1. What is an algorithm with the smallest number of comparisons you can find for outputting both the maximum and the minimum of \(n \) numbers?

2. What is an algorithm with the smallest number of comparisons you can find for outputting the \(n^{1/3} \)-ranked item in a list of \(n \) unordered distinct items in the comparison-based model? You can use \(O(\cdot) \)-notation.

3. In class we saw how to find a \(k \)-multiplicative spanner with \(O(n^{1+1/t}) \) edges on any unweighted undirected graph \(G \) on \(n \) vertices, where \(k = 2^t - 1 \). Suppose now each edge \(e \) of \(G \) has a weight \(w_e \), and the distance between two nodes \(u \) and \(v \) in \(G \) along a path \(P \) is the sum of weights of the edges along \(P \). Then \(d_G(u, v) \) is the shortest path distance between \(u \) and \(v \). Show how to find a subgraph \(H \) of \(G \) which is a \(k \)-multiplicative spanner with \(O(n^{1+1/t}) \) edges.