
Subspace Embeddings for the L1-norm with Applications

Christian Sohler
∗

Department of Computer Science
Technische Universität Dortmund

christian.sohler@tu-dortmund.de

David P. Woodruff
IBM-Research Almaden

dpwoodru@us.ibm.com

ABSTRACT
We show there is a distribution over linear mappings R :

`n1 → `
O(d log d)
1 , such that with arbitrarily large constant

probability, for any fixed d-dimensional subspace L, for all
x ∈ L we have ‖x‖1 ≤ ‖Rx‖1 = O(d log d)‖x‖1. This pro-
vides the first analogue of the ubiquitous subspace Johnson-
Lindenstrauss embedding for the `1-norm. Importantly, the
target dimension and distortion are independent of the am-
bient dimension n. We give several applications of this re-
sult. First, we give a faster algorithm for computing well-
conditioned bases. Our algorithm is simple, avoiding the lin-
ear programming machinery required of previous algorithms.
We also give faster algorithms for least absolute deviation
regression and `1-norm best fit hyperplane problems, as well
as the first single pass streaming algorithms with low space
for these problems. These results are motivated by practical
problems in image analysis, spam detection, and statistics,
where the `1-norm is used in studies where outliers may be
safely and effectively ignored. This is because the `1-norm
is more robust to outliers than the `2-norm.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; G.3 [Probability
and Statistics]: Robust Regression

General Terms
Algorithms, Theory

Keywords
data stream algorithms, hyperplane fitting, regression, well-
conditioned basis

∗This research was supported by the DFG, Collaborative
Research Center SFB876, project C4, and the EU-project
CG Learning funded by the Future and Emerging Tech-
nologies unit of the European Commission within the 7th
Framework Programme under contract No. 255827.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

1. INTRODUCTION
The Johnson-Lindenstrauss transform is a widely-used di-

mensionality reduction technique with applications to many
areas such as compressed sensing [13], computational geom-
etry [17], data stream algorithms [4], graph sparsification
[46], machine learning [35, 45, 50], nearest-neighbor search
[2, 28], and numerical linear algebra [18, 21, 41, 42]. The
mapping is given by an appropriately scaled projection ma-
trix R : `n2 → `k2 , where k = Θ(ε−2 log 1/δ), with the guar-
antee that for any fixed vector x ∈ Rn, with probability
at least 1 − δ, (1 − ε)‖x‖2 ≤ ‖Rx‖2 ≤ (1 + ε)‖x‖2. Since
R is a linear map, it also preserves pairwise `2-distances
of a set of vectors. While there are other `2-sketches that
have faster update time, such as the sketch by Thorup and
Zhang [49], these are not embeddings into a normed space
since the sketches involve inherently non-linear median oper-
ations. For many applications, such as `2-regression and low
rank approximation of a matrix, this is inadequate, as the
algorithms work by solving an optimization problem in the
sketch-space. If the sketch-space is not normed or convex,
solving these problems becomes intractable.

A natural question is whether the Johnson-Lindenstrauss
transform extends to other `p-norms, in particular, the `1-
norm. This question has inherent theoretical appeal, but
also has many algorithmic applications. Indyk [26], in his
FOCS 2001 tutorial, asks “Is there an analogue of the JL
lemma for other norms, especially for `1? This would give a
powerful technique for designing approximation algorithms
for `1 norms...” Charikar and Sahai [14] showed that any lin-
ear embedding of r points in Rn into Rk must incur distor-
tion Ω(

√
r/k), which is tight up to a log r factor. Brinkman

and Charikar [9] resolved the case of non-linear embeddings,
showing that any embedding of r points with constant dis-
tortion must be embedded into rΩ(1) dimensions; see also
[36]. As with the JL transform, linear embeddings are most
useful for the applications above, due to the fact that they
can be compactly represented and updated efficiently in a
distributed or streaming setting. Moreover, a key property
of the JL transform is that the matrices R are independent
of the point set, allowing for one to combine point sets with
the same mapping or embed individual points without read-
ing the entire pointset. We call a mapping R satisfying this
property oblivious.

