
Tight Bounds for Graph Problems in Insertion
Streams∗

Xiaoming Sun1 and David P. Woodruff2

1 Institute of Computing Technology, CAS
sunxiaoming@ict.ac.cn

2 IBM Almaden
dpwoodru@us.ibm.com

Abstract
Despite the large amount of work on solving graph problems in the data stream model, there do not exist
tight space bounds for almost any of them, even in a stream with only edge insertions. For example, for
testing connectivity, the upper bound is O(n logn) bits, while the lower bound is only Ω(n) bits. We rem-
edy this situation by providing the first tight Ω(n logn) space lower bounds for randomized algorithms
which succeed with constant probability in a stream of edge insertions for a number of graph problems.
Our lower bounds apply to testing bipartiteness, connectivity, cycle-freeness, whether a graph is Eulerian,
planarity, H-minor freeness, finding a minimum spanning tree of a connected graph, and testing if the
diameter of a sparse graph is constant. We also give the first Ω(nk logn) space lower bounds for determ-
inistic algorithms for k-edge connectivity and k-vertex connectivity; these are optimal in light of known
deterministic upper bounds (for k-vertex connectivity we also need to allow edge duplications, which
known upper bounds allow). Finally, we give an Ω(n log2 n) lower bound for randomized algorithms
approximating the minimum cut up to a constant factor with constant probability in a graph with integer
weights between 1 and n, presented as a stream of insertions and deletions to its edges. This lower bound
also holds for cut sparsifiers, and gives the first separation of maintaining a sparsifier in the data stream
model versus the offline model.

1998 ACM Subject Classification F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY

Keywords and phrases communication complexity, data streams, graphs, space complexity

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In a data stream one sees a sequence of elements a1, . . . , am one by one and one would like to evaluate
certain functions of the stream. There are example data streams which come from internet search
logs, network traffic, sensor networks, and scientific data streams. The elements ai may be numbers,
points, edges in a graph, etc. Due to the sheer size of the sequence, very stringent requirements are
imposed on a data stream algorithm. For instance, it is often assumed that the algorithm can only
make one, or a small number, of passes over the stream. Moreover, the algorithm is assumed to have
very limited memory, which in particular makes storing the stream in its entirety infeasible. We refer
the reader to the surveys [4, 29] for a more thorough introdution to this area.

In this paper we focus on the case when the elements ai are edges of an underlying graph G.
That is, we insert edges into the graph one at a time, and would like to compute a function of

∗ Xiaoming Sun was supported in part by the National Natural Science Foundation of China Grant 61170062, 61222202,
61433014 and the China National Program for support of Top-notch Young Professionals.

© Xiaoming Sun and David P. Woodruff;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Tight Bounds for Graph Problems in Insertion Streams

G. Graphs arise is many applications to model relationships bewteen basic entities, such as links
between webpages or network flows between destinations. These graphs are often massive and
running classical algorithms on such graphs has proven quite challenging. This has motivated the
recent work on processing graphs in the data stream model. In the case when only edges are inserted
into the stream (as opposed to also being deleted), we have algorithms for a number of problems,
including testing connectivity, finding minimum spanning trees, computing cut and spectral sparsifiers,
counting subgraphs, finding matchings, and many other problems. We refer the reader to the survey
by McGregor [28] for an overview of these results.

It is known for many graph problems that there is a space lower bound of Ω(n) [16, 17]. The
graph streaming model is therefore sometimes identified with the “semi-streaming” model, which
allows the streaming algorithm to use n · polylog(n) bits of space. Note that this is still a substantial
improvement over the naïve algorithm of storing the graph, which may take Ω(n2) bits of space.
Despite the fact that we have n · polylog(n) space upper bounds and Ω(n) space lower bounds for a
number of graph problems in the data stream model, we are not aware of a single natural problem
for which we have asymptotically tight bounds. Could it be that simple upper bounds, such as the
O(n logn) bit upper bound for testing if a graph is connected by maintaining a spanning forest in the
stream, can be improved using more clever hashing techniques to represent the edges, perhaps chosen
adaptively as the stream is presented? Such a scheme could potentially allow us to avoid spending
O(logn) bits to remember each edge in the spanning forest.

Dowling and Wilson [14] show that the deterministic communication complexity of connectivity
is Ω(n logn) bits, see also [31] for a discussion. Via standard connections to data streams (see Section
1.3 below), this implies any deterministic streaming algorithm requires Ω(n logn) bits. However, to
the best of our knowledge, there was no lower bound for randomized 1-way protocols known, prior to
this work, stronger than Ω(n) bits.

Graph problems in a data stream should be contrasted to a number of other areas in streaming for
which tight asymptotic space bounds are known, such as estimating frequency moments [2, 7, 18, 22,
23, 27], empirical entropy [8, 11, 20, 21, 22], numerical linear algebra [10], and compressed sensing
[3, 30]. The goal of this paper is to remedy this situation.

1.1 Our Results

Throughout this paper we will restrict our attention to 1-pass algorithms and focus on their space
complexity. Our focus is on the model in which edges are only allowed to be inserted into the graph,
i.e., the “insertion model”, rather than also being allowed to be deleted, which is referred to as the
“turnstile model”. Since we prove lower bounds, this only makes our bounds stronger. We will,
however, show how to use our techniques to obtain stronger lower bounds in the turnstile model for
approximating the minimum cut of a graph.

