
Strong Coresets for k-Median and Subspace Approximation: Goodbye
Dimension

Christian Sohler
Department of Computer Science

TU Dortmund
Dortmund, Germany

Email: christian.sohler@tu-dortmund.de

David P. Woodruff
Department of Computer Science

Carnegie Mellon University
Pittsburgh, USA

dwoodruf@cs.cmu.edu

Abstract—We obtain the first strong coresets for the k-
median and subspace approximation problems with sum of
distances objective function, on n points in d dimensions,
with a number of weighted points that is independent of
both n and d; namely, our coresets have size poly(k/ε). A
strong coreset (1 + ε)-approximates the cost function for
all possible sets of centers simultaneously. We also give
efficient nnz(A)+(n+d)poly(k/ε)+exp(poly(k/ε)) time
algorithms for computing these coresets.

We obtain the result by introducing a new dimension-
ality reduction technique for coresets that significantly
generalizes an earlier result of Feldman, Sohler and
Schmidt [13] for squared Euclidean distances to sums of
p-th powers of Euclidean distances for constant p ≥ 1.

Keywords-clustering, dimensionality reduction, subspace
approximation

I. INTRODUCTION

Coresets are a technique for data size reduction,
which have been developed for a large family of prob-
lems in machine learning and statistics. Given a set P
of n points p1, . . . , pn each in Rd, loosely speaking a
coreset is a low-memory data structure D which can be
used in place of P to approximate the cost of any query
Q on P . For example, in the Frobenius norm subspace
approximation problem, one may be interested in com-
puting an approximation to

∑n
i=1 ‖pi− piPV ‖22, where

PV is the orthogonal projection onto a k-dimensional
subspace V which corresponds to the query Q. As
another important example, in the k-means problem one
may be given a query Q = {q1, . . . , qk} of k points, and
one may be interested in computing an approximation
to
∑n
i=1 ‖pi − n(pi, Q)‖22, where n(pi, Q) denotes the

closest point in Q to point pi. In these examples, the
notion of approximation is a (1 + ε)-relative error ap-
proximation, that is, a value (1± ε)

∑n
i=1 ‖pi−piPV ‖22

for the subspace approximation problem, and a value
(1±ε)

∑n
i=1 ‖pi−n(pi, Q)‖22 for the k-means problem.

Often in these problems one seeks a strong coreset,
which means that with high probability, the data struc-

ture D should work simultaneously for all queries Q.
That is, one may use random choices in the construction
of D, but after forming D it should be the case that
D can be used to provide a (1 + ε)-relative error
approximation for every possible query simultaneously.
An advantage of such a coreset is that for any objective
function for which a table of (1 + ε)-approximate
values to all possible queries can be used to provide a
(1+O(ε))-approximation to the objective function, one
can throw away the original set of points and instead
just retain the data structure D. For example, note that
the above coreset for subspace approximation contains
enough information to approximately solve principal
component analysis (PCA), since if one finds the query
k-dimensional subspace with minimum approximate
value, this provides a k-dimensional subspace providing
a (1 + ε)-approximation to the space spanned by the
top k principal components. However, the above coreset
for subspace approximation can also be used to solve
the k-means problem, since the latter can be rewritten
as a constrained low rank approximation problem [2],
[7]. Thus, given that a strong coreset approximately
preserves the cost of any query, it can be used in place of
the original point set in any application which depends
only on the answers to the queries. Note that if the
coreset were instead to only approximately preserve the
cost of any fixed query with high probability, then it
might not be possible to solve the problem using the
coreset since one may need to adaptively query the
data structure, and outputs to successive queries may
no longer be correct since the inputs depend on outputs
to previous queries.

Another advantage of a coreset is if it small, then it
leads to considerable efficiency gains. For example, in
distributed settings, each machine which has a subset
of input points can compress its input points to a
coreset, and then communicate the coreset to a central
coordinator. The central coordinator, who often has

more resources available, can then combine the coresets
and use them to optimize the desired function. As
communication is a bottleneck, a small coreset gives rise
to more efficient protocols. Similarly, when processing
a data stream, a common technique is the merge-and-
reduce framework, in which one partitions the stream
into chunks, computes a coreset on each chunk, and
merges the coresets in a binary tree like structure as one
processes successive chunks of the data stream. A small
coreset thus leads to small space streaming algorithms.

A long line of work has focused on developing strong
coresets for both the subspace approximation problem
[9], [10], [23], [12], [11], [24], [13] and the k-means
problem [1], [18], [15], [16], [17], [4], [19], [11], [14],
[13]. Prior to the work of [13], all previous coresets
stored a weighted set of points, and the query just
consisted of evaluating the same objective function on
these weighted points. Moreover all such works required
storing a number of points that was at least d, and an
important question was to obtain coresets with a number
of points independent of d. In [13], by taking the top
O(k/ε) principal components of the input points, ar-
ranged as an n×d matrix A, it was shown how to obtain
the first strong coresets for the subspace approximation
problem with a number of points independent of d and
n, namely, the authors achieved a coreset size of O(k/ε)
points. An important idea to obtain this result was that
the cost of projecting the points on the first O(k/ε)
principal components is approximately present for every
candidate subspace and therefore can be dealt with as
an additive constant. The authors also extend this result
to the k-means problem by proving that the projection
on the first O(k/ε2) principal components together
with an appropriate constant will provide a coreset
(of linear size but smaller dimension) for the k-means
problem. Combining this with existing constructions
they achieved a coreset size of poly(k/ε) points.

The O(k/ε2) bound for the k-means problem was im-
proved in [7] by using the fact that the k-means problem
can be viewed as a constrained subspace approximation
problem. In [7] the authors also find such a coreset in
nnz(A) time, where nnz(A) is the number of non-zero
entries of A.

A major open question was if one could obtain strong
coresets independent of d (and n) for k-median and the
subspace approximation problem with sum of distances∑n
i=1 ‖pi − piPV ‖2, as opposed to the sum of squares

of distances. Unlike the k-means and sum of squares
objective for subspace approximation, the k-median and
sum of distances measures are much less amenable
to algebraic manipulation; indeed there is no singular

value decomposition (SVD) which was the driving force
behind previous results. Notably, this version of the
subspace problem is NP-hard [6], unlike minimizing the
sum of squares.

A. Our Contributions

Our main result is the construction of the first strong
coresets independent of the dimension d and number n
of input points for the k-median problem, as well as
for the subspace approximation problem with sum of
distances

∑n
i=1 ‖pi − piPV ‖2. Our coresets have size

poly(k/ε) for both problems, and consist of a weighted
set of points with a small twist. We add a single extra
dimension to each of our points! We explain this more
below.

Our main new technique is a dimensionality reduction
that generalizes a result of [13] for sum of squared
distances to p-th powers of distances for any constant
p ≥ 1. We also show how to build a strong core-
set for subspace approximation with p-th powers of
Euclidean distance cost measure, for constant p ≥ 1.
Finally, we show how to find such coresets in time
Õ(nnz(A)+(n+d)poly(k/ε))+exp(poly(k/ε)) for the
k-median problem and for the subspace approximation
problem with p ∈ [1, 2), and in nnz(A)poly(k/ε) +
exp(poly(k/ε)) time for the subspace approximation
problem with p > 2.