Given these negative results, our task of obtaining an ana-
logue of the JL transform for the `1-norm might seem hope-
less. However, the pointsets one works with often have addi-
tional structure, e.g., they sit in a low-dimensional manifold
or subspace. This is true for regression, a problem which

is equivalent to finding the nearest point in a given low-
dimensional subspace to an input point, or in low-rank ap-
proximation where one wants to preserve low-dimensional
subspaces of the input which well-approximate it. This
raises an intruiging question: how many dimensions are
needed to embed a d-dimensional subspace of Rn into Rk?
That is, for a distortion bound D, if A is an n × d matrix
of rank d and R is a mapping from `n1 into `k1 for which
‖y‖1 ≤ ‖Ry‖1 ≤ D‖y‖1 for all y = Ax, x ∈ Rd, how large
does k need to be? The lower-bound instances of [9, 14]

do not apply since their sets of r points have rank rΩ(1).
Moreover, as far as we are aware, there are no known linear
oblivious embeddings of subspaces of `1 into `1, though there
are non-oblivious maps [8, 30, 43, 47] that are based on the
change of density technique [37], as well as embeddings from
subspaces of `p into `1 for p > 1 [7, 23]. These embeddings
have D = O(1) and k = O(d). We note that there are linear
oblivious lopsided embeddings that guarantee for any fixed
y = Ax, ‖y‖1 ≤ ‖Ry‖1, and for any C > 1, with proba-
bility 1 − O(1/C), ‖Ry‖1 ≤ C‖y‖1 [27]. This upper tail is
not strong enough to obtain low-distortion embeddings for
subspaces.

1.1 Our Contributions
Oblivious embeddings for subspaces of `1. We give

the first linear oblivious embeddings of subspaces of `n1 into

`
O(d log d)
1 . Namely, we show there is a distribution over lin-

ear mappings R with the property that with arbitrarily large
constant probability, for any fixed d-dimensional subspace L
of `n1 , for all x ∈ L, we have ‖x‖1 ≤ ‖Rx‖1 = O(d log d)‖x‖1.
This provides the first analogue of the subspace Johnson-
Lindenstrauss embedding for the `1-norm. The target di-
mension O(d log d) and distortion O(d log d) are both inde-
pendent of n, mapping constant-dimensional subspaces of
Rn to a constant number of dimensions with constant dis-
tortion. This result has the following applications to com-
putation of well-conditioned bases, least absolute deviation
regression (`1-regression), and the `1-norm best fit hyper-
plane problems.

Well-conditioned bases. One problem when dealing
with norms other than l2 is that the length of a vector is not
invariant under rotations. Consider an n×m matrix A with
rank d. While in l2 we have that for a fixed vector x the norm
of ‖Ax‖2 is identical for every matrix A whose columns are
orthonormal, there is no analogue for other `p-norms. For
the case of `p-norms there is a generalization/approximation
of orthonormal bases called well-conditioned bases [16, 19].
The goal is to devise a basis U for the column space of A so
that:

∀x ∈ Rd, 1

poly(d)
· ‖x‖p ≤ ‖Ux‖p ≤ poly(d) · ‖x‖p

(although the precise requirements look a bit different from
this; see the formal definition in Section 2). Notice that
the norm of x does not increase by more than a poly(d)
factor, which is independent of the ambient dimension n.
The algorithms of [16, 19] have time O(nm5 logn + mO(1))
for computing a well-conditioned basis for `1. Moreover,
these algorithm require the computation of Löwner-John el-
lipsoids, and seem unlikely to be very practical. In con-
trast, for `1 we obtain a faster algorithm with total time
(ndω−1 + nm+ d3) · polylog(m), where ω < 2.376 is the ex-
ponent of matrix multiplication. Importantly, our algorithm

is conceptually simple and easy to implement: (1) compute
RA, where R is a linear oblivious embedding for subspaces
of `1, (2) compute an m × d matrix X so that RAX is or-
thonormal (in the standard `2-sense), and (3) output AX.

Least-absolute deviation regression. Regression is a
basic method to study the dependencies between variables
in the presence of noise, arising, for example, from experi-
mental measurements. In the `1-regression problem, we are
given an n × m matrix A of rank d and an n-dimensional
vector b, and the problem is to compute argminx‖Ax −
b‖1. It is well-known that `1-regression is more robust than
least squares regression, that is, the problem of computing
argminx‖Ax − b‖22 [39]. Regression has a number of appli-
cations to data mining and machine learning [15, 25], oc-
curring, for instance, in calculating trend lines for business
analytics, clinical trials, environmental science, and spam
detection, see, e.g., the books [44, 51].

