrow i + 1 \)
 - \(V_{i-1} \leftarrow V_i \leftarrow \{v\} \)
 - \(E_{i-1} \leftarrow E_i \leftarrow \{(v, w) \text{ for all neighbors } w \text{ of } v\} \)
 - Output \(G' = (V_i, E_i) \)
 - \(G' \) is non-empty because \(\frac{|E_i|}{|V_i|} \geq \frac{|E_{i-1}|}{|V_{i-1}|} \geq \cdots \geq \frac{|E_1|}{|V_1|} = \frac{m}{n} > 0 \)
Bounding the Number of Edges in H

• **Theorem:** for \(k = 2t \) or \(k = 2t - 1 \), a graph with girth at least \(k + 2 \) has \(O(n^{1+\frac{1}{t}}) \) edges

• **Proof:**
 - By lemma, a graph \(G \) has a non-empty subgraph \(G' \) with min degree \(\bar{d}/2 \)
 - Grow a breadth-first-search (BFS) tree from a node \(v \in G' \)
 - \(G' \) has girth \(k + 2 \)
 - At level \(t \) in the BFS tree, there are at least \(\left(\frac{\bar{d}}{2} - 1 \right)^t \) distinct nodes
 - \(\left(\frac{\bar{d}}{2} - 1 \right)^t \leq n \), so \(\left(\frac{m}{n} - 1 \right)^t \leq n \), and solving gives \(m \leq n + n^{1+\frac{1}{t}} \)

Can we do Better?

• **Girth conjecture:** for \(k = 2t \) or \(k = 2t - 1 \), there are graphs with girth \(k + 2 \) and \(\Omega(n^{1+\frac{1}{t}}) \) edges

 - Implies any \(k \)-multiplicative spanner has \(\Omega(n^{1+\frac{1}{t}}) \) edges. *Why?*
 - If we delete any edge \(\{u, v\} \) in \(G \), the distance from \(u \) to \(v \) increases from 1 to \(k + 1 \)
 - Only \(k \)-spanner of \(G \) is \(G \) itself
 - Girth conjecture true for \(k = 1, 2, 3, 5 \)

Where are We?

• Can find a \((2t-1)\)-spanner with \(O(n^{1+\frac{1}{t}}) \) edges

• Can approximate \(d_G(u, v) \) for any \(u, v \) up to a multiplicative factor \(2t-1 \)

• Don’t store \(G \), just store \(H \). Only \(O(|E'|) = O(n^{1+\frac{1}{t}}) \) instead of \(O(n^2) \) edges

• Time to compute \(d_H(u, v) \), given \(H \), is \(O(|E'|) = O(n^{1+\frac{1}{t}}) \)
 - Faster than the \(O(n^2) \) time to query a dense graph \(G \)
 - Greedy algorithm to find \(H \) is slow, but can find \(H \) in \(O(|E| + n) \) time

Outline

• Motivating Questions

• Spanners
 - Multiplicative
 - Additive
Additive Spanners

- A \((k, b)\)-spanner of \(G\) is a subgraph \(H = (V, E')\) such that for all \(u, v\) in \(V\)
 \[d_G(u, v) \leq d_H(u, v) \leq k \cdot d_G(u, v) + b\]

- If \(k = 1\), then \(d_G(u, v) \leq d_H(u, v) \leq d_G(u, v) + b\) for all \(u, v\) in \(V\)
 - \(H = (V, E')\) is a \(b\)-additive spanner
 - How small can \(|E'|\) be?

- For multiplicative spanners, sufficient to show for all edges \({u, v}\) in \(G\),
 \[d_G(u, v) \leq k\]

- Insufficient for additive spanners to show \(d_H(u, v) \leq b + 1\) for all edges \({u, v}\) in \(G\)

- Would you believe: there is a 2-additive spanner with \(O(n^{3/2} \log n)\) edges?

Additive Spanner Algorithm

- The algorithm has two parts

 (1) Include in \(H\) all edges incident to vertices of degree at most \(\sqrt{n}\)
 - at most \(n^{3/2}\) edges (why?)

 (2) Randomly sample a set \(S\) of \(2\sqrt{n} \cdot \ln n\) vertices and include a BFS tree rooted at each vertex in \(S\), in \(H\)
 - at most \(2n^{3/2} \ln n\) edges (why?)

 \(H\) has \(O(n^{3/2} \log n)\) edges. Why is it a 2-additive spanner?

Path Hitting

- Consider a shortest path \(P\) from \(u\) to \(v\) in \(G\)
 - If all nodes on \(P\) have degree \(\leq \sqrt{n}\), then all edges in \(P\) are included in the spanner \(H\)

- Otherwise consider the first edge \({c, d}\) in \(P\), but not in \(H\)
 - \(c\) and \(d\) have degree at least \(\sqrt{n}\)

- Since we randomly sample a set \(S\) of size \(2\sqrt{n} \cdot \ln n\), with high probability, we sample a neighbor \(e\) of \(c\) (probability we don’t sample a neighbor of \(c\) at most \((1 - \frac{\sqrt{n}}{n})^{2\sqrt{n} \ln n} \leq \frac{1}{n^2})

Path Hitting

- For each of our sampled vertices in \(S\), we grew a BFS tree
 - Let \(T_e\) be the BFS tree rooted at \(e\) included in \(H\)

- Let \(Q\) be the path from \(e\) to \(v\) in \(T_e\)

- Consider the path \(P'\) in \(H\) which follows \(P\) from \(u\) to \(c\), then traverses edge \({c, e}\), then follows \(Q\) to \(v\). How long is \(P'\)?
Analysis

Consider the path P' in H which follows P from u to c, then traverses edge $\{c, e\}$, then follows Q to v. How long is P'?

Q is a shortest path from e to v in G!

$\text{d}_{Q}(e, v) \leq 1 + \text{d}_{P}(c, v)$

$\text{d}_{P'}(u, v) = \text{d}_{P}(u, c) + \text{d}_{Q}(e, v) \leq \text{d}_{P}(u, c) + \text{d}_{P}(c, v) + 2 = \text{d}_{P}(u, v) + 2$

Additive Spanner Notes

- Can find a 2-additive spanner with $O(n^{3/2} \log n)$ edges
 - Can get $O(n^{3/2})$ edges
- Can find a 4-additive spanner with $n^{7/5} \text{poly}(\log n)$ edges
- Can find a 6-additive spanner with $O(n^{4/3})$ edges
- For any constant $C > 0$, any C-additive spanner requires $\Omega(n^{4/3})$ edges