1) Dimensionality Reduction: We start by outlining
our dimensionality reduction technique for the sum of
distances objective function. A natural approach to try
is to find a low dimensional subspace S of Rd so that
for any rank-k subspace V , ‖A − APV ‖1,2 ≈ ‖B −
BPV ‖1,2 + ‖A−B‖1,2, where for a matrix C, ‖C‖1,2
denotes the sum of Euclidean norms of rows of C, and
here B is the projection of the rows of A (our initial
points) onto the subspace S. Indeed, this is exactly the
approach taken by [13], [7] for the subspace approxima-
tion problem with sum of squares of distances, where
among other constructions, S can be chosen to be the
span of the top O(k/ε) singular vectors of A. It can be
shown that the sum of squared distances to any object
that is contained in a k-dimensional subspace is roughly
the projection cost onto the optimal O(k/ε)-dimensional
subspace plus the cost of the projected points. One way
to think of this approach is to split the cost into a
structured part (the low dimensional point set) and a
“pseudorandom” part (the projection cost), where the
pseudorandom part essentially acts like a random point
set, as its cost will occur for any k-dimensional object,
while the structured part is the one that can differ. What
significantly helps in the case of squared distances is
the Pythagorean theorem, which often allows to easily

2

express distances as the sum of “independent” distances.
For example, if our object is contained in the optimal
O(k/ε)-dimensional subspace, then the cost of each
point is the squared distance of the projection plus the
squared distance from the projected point to the object.

Unfortunately, we do not have such a simple formula
for exponents other than 2. For the sum of distances
one can show that an analogous approach does not
work. Consider a set of n points in Rd where each
coordinate of each point is drawn independently from
a Gaussian distribution with expectation 0 and variance
1/d, i.e., the expected squared length of each point is 1.
We will assume that d is large, which implies that the
squared length is sharply concentrated and the expected
length of the vector is close to 1. Assume now that
similarly to the case of squared distances we project
our input point set to a low dimensional subspace that
minimizes the sum of squared projection lengths and we
would like to use the projected point set together with
the sum of projection lengths as a coreset (where the
sum is used as an additive constant in the costs). We
will now argue that this cannot work for sufficiently
large n and d. Assume that the dimension of the low
dimensional subspace is `, a value independent of n
and d. In order to understand the properties of the
optimal subspace, we first consider an arbitrary fixed
subspace of dimension `. If we now consider a random
vector x = (x1, . . . , xd) where each xi is chosen
from the Gaussian distribution as described above, we
notice that since the Gaussian distribution is invariant
under rotation, that the expected squared length of
the projected point is equal to the expected squared
length of the random vector x′ = (x1, . . . , x`, 0, . . . , 0),
which is `/d and the expected squared length of the
projection is 1−`/d. For sufficiently large d this length
approaches 0 and the expected squared length of the
projection approaches 1. Thus, for a fixed subspace, the
expected sum of squared distances is n and for n→∞
we get that the sum of squared projection lengths is
sharply concentrated. Using a union bound over a net
of all subspaces we conclude that every `-dimensional
subspace will have cost roughly n.

Now consider the cost of an arbitrary point q at
distance 1 from the origin. The expected distance of
an input point to this point is roughly

√
2 and so the

sum of distances will approach
√

2n as n → ∞. Now
recall that the length of the projection of the input points
goes to 0. Thus their distance to q will be roughly 1.
Thus, the sum of distances of the projected points is
roughly n plus the projection cost, which is roughly n,
and thus will give an estimate of 2n, which is not a

(1 + ε)-approximation. Hence, we cannot simply work
with a single additive weight as in the case of squared
distances.

Instead, we proceed as follows. We first describe the
existence of a coreset and then how to find it efficiently.
We start with a k-dimensional subspace S of Rd for
which ‖A(I − PS)‖1,2 = minrank-k subspaces S ‖A(I −
PS)‖1,2 = opt, where PS denotes the orthogonal projec-
tion onto S. We iteratively augment S by k-dimensional
subspaces until the cost no longer drops by ε2opt. That
is, in the first step, we try to find a 2k-dimensional
subspace S′ containing S for which ‖A(I−PS′)‖1,2 ≤
opt− ε2opt. We then replace S with S′. In the second
step, we try to find a 3k-dimensional subspace S′

containing S for which ‖A(I−PS′)‖1,2 ≤ opt′−ε2opt,
where ‖A(I − PS)‖1,2 = opt′ ≤ opt − ε2opt, etc. This
process repeats for at most ε−2 steps, at which point we
have an at most k/ε2-dimensional subspace S for which
for any k-dimensional subspace V , ‖A(I−PV ∪S)‖1,2 ≤
(1+ε)‖A(I−PS)‖1,2. The latter property can be shown
to imply that ‖APV ∪S − APS‖1,2 ≤ ε · opt, that is,
the projections of the n points onto S are close to the
projections of the n points onto V ∪ S, for any V . See
Lemma 6.

Next, since we can “move” each of the rows of
APV ∪S to the corresponding rows in APS by paying a
total sum of distances cost of ε · opt, it follows by the
triangle inequality that for any set C of points that is
contained in a k-dimensional subspace V , the sum of
distances from the rows of APS to their corresponding
closest points in C is within ε · opt of the sum of dis-
tances from the rows of APV ∪S to their corresponding
closest points in C.

Now we want to replace our original points (the rows
of A) with their projections onto S, namely, replace
A with APS . Although this step by itself does not
reduce the number n of points, each of the n points
after projection lives in a much lower k/ε2 dimensional
subspace (rather than the initial space which has di-
mension d), and we will then be able to apply coreset
construction techniques which depend on this much
smaller dimension. For any set C of points contained
in a k-dimensional subspace V , by the Pythagorean
theorem we can write the distance of a row p of A to C
as
√
a2 + b2, where a is the distance of p to V ∪S, and

b is the distance of the projection of p onto V ∪S, to C.
We instead try to approximate

√
a2 + b2 by

√
f2 + g2,

where f is the distance of p to S and g is the distance of
the projection of p onto S, to C. We observe in Lemma
4 that |

√
a2 + b2 −

√
f2 + g2| ≤ |a− f |+ |b− g|, and

we know that the average values (over the n points) of

3

|a − f | and |b − g| are small by Lemma 6 combined
with the triangle inequality.

Note that the value f , which is different for each of
the n rows of A, does not depend on V or C, whereas
the value g is exactly the distance of the row of APS to
C. If we were simply to define B = APS , then ‖B −
BC‖1,2, where the i-th row of BC contains the closest
point (of the closure) of C to the corresponding row of
B, would fail to capture the distances of the n rows of
A to S. Further, unlike for the ‖ · ‖2,2 norm, we cannot
add a single number ‖A(I−PS)‖2,2 to account for this,
which is a technique used in [13], [7]; this is precisely
the difficulty of the ‖ · ‖1,2 norm that we must deal
with. Instead, a crucial idea is to append one additional
coordinate to each row of B, where in the i-th row we
append ‖Ai∗(I − PS)‖2, where PS is the orthogonal
projection onto S. Then, to compute the distance to a k-
dimensional subspace V , instead of approximating ‖A−
AC‖1,2 by ‖B−BC‖1,2, where the i-th rows of AC and
BC contain the closest points (of the closure) of C to the
corresponding row of A and the first d coordinates of the
corresponding row of B, respectively, we approximate
‖A−APV ‖1,2 by ‖B−BCIT ‖1,2, where BCIT is the
matrix which appends an all 0 column to BC . Thus,
the norm of the i-th row of B − BCIT is

√
f2 + g2,

where f is the distance of Ai to S, captured by the
(d + 1)-st coordinate of B, and g is the distance of
AiPS to C. Thus, we have “encoded” the distances of
the rows of A to APS in the coreset this way. Note that
this appended additional coordinate cannot be taken out
of each row and combined into a single number, as in
[13], [7], because for each row, its square is added to
the squared distance of a point to its projection onto S,
and then a square root is taken, so it occurs “under the
square root” in the distance computations.