We give an algorithm for the `1-regression problem for any
values of n,m, d, and ε, which runs in time:

O((ndω−1+β + nm+ L1R(d3.5/ε2, d)) · polylog(m)),

were ω is the exponent of matrix multiplication, and β > 0
is an arbitrarily small constant. Here L1R(k, d) denotes the
time to solve an instance of `1-regression on a k × d ma-
trix with a k-dimensional column vector, and is bounded by
poly(kd). Our algorithm improves the previousO(nm5 logn+
poly(mε−1))-time algorithms of Clarkson [16] and Dasgupta
et al. [19]. Even for constant m, d and ε, our algorithm im-
proves the time of previous algorithms from O(n logn) to
O(n), resolving an open question in [16]. The idea behind
our algorithm is to compute RA and Rb, where R is a lin-
ear oblivious embedding for subspaces of `1, and to perform
most of the expensive algorithms of previous work in the
low-dimensional sketch space. Importantly, our method can
also be implemented as a single-pass streaming algorithm
with poly(mε−1 logn) bits of space, where the rows of A are
presented in an arbitrary order. Previous algorithms [16,
19] did not have this property, even if seeing the entries of
A in row order, because it was necessary to compute a well-
conditioned basis of the matrix A, which required all the en-
tries to be stored. Other algorithms with this property either
require time that is exponential in m [22], or exponential in
ε−1 [27]. More generally, our algorithm can be implemented
in the turnstile model of streaming [40] where the entries ap-
pear in an arbitrary order and undergo any number of addi-
tive updates. The algorithm is 1-pass, has poly(mε−1 logn)
space and poly(mε−1 logn) processing time. Streaming al-
gorithms for regression are studied in [18, 22] as a means
of coping with massive data sets; our work extends these
works to give the first efficient such implementation for the
important case of `1. Our ideas extend straightforwardly to
the generalized regression problem in which X and B are
matrices [19].
`1-norm best fit hyperplane. This is the problem of

fitting a hyperplane through n points in Rm, while minimiz-
ing the sum of `1-distances of the n points to the hyperplane.
Ke and Kanade [32, 33] study this problem in the context of
image analysis using the affine camera model [33]. Agarwal
et al. [1] extend this to the perspective camera model. Kwak
studies this problem for face recognition data [34], and a for-
mal analysis is given, together with an implementation, by
Brooks and Dulá [10]. The running time of the algorithm is
polynomial in n and m and requires solving m LPs [10]. In

general, the `1-norm provides a more robust measure than
the `2-norm for these problems [11]. This is true, for ex-
ample, in the context of covariance matrix estimation [12,
24].

As algorithms for this problem involve m invocations of an
`1-regression algorithm, we can use our more efficient regres-
sion algorithm to improve the space and time complexities
for this problem. Moreover, our algorithm is the first for
this problem that is a single-pass algorithm in the turnstile
model. It uses only poly(mε−1 logn) bits of space. This
problem is a special case of approximating a matrix with
one of lower rank, a topic that is important in a streaming
context [18, 42] (see also Section 7.10 of [40]).

1.2 Roadmap
In Section 2 we discuss preliminaries. Section 3 contains

our linear oblivious subspace embeddings for subspaces of `1.
In Section 4 we give our first application to faster compu-
tation of well-conditioned bases. In Section 5, we solve the
`1-regression problem. In Section 6 we show how to solve
the `1-norm best fit hyperplane problem.

2. PRELIMINARIES
For a vector x = (x1, . . . , xm)T ∈ Rm we use ‖x‖p =∑m
i=1(|xi|p)

1
p to denote its p-norm. The dual norm of ‖.‖p

is the norm ‖.‖q with 1/p + 1/q = 1. We use ‖A‖p =

(
∑n
i=1

∑m
j=1 |Aij |

p)
1
p) to denote the generalized p-norm of

an n ×m matrix A. For a matrix A we use A∗j to denote
its jth column and Ai∗ to denote its ith row.

Definition 1 (Well-Conditioned Basis). [19] Let A
be an n×m matrix of rank d, let p ∈ [1,∞), and let ‖.‖q be
the dual norm of ‖.‖p, i.e. 1/p+1/q = 1. Then an n×d ma-
trix U is an (α, β, p)-well-conditioned basis for the column
space of A, if the columns of U span the column space of A,
and (1) ‖U‖p ≤ α and (2) for all z ∈ Rd, ‖z‖q ≤ β‖Uz‖p.
We say that U is a p-well-conditioned basis for the column
space of A, if α and β are dO(1), independent of m and n.