Our results are summarized in Table 1. We provide the first tight space lower bounds for a
number of graph problems in a stream of edge insertions. In particular, for randomized algorithms
which succeed with constant probability, we show an Ω(n logn) lower bound for testing if a graph
is connected, testing if a graph with O(n) edges has diameter at most 5 or diameter∞, testing if a
graph is Eulerian, testing if a graph is bipartite, testing if a graph is cycle-free, finding a minimum
spanning tree in a graph that is promised to be connected, testing if a graph is planar, and testing
whether a graph contains a fixed graph H as a minor. No lower bounds better than Ω(n) were known
for any of these problems. Many of the upper bounds follow simply by storing all edges in the graph
and aborting if the number of edges is too large; see Table 1 for details.

Next, we turn to k-edge connectivity, which is equivalent to testing if the minimum cut of the
graph is at least k. There is a deterministic space upper bound of O(kn logn) bits [13, 28]. We show
a matching Ω(kn logn) bit lower bound for deterministic algorithms. For randomized algorithms our

Xiaoming Sun and David P. Woodruff 3

Problem Lower Bound Upper Bound Comments
Connectivity Ω(n log n) O(n log n) [28] –

Diameter in sparse graphs Ω(n log n) O(n log n) UB stores graph
Eulerian-testing Ω(n log n) O(n log n) UB: spanning forest, degrees

Bipartiteness Ω(n log n) O(n log n) [28] –
Cycle-freeness Ω(n log n) O(n log n) UB stores graph

MST in connected graphs Ω(n log n) O(n log n) [28] –
Planarity Ω(n log n) O(n log n) UB stores graph

H-Minor Free Ω(n log n) O(n log n) UB stores graph
k-Edge Connectivity Ω(kn log n) O(kn log n) [13] Deterministic bounds

k-Vertex Connectivity w/edge duplications Ω(kn log n) O(kn log n) [15] Deterministic bounds
O(1)-Approximate Minimum Cut Ω(n log2 n) O(n log4 n) [1, 24] Bounds in the turnstile model

Table 1 Summary of our results. All lower bounds are new and given by this work. In the comments
we say “UB stores graph” for those problems for which there is no graph with more than C · n edges, for a
constant C > 0, satisfying the property. For such problems it suffices to store all edges in the graph and abort
if more than C · n edges are inserted, yielding an O(n log n) bit upper bound. All upper bounds, with the
exception of Eulerian-testing, either come from previous work or “UB stores graph” applies to the problem. For
Eulerian-testing the upper bound maintains a spanning forest and the parities of node degrees, using that a graph
is Eulerian iff it is connected and all node degrees are even.

space bound is a weaker Ω(kn), and closing the logn factor gap for deterministic and randomized
k-edge connectivity algorithms remains an important open question. For k-vertex connectivity, there
is a deterministic space upper bound of O(kn logn) bits due to [15]. We are able to prove a matching
Ω(kn logn) bit lower bound for deterministic algorithms, but require that multiple edges are allowed,
i.e., our hard instance is a multi-graph for this problem. We notice, however, that the upper bound of
[15] also holds for multi-graphs. Our lower bound becomes a weaker Ω(kn) in the case of randomized
algorithms, and closing the logn factor gap for randomized algorithms for k-vertex connectivity
and/or removing the edge duplication assumption is an important open problem.

Finally, we illustrate the power of our technique by proving an Ω(n log2 n) lower bound for
approximating the minimum cut up to a constant factor of a graph with integer weights between 1
and n, in the turnstile model. The same lower bound holds for cut sparsifiers (since they can be used
to approximate the minimum cut), and gives the first separation of maintaining a sparsifier in the data
stream model versus the offline model. Indeed, in the offline model, by a result of Batson et al. [6]
it is possible to build a cut sparsifier (in fact, a stronger notion of a spectral sparsifier) of a graph
using only O(n) reweighted edges of the input graph, with O(logn) bits to specify each edge and
its weight. Our Ω(n log2 n) bit lower bound shows it is fundamentally impossible to implement the
algorithm of [6] in a dynamic stream. For general integer edge weights between 1 and W , our lower
bound is Ω(n logn logW).

1.2 Our Techniques

Our results come from identifying a new two-player one-way communication problem which gener-
alizes the well-studied Index problem [26], to a problem Perm which is more suitable for proving
graph lower bounds. Despite the simplicity of the Perm problem, we are able to apply it to the wide
array of problems above. In this problem, Alice is given a permutation σ on [n] def= {1, 2, . . . , n},
which she represents in a slightly redundant way as an n logn-length bitstring σ(1), . . . , σ(n) formed
by concatenating the images of 1, 2, . . . , n under σ. We call this the redundant encoding of σ.

4 Tight Bounds for Graph Problems in Insertion Streams

Bob is interested in obtaining the i-th bit in the redundant encoding of σ. We show that if Alice
sends a single message to Bob, then for Bob to succeed with constant probability, Alice’s message
needs to be Ω(n logn) bits long. In other words, the randomized 1-way communication complex-
ity R1−way(Perm) = Ω(n logn). We generalize this to the case where Alice has r permutations
σ1, . . . , σr each on [n], while Bob now has an index i ∈ [n], an index k ∈ [r], as well as Alice’s
permutations σk+1, . . . , σr, and Bob is interested in the i-th bit in the redundant encoding of σk. We
call this problem r-AugmentedPerm and show R1−way(r-AugmentedPerm)= Ω(rn logn).