Optimizing the Running Time. We next implement
the steps above in Õ(nnz(A)) + (n + d)poly(k/ε) +
exp(poly(k/ε)) time. We first show how to reformulate
our algorithm in Section III-C so that it suffices to run
any algorithm for finding an ik-dimensional subspace S
of Rd which a (1 + ε2/2)-approximate ik-dimensional
subspace with respect to the ‖ ·‖1,2 norm, for a random
integer i in {1, 2, . . . , 10/ε2}. It is known how to find
such a subspace in nnz(A) + (n + d)poly(k/ε) +
exp(poly(k/ε)) time [6]. This is done in our DIMEN-
SIONALITYREDUCTIONII algorithm.

After finding such a subspace S, which is an ik-
dimensional subspace of Rd, we need the distance of
each row of A to S. To do so, we set up n regression
problems, the i-th being: minx ‖Ai − xV T ‖2, where
PS = V V T and V T is an orthonormal basis for

S, which can be computed in d · poly(k/ε) time.
Using input sparsity time algorithms for regression [5],
[21], [22], if we choose a CountSketch matrix S with
poly(k/ε) rows, then with probability at least 9/10,
‖AiS − xV TS‖2 = (1 ± ε)‖Ai − xV T ‖2 for all
x. We can compute AS in nnz(A) time and V TS
in d · poly(k/ε) time, at which point we can solve
the n regression problems in n · poly(k/ε) time, so
nnz(A) + (n + d)poly(k/ε) total time. We repeat the
entire procedure O(log n) times, and take the median
of our O(log n) estimates, for each i ∈ {1, 2, . . . , n},
giving us O(nnz(A) log n+ (n+ d)poly(k/ε) log n) =
Õ(nnz(A) + (n + d)poly(k/ε)) total time to obtain
(1 + ε)-approximations of the distances for each row of
A to S. Here, for a function f , Õ(f) = f ·poly(log f).
We note that such approximations, when used as the
last coordinates of the rows of matrix B, only change
‖B − BIPIT ‖1,2 by a (1 + ε)-factor, where P is any
rank-k orthogonal projection matrix. See Lemma 11.

We also need to project each of the rows of A
onto S, which would take more than nnz(A) time;
indeed, just writing down such projections could take
Ω(nd) time. Fortunately, for our coreset constructions
we describe next, we never need to explicitly perform
this projection. We first show how to avoid this for the
subspace approximation problem.

2) Coreset Construction for Subspace Approxima-
tion: We first explain the construction for p = 1, then
how to optimize the running time. At this point we have
a rank-poly(k/ε) matrix B (or more precisely a rank-
(ik + 1) matrix B for some i = O(1/ε2)) for which
for all k-dimensional orthogonal projection matrices P ,∣∣‖A− AP‖1,2 − ‖B − BIPIT ‖1,2∣∣ ≤ ε‖A− AP‖1,2.
Unfortunately the dimension of B is still n×d. Viewing
the rows as points in Rd, we would like to reduce
the number n of points. We first observe that since
`2 embeds linearly into `1 with distortion at most
(1 + ε) via multiplication by a Gaussian matrix G
(this is a special case Dvoretsky’s theorem), we have
‖BG−BIPITG‖1,1 = (1±ε)‖B−BIPIT ‖1,2 for all
k-dimensional orthogonal projection matrices P . Here
‖ · ‖1,1 denotes the entrywise 1-norm of a matrix.
The intuition here is that G maps Rd to Rd′ for a
d′ > d for which the image of Rd in Rd′ consists
of only flat vectors, so the `1-norm of every vector
coincides with its `2-norm, up to (1 ± ε)-factor, after
scaling by the square root of the dimension. Here,
d′ = O(d(log(1/ε))/ε2), but it does not matter for our
purposes since we will never actually instantiate G.

Next, we appeal to the Lewis weight sampling re-
sult of [8], which says that one can find a sam-

4

pling and rescaling matrix T (a matrix which just
samples rows and rescales them by positive weights)
with O(r log(r)/ε2) rows for which for any rank-r
space C, ‖TCx‖1 = (1 ± ε)‖Cx‖1 simultaneously
for all x. Noting that for every P , each column of
BG−BIPITG is in the column span of B, which is
a poly(k/ε)-dimensional subspace, we have ‖TBG −
TBIPITG‖1,1 = (1 ± ε)‖BG − BIPITG‖1,1 for
all rank-k orthogonal projection matrices P , where T
has poly(k/ε) rows. Finally, noting that the rows of
TBG − TBIPITG are still in the row span of G,
we can apply Dvoretsky’s theorem one more time to
conclude that ‖TBG−TBIPITG‖1,1 = (1±ε)‖TB−
TBIPIT ‖1,2 for all rank-k orthogonal projection ma-
trices P . Stringing the inequalities together, we obtain
‖TB − TBIPIT ‖1,2 = (1 ± Θ(ε))‖B − BIPIT ‖1,2
for all rank-k orthogonal projection matrices. Note that
we never need to multiply by G. Rather G is a tool in
the analysis which shows the sampling procedure of [8]
works for sums of Euclidean norms.

Consequently, our strong coreset consists of the rows
of TB, so poly(k/ε) points in Rd, i.e., the rows of T .
These are the analogue of the k/ε right singular vectors
of [13], [7] used to obtain a strong coreset for the ‖·‖2,2
error measure. We discuss a similar argument for p-th
powers below.

Optimizing the Running Time. We now obtain
Õ(nnz(A) + (n+ d)poly(k/ε)) + exp(poly(k/ε)) run-
ning time. In this running time we can find the
poly(k/ε)-dimensional subspace S for which B =
[APS , v], where PS is the orthogonal projection onto the
poly(k/ε)-dimensional subspace found by our DIMEN-
SIONALITYREDUCTIONII algorithm, and vi = (1 ±
ε)‖Ai∗ −A′i∗‖2, where A′ = APS for i = 1, 2, . . . , n.

As above, let V ∈ Rd×poly(k/ε) have columns which
form an orthonormal basis for the column span of
S. To find the sampling and rescaling matrix T , the
procedure in Theorem 1.1 of [8] takes time equal to
that of O(log log n) invocations of constant factor `2-
leverage score approximations of matrices of the form
WAV , where W is a non-negative diagonal matrix.
We use the input sparsity time approximate leverage
score samplers of [5], [21], [22], which compute SWA
for a CountSketch matrix S with poly(k/ε) rows. This
procedure computes SWA in O(nnz(A)) time, then
computes SWAV in d · poly(k/ε) time, then a QR
factorization in poly(k/ε) time, then (WAV)(R−1G)
for a Gaussian matrix G with O(log n) columns. The
row norms of WAV (R−1G) can be computed in
nnz(A) log n + d · poly(k/ε) log n time using that G
has only O(log n) columns. Since the procedure reduces

to O(log log n) invocations of this, in total this gives
Õ(nnz(A) + (n+ d)poly(k/ε)) time to find the matrix
T . Finally, T selects poly(k/ε) rows of A, and for each
we compute its projection onto S, taking d · poly(k/ε)
time in total. We also output the corresponding entry of
v. We thus obtain our coreset TB in Õ(nnz(A) + (n+
d)poly(k/ε)) total time.