Given an n×mmatrixA, one can compute a well-conditioned
basis efficiently:

Theorem 2. [19] Let A be an n × m matrix of rank d,
let p ∈ [1,∞), and let ‖.‖q be the dual norm of ‖.‖p, i.e.,
1/p+1/q = 1. Then there exists an (α, β, p)-well-conditioned
basis U for the column space of A such that if p < 2, then

α = d
1
p

+ 1
2 and β = 1; if p = 2, then α = d

1
2 and β = 1; and

if p > 2, then α = d
1
p

+ 1
2 and β = d

1
q
− 1

2 . Moreover, U can
be computed in O(nmd+nd5 logn) time (or in just O(nmd)
time if p = 2).

In fact, for our linear oblivious subspace embedding, we
will only need the existence of a well-conditioned basis, rather
than an efficient algorithm for finding one, and in this case
for p = 1 the Auerbach bases give better parameters. If
U1, . . . , Ud is an Auerbach basis for a d-dimensional space,
then ‖Uj‖1 = 1 for all j ∈ [d], and whenever ‖

∑d
j=1 Uj ·

νj‖1 ≤ 1, then ‖ν‖∞ ≤ 1. The existence of such a basis for
`1 (in fact, a similar statement holds for every finite dimen-
sional normed space) was proved by Auerbach [6] (also see
[20, 48]). As noted in [19], it follows from the definition that
such a basis is a (d, 1, 1)-well-conditioned basis.

Theorem 3. (see “Connection to Auerbach bases” in Sec-
tion 3.1 of [19]) Let A be an n×m matrix of rank d. Then
there exists a (d, 1, 1)-well-conditioned bassis U for the col-
umn space of A.

An embedding of a finite metric space (P,D) into another
finite metric space (P ′, D′) is a mapping f : P → P ′ that ap-
proximately preserves distances. An embedding has contrac-
tion cf if for all x, y ∈ P we haveD(x, y) ≤ cf ·D′(f(x), f(y))
and expansion ef if ef ·D(x, y) ≥ D′(f(x), f(y)). The dis-
tortion of an embedding is the product of its expansion and
its contraction.

We need the following tail inequality for heavy-tailed ran-
dom variables.

Theorem 4. (Lemma 1 of [7]) Let Ψ1, . . . ,Ψs be inde-
pendent, non-negative random variables with probability den-
sity functions fΨ1 , . . . , fΨs such that max1≤i≤s ‖fΨi‖∞ =
B <∞. Then for every t > 0 and u > 0,

Pr[

s∑
i=1

Ψu
i < t] ≤ (B′B)sts/u

u
s−1
2 ss/u+1/2

,

where B′ > 0 is an absolute constant.

In our streaming applications we assume access to a truly
random string of length n · poly(m/ε). This assumption
can be removed via a technique introduced by Indyk [27].
We show in the full version of the paper how to do this by
incurring an additional O(logn) factor in the space, and a
multiplicative O(S logn) factor in the update time, where
S is the space of the algorithm with true randomness. To
achieve our fastest time complexities in an offline setting,
one should instead use true randomness.

3. LINEAR OBLIVIOUS EMBEDDINGS OF
SUBSPACES OF L1

Let A be an n× d matrix with full rank. We show how to
embed the column space of A into low-dimensional `1.

Theorem 5 (Linear Oblivious Embeddings). Let
L = {y ∈ Rn : x ∈ Rd, Ax = y} be an arbitrary d-dimensional
linear subspace of Rn, i.e., L is the column space of an n×d
matrix A of rank d. Then there is an r0 = r0(d) = O(d log d)
and a sufficiently large constant C0 > 0, such that for any
r with r0 ≤ r ≤ dO(1), and any constant C ≥ C0, if R is
an r × n matrix whose entries are choosen i.i.d. from the
Cauchy distribution and are scaled by C/r, then with proba-
bility at least 99/100 for every y ∈ L:

‖y‖1 ≤ ‖Ry‖1 ≤ O(d log d)‖y‖1 ,

i.e., the function f : Rn → Rr, f(y) := Ry, is a linear
oblivious embedding for d-dimensional subspaces of `n1 into

`
O(d log d)
1 with distortion O(d log d). The constant in the O-

notation depends on the choice of C and the exponent in the
dO(1) term.