After identifying Perm and r-AugmentedPerm as the right problems to study, the proofs of
their respective lower bounds follow standard information-theoretic arguments used to prove lower
bounds for Index and direct sum theorems in streaming [5, 9], with small modifications to account for
the redundancy. The second part of our proofs is reducing graph problems to these communication
problems. The core idea of our lower bounds is to identify a permutation σ as a random matching on
a bipartite graph with n vertices in the left part L and n vertices in the right part R. This is Alice’s
input graph G in many of our reductions. Alice runs the streaming algorithm on G, sends the state to
Bob, who then inserts edges into G in a problem-specific way. As Bob is interested in learning a bit of
the redundant encoding of Alice’s permutation, this corresponds to a bit j of the unique neighbor in R
of a vertex u ∈ L. We therefore create gadgets which group all vertices in R into two groups, based
on the value of their j-th bit, and connect these groups to vertices in L in different ways depending
on the particular problem.

1.3 Preliminaries

Let f : X×Y → {0, 1} be a Boolean function, whereX and Y are two arbitrary sets. In the one-way
communication model Alice receives an input x ∈ X and Bob receives an input y ∈ Y . Alice is
only allowed to send one message to Bob and no message is allowed to be sent from Bob to Alice.
The goal is for Bob to compute f(x, y). The communication cost is measured by the number of bits
Alice sends in the worst case. Denote by D1−way(f) the minimum communication cost over all
deterministic one-way protocols for f . For a randomized protocol P , we say P has error probability
at most ε if Pr(P (x, y) = f(x, y)) ≥ 1− ε for all inputs x and y. The randomness here is only over
the private coin tosses of Alice and Bob. The one-way (bounded-error) randomized communication
complexity of f , denote by R1−way(f), is the minimum communication cost over all randomized
one-way protocols for f with error probability at most 1/3.

Communication lower bounds on D1−way(f) and R1−way(f) provide lower bounds on the
memory required of deterministic and randomized data stream algorithms, respectively, via a standard
reduction. Indeed, Alice creates a stream σx from her input x, and runs the streaming algorithm
on σx, passing the state of the algorithm to Bob. Bob creates a stream σy from his input y, and
continues the execution of the streaming algorithm on σy. If the output of the streaming algorithm
on the concatenated stream σx ◦ σy can be used to solve the problem f , either deterministically or
with constant error probability, then the space complexity of the streaming algorithm must be at least
D1−way(f) or R1−way(f), respectively.

We also need a few concepts and notation from information theory. We refer the reader to [12]
for a more comprehensive introduction. We give a short primer on the standard properties we use in
Appendix A.

2 Permutation Problems

We consider the following communication problem Perm which will be used in our reductions. In
this problem Alice is given a permutation σ of [n], represented as an ordered list σ(1), σ(2), . . . , σ(n).
This list has n logn bits. Bob is given an index i ∈ [n logn] and would like to know the i-th bit of

Xiaoming Sun and David P. Woodruff 5

σ. This problem is similar to the well-studied Index problem in randomized 1-way communication
complexity, but it is slightly different in that σ(1), . . . , σ(n) is a redundant encoding of a permutation.

I Lemma 1. R1−way(Perm) = Ω(n logn).

Proof. Let us place the uniform distribution on strings σ. Let M(σ) be Alice’s message to Bob,
which is a random variable depending on the randomness of σ and the private random coin tosses of
Alice. Then R1−way(Perm) ≥ H(M(σ)) ≥ I(M(σ);σ), so it suffices to lower bound I(M(σ);σ).
We write σj to denote the j-th bit in the list σ(1), . . . , σ(n), where j ∈ {1, 2, . . . , n logn}.

By the chain rule,

I(M(σ);σ) =
n logn∑
j=1

I(M(σ);σj | σ<j)

=
∑
j

(H(σj | σ<j)−H(σj |M(σ), σ<j))

≥
∑
j

H(σj | σ<j)−
∑
j

H(σj |M(σ))

= H(σ)−
∑
j

H(σj |M(σ)).

Using Stirling’s approximation, H(σ) = logn! = n log(n/e) + O(logn). Now consider H(σj |
M(σ)). SinceM is randomized protocol which succeeds on every pair of inputs (σ, i) with probability
at least 9/10, and M does not depend on j, it follows that from M(σ) Bob can predict σi for any
given i with probability at least 9/10. By Fano’s inequality, for each j this implies H(σj |M(σ)) ≤
H(1/10). Hence,

I(M(σ);σ) ≥ n log(n/e)−H(1/10)n logn ≥ (1−H(1/10))n logn−O(n).

This completes the proof. J

We also define the problem r-AugmentedPerm, used in our reductions. In this problem, Alice is
given r permutations σ1, . . . , σr, where each σj is represented as a list of n logn bits. Bob is given
an index i ∈ [n logn], an index k ∈ [r], and is given σk+1, σk+2, . . . , σr. Bob’s goal is to output σki ,
which is the i-th bit of σk.

I Lemma 2. R1−way(r-AugmentedPerm)= Ω(rn logn).