Our coresets for subspace approximation with sum
of p-th powers error measure follows via similar
techniques. The running time is slightly worse for
p > 2 due to the fact that we can only imple-
ment our DIMENSIONALITYREDUCTIONII algorithm in
Õ(nnz(A) + (n+ d)poly(k/ε)) + exp(poly(k/ε)) time
if p ∈ [1, 2). For p > 2 we use a slower algorithm
running in O(nnz(A)poly(k/ε) + exp(poly(k/ε)) due
to [10] (they state their algorithm as O(ndpoly(k/ε) +
exp(poly(k/ε))) but if A is sparse, the nd · poly(k/ε)
can be replaced with an nnz(A) · poly(k/ε) given that
their algorithm just requires computing projections).

3) Coreset Construction for k-Median: To obtain a
coreset for k-median, we first apply our dimensionality
reduction to get a matrix B such that for every set of k-
centers C we have

∣∣‖A−AC‖1,2−‖B−BCIT ‖1,2∣∣ ≤
ε · ‖A−AC‖1,2, where AC and BC denote the matrices
that contain in the i-th row the closest center of C to
the i-th row of A and B, respectively. We note that B
can be viewed as a point set in O(k/ε2) dimensions.
We can then use an arbitrary coreset construction for
this low dimensional point set where we append k
arbitrary dimensions to the space. Thus, the effect of the
construction will be to replace the d in a coreset con-
struction by O(k/ε2). We claim that a coreset for this
enlarged space is also a coreset for the d-dimensional
space. The reason is that any set of k-centers in the d-
dimensional space is either in the span of B (in which
case the coreset guarantee holds) or there is an orthog-
onal transformation that does not change B and maps
the remaining centers to the k added dimensions. This
implies that the coreset property holds for the full space.
Thus, the cost of the coreset approximates the cost of
B upto a factor of 1± ε. Combining this with the error
bound of

∣∣‖A−AC‖1,2−‖B−BC‖1,2∣∣ ≤ ε·‖A−AC‖1,2
gives that the resulting set will be a 1 + O(ε) coreset
and the result follows by rescaling ε by a constant.
Notice that the guarantee the coreset provides is slightly
stronger than what we need as our centers will always
have the last (special) coordinate equal to 0.

Plugging in the k-median coresets of [11] or [3],
which are both of size O(dk log k

ε2) (the first one has
negative weights, which may be undesirable in some
situations), we obtain a coreset of size O(k

2 log k
ε4).

5

In order to get a running time of O(nnz(A) + (n +
d)poly(k/ε) + exp(poly(k/ε))) we approximate the
matrix B of projections with a factored low rank matrix
of approximate projections, see Lemma 13.

4) Outline: In Section II, we give preliminaries.
In Section III, we provide our main dimensionality
reduction technique. In Section IV, we obtain our
coresets for subspace approximation. Finally, in Section
V, we obtain our coreset for k-median. Due to space
constraints, we defer a number of proofs to the full
version of the paper.

II. PRELIMINARIES

We use A ∈ Rn×d to denote a point set of n points
in d dimensions (the rows of A). Ai∗ denotes the i-
th row of A and A∗j denotes the j-th column. For a
matrix A ∈ Rn×d we use ‖A‖p,2 = (

∑n
i=1 ‖Ai∗‖

p
2)1/p.

In particular, we have ‖A‖22,2 = ‖A‖2F , where ‖A‖F
denotes the Frobenius norm of A. For a subspace S we
use costp(A,S) to denote the sum of p-th powers of
the l2-distances from the rows of A to S. For a non-
empty set of points C ⊆ Rd we define dist(p, C) =
infq∈C ‖p− q‖2. The closure of a set C ⊆ Rd is {x ∈
Rd : B(x, r) ∩ C 6= ∅∀r > 0}, where B(x, r) is a ball
with center x and radius r. We start with a few claims
that will be useful to deal with norms and powers of
norms. These are elementary properties about numbers
and the proofs can be found in the full version of the
paper.

Claim 1: Let a, b, c ≥ 0 such that a2 = b2 − c2. For
p ≥ 2 we have ap ≤ bp − cp.

Claim 2: Let a, b, c ≥ 0 such that a2 = b2 − c2,
ap ≥ εbp and bp ≥ cp. Let 1 ≤ p ≤ 2 and 1 ≥ ε > 0.
Then ap ≤ 10 · ε

p−2
p · (bp − cp).

Claim 3: Let a, b, x ≥ 0. Let 1 ≥ p > 0. Then
∣∣(a+

x)p − (b+ x)p
∣∣ ≤ ∣∣ap − bp∣∣.

Lemma 4: Let a, b, f, g ≥ 0. Then we have
|
√
a2 + b2 −

√
f2 + g2| ≤ |a− f |+ |b− g|.

Claim 5: Let a, b ≥ 0 and 1 ≥ ε > 0 and p ≥ 1.
Then (a+ b)p ≤ (1 + ε)ap + (1 + 2p

ε)pbp.

III. DIMENSIONALITY REDUCTION

Our first result is a dimensionality reduction lemma
for clustering problems where the cluster centers are
contained in a low-dimensional subspace such as, for
example, k-median clustering.

Algorithm 1 Dimensionality Reduction Algorithm
1: procedure DIMREDUCTION(A,n, d, k, ε, p)
2: Compute a (1 + ε)-approximation S to the k-

subspace problem with cost function sum of p-th
powers of l2-distances

3: Let opt denote the cost of an optimal solution
to the above problem

4: Let k∗ = k
5: while there exists a subspace S′ ⊇ S of rank
k∗ + k such that costp(A,S′) ≤ costp(A,S) −
εmax{ 2

p ,1}opt/80 do
6: k∗ = k∗ + k
7: S = S′

8: end while
9: Let A′ be the projection of A on S

10: Let B ∈ Rn×(d+1) be a matrix whose entry at
position 1 ≤ i, j ≤ d equals the entry of A′ and
whose entries in the last column are ‖Ai∗ −A′i∗‖2

11: return B
12: end procedure

In the next lemma we show for the output space S of
dimension ` of the above algorithm and any subspace S∗

of dimension `+k that contains S that the corresponding
projections of the rows of A onto S and S∗ have small
distance on average.

Lemma 6: Let 1 ≥ ε > 0 and p ≥ 1. Let A be the
input matrix of algorithm DIMREDUCTION. Let opt be
the cost of an optimal solution to the linear k-subspace
problem with respect to the sum of p-th powers of
l2-distances. Let S ⊆ Rd be the subspace in the last
iteration of the while loop and let ` be its dimension.
Let S∗ ⊆ Rd be an arbitrary subspace of dimension k+`
that contains S. Let P and P ∗ be orthogonal projection
matrices onto S and S∗. Then we have

‖AP −AP ∗‖pp,2 ≤ ε · opt.

Proof: We know from the algorithm that ‖A −
AP‖pp,2 − ‖A − AP ∗‖

p
p,2 ≤ εmax{ 2

p ,1}opt/80. Further-
more, we have ‖A−AP‖pp,2 ≤ (1 + ε) · opt by the way
S is computed. We first consider the case when p = 2.
Since Ai∗−Ai∗P ∗ is orthogonal to Ai∗P ∗−Ai∗P we
know that in this case

‖Ai∗P −Ai∗P ∗‖22 = ‖Ai∗ −Ai∗P‖22 − ‖Ai∗ −Ai∗P ∗‖22

6

Applying the above equality row wise we obtain

‖AP −AP ∗‖22,2 =

n∑
i=1

‖Ai∗P −Ai∗P ∗‖22

=

n∑
i=1

(‖Ai∗ −Ai∗P‖22 − ‖Ai∗ −Ai∗P ∗‖22)

≤ ε · opt.