Proof. The probability density function (p.d.f.) of a
standard Cauchy distribution is φ(x) = 1

π
· 1

1+x2
. It is 1-

stable, meaning that if X1, . . . Xn are i.i.d. Cauchy, then∑
aiXi is distributed as (

∑
|ai|) ·X for a Cauchy X. Let R

be an r×n-matrix whose entries are chosen from the Cauchy
distribution and scaled by a factor C/r. Thus, the result of
the embedding f : Rn → Rr, f(y) := Ry, applied to a

point y ∈ L, is distributed in each coordinate as a standard
Cauchy scaled by C‖y‖1/r and is therefore not concentrated
because a Cauchy random variable has unbounded mean.
We analyze the probability that ‖Ry‖1 ≈ ‖y‖1, which will
happen if the sum of i.i.d. half-Cauchy1 random variables
falls in a certain range. To determine this range, we use
Theorem 4 to analyze the lower tail, while we use a Markov
bound to analyze the upper tail. Intuitively, the lower tail of
such a sum behaves like a sum of binomially distributed ran-
dom variables, while the upper tail tends to be distributed
as a Cauchy random variable.

Lemma 6 (No Contraction). There is a constant C1 >
0 such that for any r ≥ 1 and any constant C ≥ C1, if R
is an r × n matrix whose entries are i.i.d. standard Cauchy
random variables scaled by C/r then, for any fixed y ∈ Rn,

Pr[‖Ry‖1 < ‖y‖1] ≤ 1

2r

.

Proof. We can assume, by linearity, that ‖y‖1 = 1. By
1-stability of the Cauchy distribution, we have that Rj∗y is
distributed as a Cauchy variable scaled by C

r
· ‖y‖1 and so

r
C
· 1
‖y‖1

· ‖Ry‖1 = r
C
· ‖Ry‖1 is the sum of r i.i.d. half-

Cauchy random variables. As the density function of a half-
Cauchy is 2

π
1

1+x2
, it satisfies the condition of Theorem 4

with B = O(1). Applying Theorem 4 with s = r, u = 1 and
t = r

C
· 1
‖y‖1

= r
C

,

Pr[‖Ry‖1 < ‖y‖1] = Pr[
r

C
· ‖Ry‖1 <

r

C
· ‖y‖1]

≤
(B′′)r

(
r
C

)r
rr+1/2

≤ 1

2r
,

for a constant B′′. Here the last inequality follows for C ≥
C1 := 2B′′ a sufficiently large constant. The lemma fol-
lows.

We would like to apply this lemma to a net on a sphere
inside the subspace L. If the net is sufficiently fine, we not
only approximate the vectors of the net, but any vector in
the subspace. This approach works for the lower bound, but
has no guarantees for the upper bound. Since the upper tail
of a sum of half-Cauchy’s is heavy-tailed, there is indeed no
analogue for the upper bound. We instead condition on the
average dilation of a basis vector in a fixed well-conditioned
basis of the space being small. This single event turns out
to be sufficient to claim small dilation for all vectors in L.
We do not know how to upper bound the distortion of our
embedding without using the existence of a well-conditioned
basis, which we have not seen used to obtain embedding
results before.

The statement of Theorem 5 does not depend on the rep-
resentation of L = {y ∈ Rn : Ax = y}. Therefore, in
the remainder of the proof we will assume that A is a well-
conditioned basis that satisfies the guarantees of Theorem 3,
that is, the column space of A is a (d, 1, 1)-well-conditioned
basis for L.

1We use half-Cauchy to refer to the distribution of |X|,
where X is a standard Cauchy.

Lemma 7 (Fixed Sum of Dilations). Let R be an r×
n matrix whose entries are i.i.d. standard Cauchy random
variables scaled by C/r for a constant C, r ≥ 1. Then there
is a constant C2 = C2(C) > 0 such that for any fixed set
{y1, . . . , yd} of d vectors in L,

Pr[

d∑
i=1

‖Ryi‖1 ≥ C2 log(rd) ·
d∑
i=1

‖yi‖1] ≤ 1

1000
.