Proof. As in the proof of Lemma 1, we place the uniform distribution on strings σj , for each
j ∈ [r], and the σj are independent. Let M(σ1, . . . , σr) be Alice’s message to Bob, which is a
random variable depending on the randomness of σ1, . . . , σr and her private random coin tosses.
Then R1−way(r-AugmentedPerm)≥ H(M(σ1, . . . , σr)) ≥ I(M(σ1, . . . , σr);σ1, . . . , σr), so it
suffices to lower bound I(M(σ1, . . . , σr);σ1, . . . , σr).

By the chain rule,

I(M(σ1, . . . , σr);σ1, . . . , σr) =
r∑

k=1
I(M(σ1, . . . , σr);σk | σk+1, . . . , σr) (1)

We claim that for each k ∈ [r],

I(M(σ1, . . . , σr);σk | σk+1, . . . , σr) = Ω(n logn).

To see this, consider any fixing of the random variables σk+1, . . . , σr, and let Π be a randomized
protocol which succeeds on every input to AugmentedPerm with probability at least 9/10, over

6 Tight Bounds for Graph Problems in Insertion Streams

its random coin tosses. Then, given an input (σ, i) to the Perm problem, Alice and Bob can use Π
as follows. Alice hardwires the fixed values of σk+1, . . . , σr. Alice also sets σk = σ. Finally, she
randomly and independently samples uniform permutations σ1, . . . , σk−1. Bob, given i as the input
to Perm, also holds the input k and has the hardwired values of σk+1, . . . , σr. Alice and Bob run Π
on these inputs to AugmentedPerm, and output whatever Π outputs. By correctness of Π, it follows
that this is a correct 1-way protocol for the Perm problem with probability at least 9/10. Hence, as
argued in the proof of Lemma 1, I(M ′(σ);σ) = Ω(n logn), where M ′ is Alice’s resulting message
function in the created protocol for Perm. By construction,

I(M(σ1, . . . , σr);σk | σk+1, . . . , σr) = I(M ′(σ);σ) = Ω(n logn),

as claimed. Plugging into (1), it follows that

I(M(σ1, . . . , σr);σ1, . . . , σr) = Ω(rn logn),

which completes the proof. J

3 Lower Bounds for Graph Problems

3.1 Connectivity

We start with an Ω(n logn) bit lower bound for the randomized one-way communication of the graph
connectivity problem, denoted Conn. In this problem, Alice has a subsetEA of edges of an undirected
graph G on a set V of n vertices, while Bob has a disjoint subset EB of the edges of G. Alice sends
a single randomized message M(EA) to Bob, who should decide if the graph (V,EA ∪ EB) is
connected. Bob should succeed with probability at least 9/10. We let R1−way(Conn) denote the
minimum, over all correct protocol for Conn with probability at least 9/10, of the maximum length
message sent, over all inputs and random coin tosses.

I Theorem 3. R1−way(Conn) = Ω(n logn).

Proof. We perform a reduction from Perm on instances of size n/2. Alice, given a permutation σ,
creates a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the σ(i)-th right
vertex. Alice’s edgeset EA consists of the edges in this perfect matching. Let L and R denote the two
parts of the vertex set V , each of size n/2.

Suppose Bob has the input i to Perm. This corresponds to the `-th bit in σ(j) for some j ∈ [n/2]
and ` ∈ [log(n/2)]. Bob creates his input edgeset to Conn from i as follows. Let S ⊂ R denote the
subset of vertices whose `-th bit is equal to 0. Bob’s input edgeset EB consists of a spanning tree on
the vertices in (L \ {j}) ∪ S. We can ensure the edges of the spanning tree are disjoint from EA by
including a new vertex w, and including edges from all vertices in (L \ {j}) ∪ S to w.

Observe that since the vertices in L \ {j} are connected, it follows that since we placed a perfect
matching from L to R, that any vertex u is connected to any other vertex except possibly to j or σ(j).
Now, if the σ(j)-th right vertex has its `-th bit equal to 0, then σ(j) is connected to S, and hence to
L \ {j}. It follows that the graph is connected. On the other hand, if the σ(j)-th right vertex has its
`-th bit equal to 1, then the edge from the j-th left vertex to the σ(j)-th right vertex is isolated, that is,
it is not incident to any other vertices. In this case the graph is disconnected.

Let M(EA) be Alice’s message to Bob in a protocol for Conn. Suppose Bob can decide, from
M(EA) and EB , if the resulting graph on vertex set L ∪R and edgeset EA ∪ EB is connected with
probability at least 9/10. It follows that Bob can solve Perm with probability at least 9/10, and
therefore from Lemma 1, R1−way(Conn) = Ω(n logn). J

I Remark. The lower bound in Theorem 3 is matched by a simple O(n logn) bit upper bound in
which Alice sends a spanning forest of her edges to Bob.

Xiaoming Sun and David P. Woodruff 7

3.2 Diameter

As a corollary of Conn, we show a lower bound for the following Diameter-k problem on sparse
graphs, i.e., graphs with O(n) edges: Given k ∈ [n− 1], Bob wants to decide if the diameter d of
(V,EA ∪ EB) is at most k, or∞.

I Theorem 4. For any k ≥ 4, R1−way(diameter-k) = Ω(n logn).

Proof. In the Conn proof, instead of only putting a spanning tree on the vertices in (L \ {j}) ∪ S,
we also put a clique on the vertices in L \ {j} and a clique on the vertices in S. It follows that the
diameter of (V,EA ∪ EB) is either +∞ if the graph is disconnected, or 4 if the graph is connected.
Therefore, the Diameter-k problem is as hard as Conn. J

I Remark. For sparse graphs the upper bound is just to store the entire graph with O(n) edges.