Next we consider p > 2. We define a = ‖Ai∗P −
Ai∗P

∗‖2, b = ‖Ai∗−Ai∗P‖2 and c = ‖Ai∗−Ai∗P ∗‖2.
We observe that a2 = b2 − c2 and so by Claim 1 we
obtain that

‖Ai∗P−Ai∗P ∗‖p2 ≤ ‖Ai∗−Ai∗P‖
p
2−‖Ai∗−Ai∗P ∗‖

p
2.

Again we can apply the inequality row-wise and obtain

‖AP −AP ∗‖pp,2 =

n∑
i=1

‖Ai∗P −Ai∗P ∗‖p2

≤
n∑
i=1

(‖Ai∗ −Ai∗P‖p2 − ‖Ai∗ −Ai∗P ∗‖
p
2)

≤ ε · opt.

Now we consider the final case of 1 ≤ p < 2. Here
we will make a case distinction. The first case is that
‖Ai∗P ∗ − Ai∗P‖p2 ≤ ε

4‖Ai∗ − Ai∗P‖
p
2. Let J be the

set of indices for which this inequality is satisfied. It
follows by summing up over all rows in J that∑
i∈J
‖Ai∗P ∗ −Ai∗P‖p2 ≤ ε

4
‖A−AP‖pp,2

≤ ε

4
(1 + ε)opt ≤ ε

2
opt.

For the remaining case we will use Claim 2 with a =
‖Ai∗P −Ai∗P ∗‖2, b = ‖Ai∗−Ai∗P‖2 and c = ‖Ai∗−
Ai∗P

∗‖2. We observe that a2 = b2 − c2 and that ap ≥
ε
4b
p since we are in the second case. Furthermore, bp ≥

cp by the choices of P and P ∗. Therefore, Claim 2
implies

‖Ai∗P −Ai∗P ∗‖p2 ≤ 10(ε/4)
p−2
p
(
‖Ai∗ −Ai∗P‖p2

−‖Ai∗ −Ai∗P ∗‖p2
)
.

Applying the above inequality row wise we obtain∑
i/∈J

‖Ai∗P ∗ −Ai∗P‖p2 ≤
ε

2
opt.

Summing up the two cases yields the lemma.
Remark 7: We observe that in the proof we only used

two properties of S. The first one is that ‖A−AP‖pp,2 ≤
(1 + ε) · opt and the second one is that ‖A−AP‖pp,2−
‖A−AP ∗‖pp,2 ≤ ε

max{ 2
p ,1}opt/80. Thus, any subspace

that satisfies these two properties will also satisfy the

above lemma. We will use this later on when we discuss
optimizing the running time of our algorithm.

A. Dimensionality reduction for sums of Euclidean dis-
tances

We first consider the case of minimizing sum of
distances. This case is technically less tedious and
illustrates the underlying ideas.

Theorem 8: Let 1 ≥ ε > 0. Let A ⊆ Rn×d be
a matrix. Let B ∈ Rn×(d+1) be the rank O(k/ε2)
matrix output by algorithm DIMREDUCTION with input
parameters A,n, d, k, p = 1 and ε/2. Let C ⊆ Rd be
an arbitrary non-empty set that is contained in a k-
dimensional subspace. Let A′ and B′ be the matrices
whose rows contain the closest points in the (closure
of) C w.r.t. the rows of A, BI , respectively. Then we
have∣∣‖A−A′‖1,2 − ‖B −B′IT ‖1,2∣∣ ≤ ε‖A−A′‖1,2,
where I ∈ R(d+1)×d has diagonal entries 1 and all other
entries are 0.

Proof: Let S be the subspace as in Lemma 6 and
let S∗ be the span of S and C (if S∗ has less than
` + k dimensions, we can add arbitrary dimensions).
Let P, P ∗ be the corresponding orthogonal projection
matrices. We know from Lemma 6 that

‖AP −AP ∗‖1,2 ≤
ε

2
· opt

where opt is the cost of an optimal solution to the k-
subspace problem with sum of distances. By orthogo-
nality, we can write

‖Ai∗−A′i∗‖2 =
√
‖Ai∗ −Ai∗P ∗‖22 + ‖Ai∗P ∗ −A′i∗‖22.

Furthermore, we have

‖Bi∗−B′i∗IT ‖2 =
√
‖Ai∗P −B′i∗‖22 + ‖Ai∗ −Ai∗P‖22.

Using Lemma 4 with a = ‖Ai∗ − Ai∗P
∗‖2, b =

‖Ai∗P ∗ − A′i∗‖2, e = ‖Ai∗ − Ai∗P‖2 and f =
‖Ai∗P −B′i∗‖2 we obtain that

|‖Ai∗ −A′i∗‖2 − ‖Bi∗ −B′i∗IT ‖2|
≤

∣∣‖Ai∗ −Ai∗P ∗‖2 − ‖Ai∗ −Ai∗P‖2∣∣
+
∣∣‖Ai∗P ∗ −A′i∗‖2 − ‖Ai∗P −B′i∗‖2∣∣.

Note that ‖Ai∗P ∗ − A′i∗‖2 ≤ ‖Ai∗P ∗ − B′i∗‖2 and
‖Ai∗P −B′i∗‖2 ≤ ‖Ai∗P −A′i∗‖2; indeed this follows
since A′i∗ and B′i∗ are the closest points in the closure
of C to Ai∗P

∗ and Ai∗P , respectively. So we can
upper bound

∣∣‖Ai∗P ∗ − A′i∗‖2 − ‖Ai∗P − B′i∗‖2∣∣ by
the maximum of

∣∣‖Ai∗P ∗ − B′i∗‖2 − ‖Ai∗P − B′i∗‖2∣∣
7

and
∣∣‖Ai∗P ∗ − A′i∗‖2 − ‖Ai∗P − A′i∗‖2∣∣. Either way,

using the triangle inequality we obtain

|‖Ai∗−A′i∗‖2−‖Bi∗−B′i∗IT ‖2| ≤ 2·‖Ai∗P−Ai∗P ∗‖2.

Summing up over all rows and using ‖AP−AP ∗‖1,2 ≤
ε
2 · opt together with the fact that the sum of distances
to C is at least opt we obtain the result.

B. Dimensionality reduction for powers of Euclidean
distances

In order to obtain a dimensionality reduction for
powers of Euclidean distances we follow the same
approach as before. The main challenge is that some
calculations become more difficult as the triangle in-
equality is replaced by a relaxed triangle inequality. The
proof can be found in the full version of the paper.

Theorem 9: Let p ≥ 1 be a constant. Let A ⊆ Rn×d
be a matrix and 1 ≥ ε ≥ 0. Let B ∈ Rn×(d+1)

be the rank O(k/εO(p)) matrix output by algorithm
DIMENSIONALITYREDUCTION with input parameters
A,n, d, k, p ≥ 1 and εp+3

3(84p)2p . Let C ⊆ Rd be an arbi-
trary non-empty set that is contained in a k-dimensional
subspace. Let A′ and B′ be the matrices whose rows
contain the closest points in the (closure of) C w.r.t. the
rows of A, BI , respectively. Then we have

∣∣‖A−A′‖pp,2 − ‖B −B′IT ‖pp,2∣∣ ≤ ε‖A−A′‖pp,2,
where I ∈ R(d+1)×d has diagonal entries 1 and all other
entries are 0.

C. Optimizing the Running Time

We first give an alternative algorithm to our DIM-
REDUCTION algorithm. This algorithm can be imple-
mented using a black box call to an algorithm for finding
low dimensional subspaces approximately minimizing
the ‖ · ‖pp,2 norm.