Proof. By 1-stability of the Cauchy distribution we have
that Rj∗yi is distributed as a Cauchy variable scaled by
C
r
· ‖yi‖1 and so ‖Ryi‖1 is the sum of r i.i.d. half-Cauchy’s

Yi,1, . . . , Yi,r, each scaled by C
r
· ‖yi‖1. Like Cauchy ran-

dom variables, also half-Cauchy random variables do not
have a finite expectation. Therefore, we will use truncated
half-Cauchy’s for our analysis. For a B ≥ 2, define the
truncated half-Cauchy ZBi,j to equal Yi,j if Yi,j ≤ B, oth-

erwise ZBi,j = B. We will choose the value of B in such a
way that the probability that any Yi,j exceeds B is small.
Since we have O(rd) half-Cauchy’s and by the p.d.f. of
the Cauchy distribution, this is true for sufficiently large
B = O(rd). This way we can reduce our analysis to the
analysis of truncated half-Cauchy’s, which have a finite ex-
pectation. Namely, it is known that E[ZBi,j] = O(logB) [27].

Put Yi =
∑r
j=1 Yi,j and ZBi =

∑r
j=1 Z

B
i,j . For any constant

C2 > 0 we get

Pr[

d∑
i=1

‖Ryi‖1 ≥ C2 · logB

d∑
i=1

‖yi‖1]

≤ Pr[∃i, j | Yi,j > B]

+ Pr[
C

r

d∑
i=1

Yi · ‖yi‖1 ≥ C2 logB

d∑
i=1

‖yi‖1 | ∀i, j Yi,j ≤ B].

For B = O(rd) sufficiently large, we have

Pr[∃i, j | Yi,j > B] ≤ 1

2000
.

By Markov’s inequality we then have,

Pr[
C

r

d∑
i=1

Yi · ‖yi‖1 ≥ C2 logB

d∑
i=1

‖yi‖1 | ∀i, j Yi,j ≤ B]

≤
E[
∑d
i=1 Yi ·

C
r
· ‖yi‖1 | ∀i, j Yi,j ≤ B]

C2 logB
∑d
i=1 ‖yi‖1

=
E[
∑d
i=1 Z

B
i · Cr · ‖yi‖1 | ∀i, j Yi,j ≤ B]

C2 logB
∑d
i=1 ‖yi‖1

≤
E[
∑d
i=1 Z

B
i · Cr · ‖yi‖1]

C2 logB
∑d
i=1 ‖yi‖1

where the equality follows from the definition of ZBi and
the constraint Yi,j ≤ B for all i, j and the last inequality
follows from E[ZBi | ∀i, j Yi,j ≤ B] ≤ E[ZBi]. Now we use
E[ZBi,j] = O(logB) and linearity of expectation to get

E[
∑d
i=1 Z

B
i · Cr · ‖yi‖1]

C2 logB
∑d
i=1 ‖yi‖1

≤ C

r · C2
·
O(r ˙logB) ·

∑d
i=1 ‖yi‖1

logB ·
∑d
i=1 ‖yi‖1

≤ 1

2000
,

where the last inequality follows for C2 = C2(C) being large
enough. This finishes the proof.

We now define C0 := 2 ·C1 and assume that C ≥ C0. We
condition on the event

d∑
i=1

‖RA∗i‖1 < C2 log(rd) ·
d∑
i=1

‖A∗i‖1

for the constant C2 = C2(C) from Lemma 7. This event is
guaranteed to hold with probability 999/1000 by Lemma 7
applied to the columns A∗1, . . . , A∗d of the well-conditioned
basis A. We show below that this suffices for the upper
bound on the expansion of the embedding f(y) = Ry. Let y
be an arbitrary point from L. Using that y = Ax for some
x ∈ Rd we get

‖Ry‖1 = ‖RAx‖1
≤

∑
1≤j≤d

‖RA∗jxj‖1

=
∑

1≤j≤d

|xj | · ‖RA∗j‖1

≤ ‖x‖∞C2 log(rd)
∑

1≤j≤d

‖A∗j‖1,

where the first inequality follows from the triangle inequality
and the last inequality follows with probability 999/1000
by Lemma 7. We continue by using the properties of well-
conditioned bases, i.e.

∑
1≤j≤d ‖A∗j‖1 = ‖A‖1 ≤ d and

‖x‖∞ ≤ ‖Ax‖1, as well as y = Ax to obtain

‖x‖∞C2 log(rd)
∑

1≤j≤d

‖A∗j‖1 ≤ C2 · d log(rd)‖y‖1 (1)

which is O(d log d) · ‖y‖1 provided that r = dO(1). To com-
plete the upper bound, we now specify r0, and to do so, fill
in the details of the lower bound.

