Topic 1: Introduction and Median Finding

David Woodruff

Course homepage:
http://www.cs.cmu.edu/~dwoodruf/teaching/15451-spr20/cis.html

Grading and Course Policies

3 Written Homeworks 30% (10% each)
Class Participation 10%
1 Exam (in class) 20%
Research project 40%

Schedule of Lectures and Exams

• Saturdays 7-10pm ET
• On zoom
• First four weeks the lectures will cover theoretical background
• Remaining weeks the lectures will be project-oriented
• Exam: second half of lecture on 4/11

Homework

• HW1: out 3/21, due 3/28 at 11:59pm China time
• HW2: out 3/28, due at 4/4 at 11:59pm China time
• HW3: out 4/4, due 4/11 at 11:59pm China time
• For the homework, you will be asked to design and/or analyze algorithms. Your solution should be written up formally – that is, you should prove your claims.
• You can work by yourself or with at most one other person - you must list your collaborator (if you have one) and write the solutions yourself. You’re allowed to read additional textbooks or online notes but must cite them.
Schedule of Topics

• First class: median-finding and concrete upper and lower bounds
• Second class: concrete lower bounds and hashing
• Third class: streaming and fingerprinting
• Fourth class: graph compression and Exam

Goals of the Course

• Design and analyze algorithms!

• Algorithms: dynamic programming, divide-and-conquer, hashing and data structures, randomization, network flows, linear programming

• Analysis: recurrences, probabilistic analysis, amortized analysis, potential functions

• Dual to Algorithms: complexity theory and lower bounds

• New Models: online algorithms, machine learning, data streams

 Guarantees on Algorithms

• Want provable guarantees on the running time of algorithms

• Why?

 • Composability: if we know an algorithm runs in time at most T on any input, don’t have to worry what kinds of inputs we run it on

 • Scaling: how does the time grow as the input size grows?

 • Designing better algorithms: what are the most time-consuming steps?

Example: Median Finding

• In the median-finding problem, we have an array a_1, a_2, \ldots, a_n and want the index i for which there are exactly $\lfloor n/2 \rfloor$ numbers larger than a_i.

• How can we find the median?

 • Check each item to see if it is the median: $\Theta(n^2)$ time

 • Sort items with MergeSort (deterministic) or QuickSort (randomized): $\Theta(n \log n)$ time

 • Can we find it faster? What about finding the k-th smallest number?
QuickSelect Algorithm to Find the k-th Smallest Number

- Assume $a_1, a_2, ..., a_n$ are all distinct for simplicity
- Choose a random element a_i in the list – call this the “pivot”
- Compare each a_j to a_i
 - Let LESS = \{ a_j such that $a_j < a_i$ \}
 - Let GREATER = \{ a_j such that $a_j > a_i$ \}
- If $k \leq |\text{LESS}|$, find the k-th smallest element in LESS
- If $k = |\text{LESS}| + 1$, output the pivot a_i
- Else find the $(k-|\text{LESS}|-1)$-th smallest item in GREATER
- Similar to Randomized QuickSort, but *only recurse on one side!*

Bounding the Running Time

- **Theorem:** the expected number of comparisons for QuickSelect is at most $4n$
 - Let $T(n) = \max T(n, k)$, where $T(n, k)$ is the expected number of comparisons to find the k-th smallest item in an array of length n, maximized over all arrays
 - $T(n)$ is a non-decreasing function of n
 - Let’s show $T(n) < 4n$ by induction
 - **Base case:** $T(1) = 0 < 4$
 - **Inductive hypothesis:** $T(n-1) < 4(n-1)$

What About Deterministic Algorithms?

- Can we get an algorithm which does not use randomness and always performs $O(n)$ comparisons?
 - **Idea:** suppose we could deterministically find a pivot which partitions the input into two pieces LESS and GREATER each of size $\left\lfloor \frac{n}{2} \right\rfloor$
 - **How to do that?**
 - Find the median and then partition around that
 - Um... finding the median is the original problem we want to solve....
Deterministically Finding a Pivot

- **Idea:** deterministically find a pivot with $O(n)$ comparisons to partition the input into two pieces LESS and GREATER each of size at least $3n/10 - 1$

- **DeterministicSelect:**
 1. Group the array into $n/5$ groups of size 5 and find the median of each group
 2. Recursively, find the median of medians. Call this p
 3. Use p as a pivot to split into subarrays LESS and GREATER
 4. Recurse on the appropriate piece

- **Theorem:** DeterministicSelect makes $O(n)$ comparisons to find the k-th smallest item in an array of size n

Running Time of DeterministicSelect

- **Claim:** $|LESS| \geq 3n/10 - 1$ and $|GREATER| \geq 3n/10 - 1$

- **Example 1:** If $n = 15$, we have three groups of 5:
 - $\{1, 2, 3, 10, 11\}$, $\{4, 5, 6, 12, 13\}$, $\{7, 8, 9, 14, 15\}$
 - medians: $3, 6, 9$
 - median of medians p: 6

 There are $g = n/5$ groups, and at least $\left\lceil \frac{g}{2} \right\rceil$ of them have at least 3 elements at most p. The number of elements less than or equal to p is at least

 $$3 \left\lceil \frac{n}{2} \right\rceil \geq \frac{3n}{10}$$

 Also at least $3n/10$ elements greater than or equal to p

- **DeterministicSelect:**
 1. Group the array into $n/5$ groups of size 5 and find the median of each group
 2. Recursively, find the median of medians. Call this p
 3. Use p as a pivot to split into subarrays LESS and GREATER
 4. Recurse on the appropriate piece

 Step 1 takes $O(n)$ time since it takes $O(1)$ time to find the median of 5 elements
 Step 2 takes $T(n/5)$ time
 Step 3 takes $O(n)$ time

 Claim: $|LESS| \geq 3n/10 - 1$ and $|GREATER| \geq 3n/10 - 1$

 Running Time of DeterministicSelect

 - **Claim:** $T(n) \leq cn + T\left(\frac{n}{10}\right) + T\left(\frac{7n}{10}\right)$, for a constant $c > 0$
Running Time of DeterministicSelect

- \(T(n) \leq cn + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) \)

- Time is \(cn \left(1 + \left(\frac{n}{10}\right) + \left(\frac{n}{10}\right)^2 + \ldots\right) \leq 10cn \)

- Recurrence works because \(n/5 + 7n/10 < n \)

- For constants \(c \) and \(a_1, a_2, \ldots, a_r \) with \(a_1 + a_2 + \cdots + a_r < 1 \), the recurrence
 \(T(n) \leq T(a_1 n) + T(a_2 n) + \cdots + T(a_r n) + cn \) solves to \(T(n) = O(n) \)

 - If instead \(a_1 + a_2 + \cdots + a_r = 1 \), the recurrence solves to \(T(n) = O(n \log n) \)

 - If we use median of 3 in DeterministicSelect instead of median of 5, what happens?