Algorithm 2 Dimensionality Reduction Algorithm II
1: procedure DIMREDUCTIONII(A,n, d, k, ε, p)
2: τ = Θ(εmax(2/p,1)).
3: Choose a random i∗ ∈ {1, 2, . . . , 10/τ}
4: Let S be an i∗k-dimensional subspace E with

‖A(I − PE)‖pp,2
≤ (1 + Θ(εmax(2/p,1))) min

rank-ikE′
‖A(I − PE′)‖pp,2.

Such a space S can be found by Theorem 1 of
[6] with the k there equal to our i∗k, and the ε
there can be set to our τ , if p ∈ [1, 2). The success
probability is at least 9/10. For p > 2, one can use
the algorithm in [10].

5: For i = 1, . . . , n, output a (1±ε)-approximation
to ‖Ai(I −PS)‖2. These n values can be found by
solving n regression problems each with probability
1−1/n2, using the regression algorithm of [5]. See
Lemma 11 below.

6: end procedure

Lemma 10: With probability at least 4/5, DIMRE-
DUCTIONII finds a poly(k/ε)-dimensional subspace S
for which for all k-dimensional spaces W , ‖A(I −
PS)‖pp,2 − ‖A(I − PS∪W)‖pp,2 ≤ Θ(εmax(2/p,1))opt.
Further, for p ∈ [1, 2), finding such an S can be done in
O(nnz(A) + (n+ d)poly(k/ε) + exp(poly(k/ε)) time,
and for p > 2, can be found in O(nnz(A)poly(k/ε) +
exp(poly(k/ε)) time.

Proof: We condition on the event that the algo-
rithm of [6] or of [10] for computing a (1 + τ)-
approximation S succeeds, which holds with probability
at least 9/10. The algorithm requires time O(nnz(A) +
(n + d)poly(k/ε) + exp(poly(k/ε)) for p ∈ [1, 2) and
O(nnz(A)poly(k/ε) + exp(poly(k/ε))) for p > 2. For
each j ∈ {1, 2, . . . , 10/τ+1}, let V j be the optimal jk-
dimensional subspace, and consider a telescoping sum:

opt− ‖A(I − PV 10/τ+1)‖pp,2
= ‖A(I − PV 1)‖pp,2 − ‖A(I − PV 10/τ+1)‖pp,2

=

10/τ∑
i=1

(‖A(I − PV i)‖pp,2 − ‖A(I − PV i+1)‖pp,2)

≥ 0.

There are 10/τ summands in the telescoping sum, and
they sum up to at most opt, so a 9/10-fraction of them
must be at most τ · opt. Let i∗ be the index sampled by
the algorithm. Then with probability at least 9/10, we
have ‖A(I −PV i∗)‖pp,2−‖A(I −PV i+1)‖pp,2 ≤ τ · opt,
and let us condition on this event.

Now, Ṽ i
∗ ∪W is an (i∗+1)k-dimensional subspace,

8

and so we have ‖A(I − PṼ i∗∪W)‖pp,2 ≥ ‖A(I −
PV i∗+1)‖pp,2. Also, by the guarantee of Ṽ i

∗
, we have

‖A(I − PṼ i∗)‖pp,2 ≤ (1 + τ)‖A(I − PV i∗)‖pp,2 ≤
(1 + τ)(‖A(I − PV i∗)‖pp,2 + τ · opt), where opt is the
cost of the best k-dimensional subspace. Consequently,
for any k-dimensional subspace W ,

‖A(I − PṼ i∗)‖pp,2 − ‖A(I − PṼ i∗∪W)‖pp,2
≤ (1 + τ)(‖A(I − PV i∗)‖pp,2 + τ · opt)
−‖A(I − PV i∗+1)‖pp,2

≤ O(τ)opt,

where we used that ‖A(I − PV i∗)‖1,2 − ‖A(I −
PV i∗+1)‖1,2 ≤ τopt for our choice of i∗, and also that
‖A(I − PV i∗)‖pp,2 ≤ opt.

Note that the overall success probability is at least
1− 1/10− 1/10 = 4/5, and the claimed running time
follows from [6] and [10].
We defer the proof of the next three lemmas to the full
version of the paper.

Lemma 11: With probability at least 1 − 1/n,
DIMENSIONALITYREDUCTIONII outputs a (1 ± ε)-
approximation to ‖Ai(I − PS)‖2 simultaneously for
every i ∈ [n]. Further, this can be done in
O(nnz(A) log n+ (n+ d)poly(k/ε) log n) time.

We also show the following lemma stating that the
approximations returned by Lemma 11 suffice.

Lemma 12: Let B ∈ Rn×(d+1) be a matrix for which
for any rank k orthogonal projection matrix P ∈ Rd×d
we have∣∣‖A−AP‖pp,2 − ‖B −BIPIT ‖pp,2∣∣ ≤ ε‖A−AP‖pp,2.
Suppose we replace the last column v of B with a vector
v′ for which vi = (1 ± ε)v′i for all i ∈ [n]. Then the
above inequality continues to hold with ε replaced with
O(ε).

We cannot afford to compute the projection of A
onto S, as this could take longer than Õ(nnz(A)) time.
Fortunately, we show in Section IV that we do not need
to compute this. For the k-median problem we need the
following additional lemma to approximate matrix B.

Lemma 13: Let S be the subspace guaranteed by
Lemma 10. Given S we can compute in time
O(nnz(A) log n + (n + d)poly(k/ε)) a matrix B̃ of
rank O(k/ε2) such that with probability at least 9/10
we have for every set C contained in a k-dimensional
subspace

|‖B −B′I‖pp,2 − ‖B̃ − B̃′I‖
p
p,2| ≤ ε‖A−A′‖

p
p,2.

Here B′ and B̃′ are matrices that contain in the i-th row
in the first d coordinates the point from (the closure

of) C that is closest to the i-th row of BI and B̃I
respectively, and have the d+ 1-coordinate 0.

IV. CORESETS FOR SUBSPACE APPROXIMATION

Plugging in the guarantee of Lemma 10 into Remark
7 shows how to obtain an n × (d + 1) matrix B for
which

|‖A−AP‖pp,2 − ‖B −BIPIT ‖
p
p,2| ≤ ε‖A−AP‖

p
p,2,

for all rank-k orthogonal projection matrices P . Lemma
10 shows how to efficiently find the S for which B =
APS , and Lemma 11 shows how to efficiently find an
approximate vector v of (d + 1)-st coordinates of B.
Further, after scaling ε by a constant factor, Lemma 12
shows that the above inequality continues to hold with
the approximate vector v of (d+1)-st coordinates of B
furnished by Lemma 11.

The main issue is that we cannot afford to compute
the projection of A onto S to form the first d columns
of B. Although the matrix B is n × (d + 1), it has
rank O(k/ε2). Thinking of its rows as n points in
Rd+1, we would like to find a weighted subset TB
of these n points so that ‖TB − TBIPIT ‖1,2 = (1±
ε)‖B−BIPIT ‖1,2 for all rank-k orthogonal projection
matrices P . Here, T is called a sampling and rescaling
matrix, and our goal will be to find such a T for which
each row of T contains a single non-zero non-negative
entry, corresponding to the sampled row of B, rescaled
by a non-negative value.

Recall that B has a particular form, namely, B =
[APS , v], where PS is the orthogonal projection onto the
poly(k/ε)-dimensional subspace found by our DIMEN-
SIONALITYREDUCTION or DIMENSIONALITYREDUC-
TIONII algorithm, and vi = (1±ε)‖Ai∗−A′i∗‖2, where
A′ = APS for i = 1, 2, . . . , n. Since S is poly(k/ε)-
dimensional, we can write PS = UUT , where U is a
d× poly(k/ε) matrix with orthonormal columns.