3.3 Eulerian-Testing

In this part we show a lower bound for the Eulerian problem: Bob wants to decide if (V,EA ∪EB)
is an Eulerian graph.

I Theorem 5. R1−way(Eulerian) = Ω(n logn).

Proof. In the Conn proof, call the graph G1 = (L,R,E), make another copy of the graph G2 =
(L′, R′, E′), i.e., inG2 the edges are the same as inG1. Alice and Bob also add the following edges to
EA and EB : if there is an edge (u, v) in G1, add edges (u, v′) and (u′, v). Let V = L∪R∪L′ ∪R′.
It is easy to check that the degree of every vertex is twice its degree in G1, thus is an even number.
Therefore, the resulting graph is Eulerian if and only if it is connected, but this is equivalent to the
connectivity of G1. Hence, R1−way(Eulerian) = Ω(n logn). J

I Remark. An upper bound is to maintain a spanning forest to test connectivity, as well as to
maintain the parities of all node degrees. Then one uses that a graph is Eulerian if and only if it is
connected and all node degrees are even.

3.4 Bipartiteness

We now give a lower bound for the the Bipartite problem. In this problem Alice has a subset EA
of edges of an undirected graph G on a set V of n vertices, while Bob has a disjoint subset EB of
the edges of G. Alice sends a single randomized message M(EA) to Bob, who should decide if the
graph (V,EA ∪ EB) is bipartite.

I Theorem 6. R1−way(Bipartite) = Ω(n logn).

Proof. We again reduce from Perm on instances of size n/2. Alice, given a permutation σ, creates
a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the σ(i)-th right vertex.
Alice’s edgeset EA consists of the edges in this perfect matching. Let L and R denote the two parts
of the vertex set V , each of size n/2.

Suppose Bob has the input i to Perm. This corresponds to the `-th bit in σ(j) for some j ∈ [n/2]
and ` ∈ [log(n/2)]. Bob creates his input edgeset to Bipartite from i as follows. We create a new
node w (so the input graph has n+ 1 nodes) and Bob includes an edge in EB from the j-th vertex in
L, denoted v, to w. Bob also includes all edges in EB from w to any vertex in R whose `-th bit is
equal to 0.

Since EA is a perfect matching, it is bipartite. Further, all edges in EB are incident to w, and
therefore G is bipartite if and only if there is no odd cycle which contains w. If we remove the edge

8 Tight Bounds for Graph Problems in Insertion Streams

{v, w} then the graph is acyclic, and so any cycle must contain {v, w}, and hence also {v, σ(v)}, and
hence also {σ(v), w}. It follows that an odd cycle exists iff {σ(v), w} is in EB , that is, iff the `-th bit
of σ(j) is equal to 0.

It follows that Bob can solve Perm with probability at least 9/10, and therefore from Lemma 1,
R1−way(Bipartite) = Ω(n logn). J

I Remark. There is an upper bound of O(n logn) bits for bipartiteness; see section 3.1 of [28]. It
is stated as a streaming algorithm which immediately gives rise to a 1-way communication protocol.

3.5 Cycle-free

As a corollary of Bipartite, we show a lower bound for the following Cycle-free problem: Bob wants
to decide if there is a cycle in (V,EA ∪ EB).

I Theorem 7. R1−way(cycle-free) = Ω(n logn).

Proof. In the Bipartite proof, if the `-th bit of σ(j) is 0, then there is a cycle between j, σ(j) and w.
If the `-th bit of σ(j) is 0, then there is no cycle. Therefore, R1−way(cycle-free) = Ω(n logn). J

I Remark. There is an upper bound of O(n logn) bits by storing the first n− 1 edges of G. If G
has more than n − 1 edges, it necessarily contains a cycle. If it has fewer, one can test whether it
contains a cycle.

3.6 Minimum Spanning Tree

We now present an application to the minimum spanning tree (MST) of a connected graph. In the
MST problem, Alice has a subset EA of edges of an undirected graph G on a set V of n vertices,
while Bob has a disjoint subset EB of the edges of G = (V,EA,∪EB), and the players are promised
that G is a connected graph. Alice sends a single randomized message M(EA) to Bob, who should
output a spanning tree of G. Note that in the case that G is unweighted, all such spanning trees are
minimal.

I Theorem 8. R1−way(MST) = Ω(n logn).

Proof. We again reduce from Perm on instances of size n/2. Alice, given a permutation σ, creates
a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the σ(i)-th right vertex.
Alice’s edgeset EA consists of the edges in this perfect matching. Let L and R denote the two parts
of the vertex set V , each of size n/2.

Bob’s edgeset EB is just a line connecting the vertices in L. Observe that G = (V,EA ∪ EB) is
connected and has n− 1 edges, and therefore is itself the only spanning tree of G. Therefore, Bob
can reconstruct G. Hence, the players can solve the Perm problem with probability at least 9/10
given a protocol for MST which succeeds with probability at least 9/10, and therefore and therefore
from Lemma 1, R1−way(MST) = Ω(n logn). J

I Remark. There is an O(n logn) bits of space upper bound for MST for integer weights bounded
by poly(n), see section 2.1 of [28].

3.7 k-Edge Connectivity

I Theorem 9. D1−way(k-Edge Connectivity) = Ω(nk logn).