Before showing how to find a sampling and rescaling
matrix T , we first need the following theorem due to
Dvoretsky.

Fact 14: (Special case of Dvoretsky’s Theorem, see
Variations and Extensions on p.30 of [20]) Let t ≥
Cd log(1/ε)/ε2 for a sufficiently large constant C > 0,
and suppose G is a d × t matrix of i.i.d. N(0, 1/t)
random variables, where N(0, 1/t2) denotes a normal
random variable with mean 0 and variance 1/t. Then
with probability at least 99/100, simultaneously for
all x ∈ Rd, ‖x‖2 = (1 ± ε)‖xG‖1. In particular,
there exists such a matrix G for which this property
holds for all x ∈ Rd. For p > 1, there is a d × t′

matrix G of i.i.d. normal random variables, suitably

9

scaled, with t′ = (d/ε)O(p) for which for all x ∈ Rd,
‖x‖2 = (1± ε)‖xG‖p.

Lemma 15: (Sampling Lemma) Given S, in n ·
poly(k(log n)/ε) time it is possible to find a sampling
and rescaling matrix T with O(rank(S) log(rank(S)/ε2)
rows for which for all rank-k orthogonal projection
matrices P ,

‖TB − TBIPIT ‖1,2 = (1± ε)‖B −BIPIT ‖1,2.

Instantiating S with the output of our DIMEN-
SIONALITYREDUCTION algorithm, T would have
O(k log(k/ε)/ε4) rows. Instantiating S with the output
of our DIMENSIONALITYREDUCTIONII algorithm, T
would have poly(k/ε) rows.

For constant p > 1, it is possible to find a sampling
and rescaling matrix T with poly(rank(S)/ε) rows for
which for all rank-k orthogonal projection matrices P ,

‖TB − TBIPIT ‖pp,2 = (1± ε)‖B −BIPIT ‖pp,2.

Instantiating S with the output of our DIMENSIONAL-
ITYREDUCTION or DIMENSIONALITYREDUCTIONII
algorithms, T would have poly(k/ε) rows.

Proof: Let t be as in Fact 14, and fix the d × t
matrix G of that fact. Applying the guarantee of Fact
14 to each row of B −BIPIT ,

‖B −BIPIT ‖pp,2 = (1±Θ(ε))‖BG−BIPITG‖pp,p,

where for a matrix C, ‖C‖pp,p denotes the sum of p-th
powers of absolute values of its entries.

We next apply Theorem 1 of [8], which shows how,
given a matrix C with f columns, to find a sampling
and rescaling matrix T with O(fε−2 log f) rows for
p = 1, and (fε−1)O(p) rows for p > 1, for which
with high probability, simultaneously for all x ∈ Rt,
‖TCx‖p = (1 ± ε)‖Cx‖p. Further, the time to find
T is O(log log n) calls to computing 2-approximate
statistical leverage scores of matrices of the form WC,
where W is a non-negative diagonal matrix. Using the
algorithm of Theorem 29 of [5], T can be computed in
Õ(nnz(C)) time.

Instantiating the matrix C of the previous paragraph
with the n × O(k/ε2) matrix AU , where recall PS =
UUT and U has k/ε2 columns if S is the output of our
DIMENSIONALITYREDUCTION algorithm, it follows
that ‖TAUx‖1 = (1± ε)‖AUx‖1 for all x ∈ RO(k/ε2),
and T has O(k log(k/ε)/ε4) rows. If S is the output
of our DIMENSIONALITYREDUCTIONII algorithm or
p > 1, then T has poly(k/ε) rows. The overall time
is n · poly(k(log n)/ε).

Consequently,

‖TBG− TBIPITG‖pp,p = (1± ε)‖BG−BIPITG‖pp,p,

since each column of BG is in the column span of AU .
Again applying the guarantee of Fact 14 to each row of
TBG− TBIPITG, we have

‖TBG− TBIPITG‖pp,p = (1± ε)‖TB − TBIPIT ‖pp,2.

Combining the above inequalities, we have

‖B −BIPIT ‖pp,2 = (1±O(ε))‖TB − TBIPIT ‖pp,2,

and the guarantee of the lemma follows by rescaling ε
by a constant factor.

Theorem 16: (Strong Coreset for Subspace Approx-
imation) For p = 1, it is possible to find a matrix
TB ∈ RO(k(log k)/ε4)×d+1 for which for all rank-k
orthogonal projection matrices P ,

|‖A−AP‖p,2 − ‖TB − TBIPIT ‖p,2| ≤ ε‖A−AP‖p,2.

Further, in Õ(nnz(A) + (n + d)poly(k/ε) +
exp(poly(k/ε)) time, it is possible to find a matrix
TB ∈ Rpoly(k/ε)×d+1 satisfying the above condition
for p ∈ [1, 2) for all rank-k orthogonal projection
matrices P .

Finally, in nnz(A)poly(k/ε) + exp(poly(k/ε)) time,
it is possible to find a matrix TB ∈ Rpoly(k/ε)×d+1

satisfying the above condition for p > 2 for all rank-k
orthogonal projection matrices P .

Proof: We start by proving the structural part of
the theorem, and then address the running time.

Let B be the output of DIMENSIONALITYREDUC-
TION, which has the property mentioned at the be-
ginning of this section. As described above, we can
assume DIMENSIONALITYREDUCTION produces B =
[APS , v], where PS and v are described above. Further,
we can assume APS is given in factored form (AU)UT

for PS = UUT .
By Lemma 15, we can find a sampling and rescaling

matrix T for which for all rank-k orthogonal projection
matrices P , ‖TB − TBIPIT ‖pp,2 = (1 ± ε)‖B −
BIPIT ‖pp,2, so

|‖A−AP‖pp,2 − ‖TB − TBIPIT ‖
p
p,2|

= |‖A−AP‖pp,2 − ‖B −BIPIT ‖
p
p,2| ± ε‖B −BIPIT ‖

p
p,2

≤ ε‖A−AP‖pp,2 + ε‖B −BIPIT ‖pp,2
≤ ε‖A−AP‖pp,2 + ε(‖A−AP‖pp,2 + ε‖A−AP‖pp,2)

≤ (2ε+ ε2)‖A−AP‖pp,2,

and rescaling ε by a constant factor gives the desired
guarantee. We note that By Lemma 15, T will have
O(k(log k)/ε4) rows for p = 1 if we run DIMENSION-
ALITYREDUCTION.

For an efficient algorithm, we instead run DI-
MENSIONALITYREDUCTIONII in Õ(nnz(A) + (n +

10

d)poly(k/ε) + exp(poly(k/ε)) time for p ∈ [1, 2),
and in nnz(A)poly(k/ε) + exp(poly(k/ε)) time for
p > 2, to obtain S, which is poly(k/ε)-dimensional,
and in n · poly(k/ε) time we can compute U , where
PS = UUT . The correctness is given by Lemma
10. We also compute the (d + 1)-st column of B in
Õ(nnz(A)+(n+d)poly(k/ε)) time. By Lemma 15, in
n · poly(k(log n)/ε) time we can find a sampling and
rescaling matrix T . Finally, T selects poly(k/ε) rows
of A, and for each we compute its projection onto S,
taking d · poly(k/ε) time in total. We also output the
corresponding entry of v. We thus obtain our coreset
TB in the stated running times.

V. CORESETS FOR k-MEDIAN

We can combine our dimensionality reduction with
coreset computations. We first compute the matrix B
using our dimensionality reduction. Recall that this
matrix has rank O(k/ε2). We can therefore compute
an orthogonal basis for the span of B and add k
arbitrary dimensions. Then we apply an arbitrary coreset
construction in the resulting space. We will only be
interested in the space spanned by the first d dimensions
of B (recall that the last dimension is only needed to
“adjust” the distances). Since the Euclidean distance
does not change under orthogonal transformations we
can rotate any set of centers to our subspace without
changing the distances. Therefore, the coreset will be a
coreset for the whole input space.

Theorem 17: Let 1 ≥ ε > 0. Given a matrix
A ∈ Rn×d. We can compute in time Õ(nnz(A) + (n+
d)poly(k/ε)+exp(poly(k/ε))) a matrix B ∈ Rs×(d+1),
s = O(k

2 log k
ε4), and non-negative weights w1, . . . , ws

such that with probability at least 3/5, simultaneously
for every set C of k centers we have∣∣‖A−AC‖1,2 − s∑

i=1

wi‖Si∗ − SCi∗‖2
∣∣ ≤ ε‖A−AC‖1,2

Here AC contains for each row of A the nearest center
of C, and SC contains for each row of S the nearest
center of C with respect to SIT .

Proof: We use Lemma 10 (plugging it into Remark
7) to compute with probability at least 9/10 in time
O(nnz(A) + (n + d)poly(k/ε) + exp(poly(k/ε)) the
subspace S of rank O(k/ε2) using parameter ε/10. We
then apply Lemma 13 to obtain with probability at least
4/5 matrix B̃ of rank O(k/ε2) from matrix B defined
by S in time O(nnz(A) log n + (n + d)poly(k/ε)).
Next we apply the coreset construction of [11] or [3] to
obtain in time Õ(npoly(k log(1/δ)/ε)) (recall that the
dimension of our space is poly(k/ε)) a coreset S∗ of

size O(k2 log k/ε4), where we set the error probability
δ = 1/10. Finally we compute for each coreset point
the corresponding coordinates in the original space in
O(d · poly(k/ε)) time to obtain the matrix S.

We get the following guarantees. Theorem 8 implies∣∣‖‖A−A′‖1,2 − ‖B −B′I‖1,2‖∣∣ ≤ ε‖A−A′‖1,2.
By Lemma 13 we know that

|‖B −B′I‖1,2 − ‖B̃ − (B̃I)C‖1,2| ≤ ε‖A−A′‖1,2

For the coreset S we know that

∣∣‖B̃−(B̃I)C‖1,2−
|S|∑
i=1

wi·‖Si∗−SCi∗‖2
∣∣ ≤ ε‖B̃−(B̃I)C‖1,2.

Combining these statements gives

∣∣‖‖A−A′‖1,2 − |S|∑
i=1

wi · ‖Si∗ − SCi∗‖2
∣∣

≤ 2ε‖A−A′‖1,2 + ε‖B̃ − (B̃I)C‖1,2
≤ 2ε‖A−A′‖1,2 + ε((1 + 2ε)ε‖A−A′‖1,2)

≤ 5ε‖A−A′‖1,2

Rescaling ε gives the result.

ACKNOWLEDGMENT

Christian Sohler acknowledges the support of the
German Science Foundation (DFG) Collaborative Re-
search Center SFB 876 ”Providing Information by
Resource-Constrained Analysis”, project A2. David
Woodruff acknowledges support in part by an Office
of Naval Research (ONR) grant N00014-18-1-2562.

REFERENCES

[1] Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Ap-
proximate clustering via core-sets. In Proceedings on
34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montréal, Québec, Canada, pages
250–257, 2002.

[2] Christos Boutsidis, Anastasios Zouzias, Michael W. Ma-
honey, and Petros Drineas. Randomized dimensionality
reduction for k-means clustering. IEEE Trans. Informa-
tion Theory, 61(2):1045–1062, 2015.

[3] Vladimir Braverman, Dan Feldman, and Harry Lang.
New frameworks for offline and streaming coreset con-
structions. CoRR, abs/1612.00889, 2016.

[4] Ke Chen. On coresets for k-median and k-means cluster-
ing in metric and euclidean spaces and their applications.
SIAM J. Comput., 39(3):923–947, 2009.

11

[5] Kenneth L. Clarkson and David P. Woodruff. Low
rank approximation and regression in input sparsity time.
In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
81–90, 2013.

[6] Kenneth L. Clarkson and David P. Woodruff. Input
sparsity and hardness for robust subspace approximation.
In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-
20 October, 2015, pages 310–329, 2015.

[7] Michael B. Cohen, Sam Elder, Cameron Musco, Christo-
pher Musco, and Madalina Persu. Dimensionality re-
duction for k-means clustering and low rank approxima-
tion. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 163–172,
2015.

[8] Michael B. Cohen and Richard Peng. Lp row sampling
by lewis weights. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
183–192, 2015.

[9] Amit Deshpande, Luis Rademacher, Santosh Vempala,
and Grant Wang. Matrix approximation and projective
clustering via volume sampling. Theory of Computing,
2(12):225–247, 2006.

[10] Amit Deshpande and Kasturi R. Varadarajan. Sampling-
based dimension reduction for subspace approximation.
In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June
11-13, 2007, pages 641–650, 2007.

[11] Dan Feldman and Michael Langberg. A unified frame-
work for approximating and clustering data. In Pro-
ceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 569–578, 2011.

[12] Dan Feldman, Morteza Monemizadeh, Christian Sohler,
and David P. Woodruff. Coresets and sketches for
high dimensional subspace approximation problems. In
Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010, pages 630–649, 2010.

[13] Dan Feldman, Melanie Schmidt, and Christian Sohler.
Turning big data into tiny data: Constant-size coresets for
k-means, PCA and projective clustering. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013, pages 1434–1453,
2013.

[14] Dan Feldman and Leonard J. Schulman. Data reduc-
tion for weighted and outlier-resistant clustering. In
Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 1343–1354, 2012.

[15] Gereon Frahling and Christian Sohler. Coresets in
dynamic geometric data streams. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 209–217,
2005.

[16] Gereon Frahling and Christian Sohler. A fast k-means
implementation using coresets. In Proceedings of the
22nd ACM Symposium on Computational Geometry,
Sedona, Arizona, USA, June 5-7, 2006, pages 135–143,
2006.

[17] Sariel Har-Peled and Akash Kushal. Smaller coresets for
k-median and k-means clustering. Discrete & Computa-
tional Geometry, 37(1):3–19, 2007.

[18] Sariel Har-Peled and Soham Mazumdar. On coresets for
k-means and k-median clustering. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 291–300,
2004.

[19] Michael Langberg and Leonard J. Schulman. Universal
epsilon-approximators for integrals. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pages 598–607, 2010.

[20] Jirı Matoušek. Lecture notes on metric embeddings.
Technical report, 2013.

[21] Xiangrui Meng and Michael W. Mahoney. Low-
distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. In Sym-
posium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 91–100, 2013.

[22] Jelani Nelson and Huy L. Nguyen. OSNAP: faster
numerical linear algebra algorithms via sparser subspace
embeddings. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pages 117–126, 2013.

[23] Nariankadu D. Shyamalkumar and Kasturi R. Varadara-
jan. Efficient subspace approximation algorithms. In
Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2007, New Or-
leans, Louisiana, USA, January 7-9, 2007, pages 532–
540, 2007.

[24] Kasturi R. Varadarajan and Xin Xiao. On the sensitivity
of shape fitting problems. In IARCS Annual Conference
on Foundations of Software Technology and Theoreti-
cal Computer Science, FSTTCS 2012, December 15-17,
2012, Hyderabad, India, pages 486–497, 2012.

12