Xiaoming Sun and David P. Woodruff 9

Proof. Consider a bipartite graph with parts L and R. L is partitioned into k/2 blocks Li each
of n/k vertices. Similarly R is partitioned into k/2 blocks Ri each of n/k vertices. For each pair
(Li, Rj) containing a left block and a right block, we have a random perfect matching between the
blocks. Alice has all of these edges. Bob is interested in the t-th bit of the neighbor of vertex a in the
block Rb.

We show a kn logn lower bound for deterministic protocols. Bob guesses each vertex c in Rb to
see if it the neighbor of vertex a in Rb; since the protocol is deterministic it does not err, and so he
will figure out the correct neighbor and thus reconstruct the graph as follows. Suppose c is the current
candidate. Bob adds edges connecting vertices in the set (L \ a) ∪ (R \ c) to make the graph on
these vertices k-edge-connected. This can be done without edge duplications by introducing a clique
of k new vertices, and connecting all vertices in (L \ a) ∪ (R \ c) to each of these k new vertices.
Bob also adds a set W of O(k) additional vertices and places a k-connected graph H on vertex set
{a, c} ∪W . The resulting graph is k-edge-connected iff there is an edge {a, c}; if there is such an
edge, then by deleting k/2− 1 neighbors of a and k/2− 1 neighbors of c, one deletes in total k − 2
edges and causes H to be disconnected from the rest of the graph. On the other hand if there is no
such edge, then at least k edges need to be deleted.

Hence, Bob reconstructs the input graph, which by construction has Ω(nk logn) bits of entropy,
since there are (k/2)2 random perfect matchings, so the logarithm of the number of possible graphs
is log2(((n/k)!)k2/4), which gives the desired Ω(nk logn) bits of entropy lower bound. This implies
D1−way(k-Edge Connectivity) = Ω(nk logn). J

I Remark. There is a deterministic upper bound of O(kn logn) bits. See Theorem 1 in [13].

3.8 k-Vertex Connecvitiy

I Theorem 10. D1−way(k-Vertex Connectivity) = Ω(nk logn).

Proof. Consider a bipartite graph with parts L and R. L is partitioned into k − 1 blocks Li each
of n/(k − 1) vertices. Similarly R is partitioned into k − 1 blocks Ri each of n/(k − 1) vertices.
For each pair of left block and right block (Li, Rj), we have a random perfect matching between
the blocks. Alice has all of these edges. Bob is interested in the t-th bit of the neighbor of a in the
block Rb. Bob guesses each vertex c in Rb to see if c is the neighbor of a in Rb; since the protocol is
deterministic, it does not err, so Bob will figure out the correct neighbor as follows. Suppose c is the
current candidate.

Bob adds k new vertices and connects every vertex except a to all k new vertices. Bob also puts a
clique on the k new vertices. Finally, Bob adds the edge {a, c} to the graph.

Then if {a, c} existed in the graph before Bob added it, then vertex a still has only k−1 neighbors
and so the graph is disconnected by deleting these k − 1 neighbors. On the other hand, if {a, c} did
not exist in the graph, then vertex a now has k neighbors and the graph is k-vertex connected.

Thus, since the protocol is deterministic, Bob can reconstruct the input graph, which has
Ω(kn logn) bits of entropy by construction. This shows D1−way(k-Vertex Connectivity) =
Ω(nk logn). J

I Remark. There is a streaming algorithm due to Eppstein et al. [15] (see also [19] for a discussion)
which includes a new edge {a, b} iff there are no k-vertex disjoint paths connecting a to b among the
edges already stored. Correctness follows from Menger’s theorem for vertex connectivity. Note that
the algorithm is insensitive to edge duplications, and is deterministic. It achieves O(kn logn) bits of
space.

10 Tight Bounds for Graph Problems in Insertion Streams

3.9 H-minor-free

LetH be a fixed graph. In theH-minor-free problem Alice has a subsetEA of edges of an undirected
graph G on a set V of n vertices and Bob has a subset EB of the edges of G. Alice sends a single
randomized message M(EA) to Bob, who should decide if the graph (V,EA ∪EB) is H-minor-free.
Bob should succeed with probability at least 9/10.

I Theorem 11. For any fixed graph H with minimum degree at least 2, R1−way(H-minor-
free) = Ω(n logn).

Proof. We again reduce from Perm on instances of size n/2. Alice, given a permutation σ, creates
a perfect matching from [n/2] to [n/2] where the i-th left vertex connects to the σ(i)-th right vertex.
Alice’s edgeset EA consists of the edges in this perfect matching. Let L and R denote the two parts
of the vertex set V , each of size n/2.

Suppose Bob has the input i to Perm. This corresponds to the `-th bit in σ(j) for some j ∈ [n/2]
and ` ∈ [log(n/2)]. Bob creates his input to H-minor-free from i and H as follows. Suppose H has
r + 1 vertices h0, h1, . . . , hr. Since δ(H) ≥ 2, w.l.o.g., we assume there are two edges {h0, h1} and
{h0, h2} in E(H). Bob creates r new vertices p1, . . . , pr and puts a copy of H \ {h0, h1} between
j and p1, . . . , pr with the mapping h0 → j and hi → pi (i = 1, . . . , r), i.e., j, p1, . . . , pr, is an
isomorphism to H except for the one edge (j, p1). Let V = L∪R∪ {p1, . . . , pr} and S ⊂ R denote
the subset of vertices whose `-th bit is equal to 1. Bob also includes all edges in EB from p1 to all
vertices in S.

Now we claim that there is an H-minor in (V,EA ∪ EB) iff the `-th bit of σ(j) is 1. Indeed, if
the `-th bit of σ(j) is 1, then there is a edge between σ(j) and p1 in EB . We can contract the edges
{j, σ(j)} and {σ(j), p1} and we obtain a copy of H . Hence H is a minor of EA ∪ EB .

For the case that the `-th bit of σ(j) is 0, then σ(j) /∈ S and j is not adjacent to any vertex in S.
Note that we can delete all isolated matching edges since δ(H) ≥ 2. Also since j is not adjacent to a
vertex in S and H has minimum degree at least 2, we can contract all edges incident to S, and then
contract all nodes in S to p1. These operations preseve the property of having an H-minor since the
minimum degree of H is at least 2. We can also contract σ(j) ∈ R to j since deg(σ(j)) = 1 and
δ(H) ≥ 2. At this point we are left with vertices p1, ..., pr, and j, with edgeset exactly equal to that
of H except we are missing the edge (p1, j). This implies H is not a minor. J

I Remark. Kostochka [25] shows that an H-minor-free graph has at most O(n|H|
√

log |H|) edges.
Storing all these edges can be done using O(n logn) bits. So our lower bound is tight.

As a corollary, we show that the Planar problem in which Bob want to decide if (V,EA ∪ EB) is
planar also has a lower bound of Ω(n logn) bits.

I Corollary 12. R1−way(Planar) = Ω(n logn).

Proof. Consider H = K5 in the previous proof. The graph (V,EA ∪ EB) is either contracted to a
K5, or a K5 with one missing edge, according to the `-th bit of σ(j). Notice that the former one is
non-planar and the latter is planar. Therefore, Planar is as hard as Perm. J

I Remark. There is an O(n logn) bit upper bound for Planar, simply store up to 3n edges and use
that any graph with more than 3n edges cannot be planar.

3.10 Approximate Min-Cut

In this section we show an Ω(n log2 n) lower bound for 1-way protocols which provide a constant-
factor approximation with constant probability to the minimum cut value of a graph with integer

Xiaoming Sun and David P. Woodruff 11

edge weights between 1 and n. Our lower bound also implies an Ω(n log2 n) bit lower bound for
O(1)-approximate cut sparsifiers of such graphs, as such sparsifiers can be used to approximate the
minimum cut value. We let c-approx Min-Cut denote the problem of approximating the minimum
cut up to a factor of c > 1.

I Theorem 13. Suppose a graph has edges with weights in the set {1, 2, . . . ,W}, where W is
at most 2γn for a sufficiently small constant γ > 0. Then for any constant c > 1, R1−way(c-
approx Min-Cut) = Ω(n logn logW). In particular, if W = n, then R1−way(c-approx Min-
Cut) = Ω(n log2 n).

Proof. We can reduce the r-AugmentedPerm problem to c-approx Min-Cut, which we abbreviate
as the Min-Cut problem in the remainder of the proof. Let α = 2c+ 1 and r = logαW . Suppose
Alice is given r random permutations σ1, . . . , σr of size n/2. As in the construction in the proof of
Conn, Alice creates r perfect matchings from σ1, . . . , σr as her input to the Min-Cut problem. All
edge weights in the i-th instance are equal to αi (i = 1, . . . , r). The largest weight is αr = W . In
expectation there will be O(r2) duplicate edges when we overlay the matchings. Alice can send the
identities of all the duplicate edges together with which instances they occur in to Bob, and not include
these in her graph. This only requires O(log2 W (logn+ log logW)) additional communication from
Alice to Bob, using our choice of r. This is negligible given the upper bound on W in the theorem
statement.

Suppose in the r-AugmentedPerm problem Bob is given an index i ∈ [n logn], and index k ∈ [r],
and σk+1, . . . , σr. For the Min-Cut problem, Bob will delete all the edges in the matchings corres-
ponding to σk+1, . . . , σn. Bob, depending on which instances he deletes from r-AugmentedPerm,
can decide which of the duplicate edges to put back in Alice’s graph. As in the Conn problem, Bob
also adds a spanning tree to the vertices (L \ {j}) ∪ S in the matching corresponding to σk.

Now if σki = 0, then the graph is connected. Hence the minimum cut is at least αk. On the
other hand, if σki = 1, then the k-th instance is disconnected. In the instances corresponding to
σ1, . . . , σk−1, all the vertices have degree one, so if we cut {j, σk(j)} from other vertices, the
total weight of this cut is at most 2(α + α2 + · · · + αk−1) < 2·αk

α−1 = αk

c . Therefore, if Bob can
c-approximate the total weight of the min-cut, then he can distinguish the case σki = 0 from σki = 1,
i.e., he can solve r-AugmentedPerm. J

Acknowledgements We thank Andrew McGregor for helpful discussions regarding this work.

A Information Theory Facts

For a discrete random variable X with possible values {x1, x2, . . . , xn}, the Shannon entropy of
X is defined as H(X) = −

∑n
i=1 Pr(X = xi) log2 Pr(X = xi). Let Hb(p) = −p log2 p − (1 −

p) log2(1 − p) denote the binary entropy function when p ∈ (0, 1). For two random variables X
and Y with possible values {x1, x2, . . . , xn} and {y1, y2, . . . , ym}, respectively, the conditional
entropy of X given Y is defined as H(X | Y) =

∑
i,j Pr(X = xi, Y = yj) log2

Pr(Y=yj)
Pr(X=xi,Y=yj) .

Let I(X;Y) = H(X)−H(X | Y) = H(Y)−H(Y | X) denote the mutual information between
two random variables X,Y . Let I(X;Y | Z) denote the mutual information between two random
variables X,Y conditioned on Z, i.e., I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

The following summarizes several basic properties of entropy and mutual information.

I Proposition 14. Let X,Y, Z,W be random variables.
1. If X takes value in {1, 2, . . . ,m}, then H(X) ∈ [0, logm].
2. H(X) ≥ H(X | Y) and I(X;Y) = H(X)−H(X | Y) ≥ 0.

12 Tight Bounds for Graph Problems in Insertion Streams

3. If X and Z are independent, then we have I(X;Y | Z) ≥ I(X;Y). Similarly, if X,Z are
independent given W , then I(X;Y | Z,W) ≥ I(X;Y |W).

4. (Chain rule of mutual information) I(X,Y ;Z) = I(X;Z) + I(Y ;Z | X).
More generally, for any random variables X1, X2, . . . , Xn, Y ,
I(X1, . . . , Xn;Y) =

∑n
i=1 I(Xi;Y | X1, . . . , Xi−1).

Thus, I(X,Y ;Z |W) ≥ I(X;Z |W).
5. (Fano’s inequality) Let X be a random variable chosen from domain X according to distribution

µX , and Y be a random variable chosen from domain Y according to distribution µY . For any
reconstruction function g : Y → X with error δg ,

Hb(δg) + δg log(|X | − 1) ≥ H(X | Y).

References

1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and
subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14, 2012.

2 Alexandr Andoni, Huy L. Nguyên, Yury Polyanskiy, and Yihong Wu. Tight lower bound for linear
sketches of moments. In Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 25–32, 2013.

3 Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse recovery.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 1190–1197, 2010.

4 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, pages 1–16,
2002.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

6 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
J. Comput., 41(6):1704–1721, 2012.

7 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An optimal al-
gorithm for large frequency moments using o(nˆ(1-2/k)) bits. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, Septem-
ber 4-6, 2014, Barcelona, Spain, pages 531–544, 2014.

8 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm for estim-
ating the entropy of a stream. ACM Transactions on Algorithms, 6(3), 2010.

9 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational complex-
ity and the direct sum problem for simultaneous message complexity. In 42nd Annual Symposium
on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 270–278, 2001.

10 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 205–214, 2009.

11 Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy estimation over stream-
ing data. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, pages 196–206, 2013.

12 T. Cover and J. Thomas. Elements of Information Theory. John Wiley and Sons, Inc., 1991.
13 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-window

model. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France,
September 2-4, 2013. Proceedings, pages 337–348, 2013.

Xiaoming Sun and David P. Woodruff 13

14 T.A. Dowling and R.M. Wilson. Whitney number inequalities for geometric lattices. Proc. Amer.
Math. Soc., 47:504–512, 1975.

15 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a tech-
nique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. In Automata, Languages and Programming: 31st Interna-
tional Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, pages 531–543,
2004.

17 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. Graph
distances in the streaming model: the value of space. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada,
January 23-25, 2005, pages 745–754, 2005.

18 Sumit Ganguly. Polynomial estimators for high frequency moments. CoRR, abs/1104.4552, 2011.
19 Sudipto Guha, Andrew McGregor, and D. Tench. Vertex and hyperedge connectivity in dynamic

graph streams. In PODS, 2015.
20 Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy via

approximation theory. In 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 489–498, 2008.

21 T. S. Jayram and David P. Woodruff. Optimal bounds for johnson-lindenstrauss transforms and
streaming problems with subconstant error. ACM Transactions on Algorithms, 9(3):26, 2013.

22 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of sketching
and streaming small norms. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1161–1178,
2010.

23 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct ele-
ments problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA,
pages 41–52, 2010.

24 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. Single
pass spectral sparsification in dynamic streams. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 561–570,
2014.

25 Alexandr Kostochka. The minimum hadwiger number for graphs with a given mean degree of
vertices. Metody Diskret. Analiz., 38:37–58, 1982.

26 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1
June 1995, Las Vegas, Nevada, USA, pages 596–605, 1995.

27 Yi Li and David P. Woodruff. A tight lower bound for high frequency moment estimation with
small error. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques - 16th International Workshop, APPROX 2013, and 17th International Workshop, RAN-
DOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages 623–638, 2013.

28 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
29 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theor-

etical Computer Science, 1(2), 2005.
30 Eric Price and David P. Woodruff. (1 + eps)-approximate sparse recovery. In IEEE 52nd Annual

Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 295–304, 2011.

31 Ran Raz and Boris Spieker. On the "log rank”-conjecture in communication complexity. In 34th
Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA, 3-5 November
1993, pages 168–176, 1993.

	Introduction
	Our Results
	Our Techniques
	Preliminaries

	Permutation Problems
	Lower Bounds for Graph Problems
	Connectivity
	Diameter
	Eulerian-Testing
	Bipartiteness
	Cycle-free
	Minimum Spanning Tree
	k-Edge Connectivity
	k-Vertex Connecvitiy
	H-minor-free
	Approximate Min-Cut

	Information Theory Facts