Definition 8. Let A be an n× d matrix of full rank and
L = {y ∈ Rn : y = Ax, x ∈ Rd} be its column space. A
γ-net of the `1-unit sphere Sd−1 in the subspace L, Sd−1 =
{y ∈ L | ‖y‖1 = 1}, is a set G ⊂ Sd−1 of points so that for
every y ∈ Sd−1, there is a point g ∈ G for which ‖y− g‖1 ≤
γ.

A standard result (see, e.g., the ball B on page 2068 of
[19]) is that for any γ ∈ (0, 1), a γ-net G of size at most
(3/γ)d exists. Let G be a γ-net for γ = 1

C2d log(rd)
and define

r0 := inf{r|r ≥ log(1000) + log((3
γ

)d)}+ 1 = O(d log d). For
r ≥ r0 and C ≥ C1 we obtain by Lemma 6 for any fixed
y ∈ Rn

Pr[‖Ry‖1 < ‖y‖1] ≤ 1

1000
· 1

(3/γ)d
.

By the union bound we obtain with probability at least
999/1000 for every g ∈ G, ‖Rg‖1 ≥ ‖g‖1. Further, since C is
the scaling factor of our embedding, we obtain for C ≥ C0 =
2·C1 that with probability at least 999/1000 for every g ∈ G,
‖Rg‖1 ≥ 2 · ‖g‖1. Now consider an arbitrary vector y ∈ L
with ‖y‖1 = 1. Then we can write y = g + z, where g ∈ G
is the grid point closest to y. By our choice of γ, we have
‖z‖1 ≤ 1

C2d log(rd)
. Since y, g ∈ L, so is z = y − g, and so by

Equation 1 we obtain ‖Rz‖1 ≤ 1. By our discussion above,

we also have ‖Rg‖1 ≥ 2·‖g‖1 = 2. Now, the triangle inequal-
ity implies ‖Ry‖1 ≥ ‖g‖1−‖z‖1 ≥ 1. Since an arbitrary vec-
tor y′ ∈ L can be written as ` · y for a unit vector y ∈ L, by
the linearity, we have ‖Ry′‖1 = ‖R(` · y)‖1 = ` · ‖Ry‖1 ≥ `.
We conditioned on two events that each occur with proba-
bility 999/1000. Thus the theorem follows for our choices of
C0 and r0 by the union bound.

4. FAST AND SIMPLE COMPUTATION
OF WELL-CONDITIONED BASES

In this section we give a simple algorithm for comput-
ing well-conditioned bases that avoids the computation of
a Löwner-John ellipsoid and linear programming techniques
of previous approaches [16, 19]. Our algorithm is also much
faster than the algorithms of previous approaches. Let A be
an n×m matrix of rank d.

As mentioned in Section 1, the algorithm consists of three
steps: (1) compute RA, where R is the linear oblivious sub-
space embedding, (2) compute an m × d matrix X so that
RAX is orthonormal, and (3) output AX.

Theorem 9 (Well-Conditioned Basis Algorithm).
Let A be an n×m matrix of rank d, and let R be an r×n ma-
trix, r ≥ r0, satisfying the conditions guaranteed with prob-
ability at least 99/100 by Theorem 5. Let U ′ = RAX be an
(α, β, 1)-well-conditioned basis for the column space of RA.
Then U = AX is an (α,O(d log d) · β, 1)-well-conditioned
basis for the column space of A.

Proof. Let A be an arbitrary n × m matrix of rank d
and let R be a matrix satisfying the precondition of the
theorem. Let L = {y ∈ Rn : y = Ax, x ∈ Rm} be the column
space of A. Note that L has dimension d and that Theorem
5 applies since it is independent of the representation of
L. Let U ′ = RAX be an (α, β, 1)-well conditioned basis
of RA and let U = AX. We have ‖x‖∞ ≤ β‖U ′x‖1 by
the definition of a well-conditioned basis. Hence, ‖x‖∞ ≤
β·‖U ′x‖1 = β·‖RAXx‖1 = O(β·d log d)·‖AXx‖1, where the
last equality follows from Theorem 5 since AXx is a vector
in L. It remains to show that ‖AX‖1 is small. Observe
that ‖U ′‖1 = ‖RAX‖1 ≤ α by the definition of a well-
conditioned basis. We have

α ≥ ‖U ′‖1 = ‖RAX‖1 =
∑

1≤j≤d

‖RAX∗j‖1

≥
∑

1≤j≤d

‖AX∗j‖1 = ‖AX‖1 ,

where the last inequality follows from Theorem 5 since AX∗j
is in L. Notice that U is indeed a basis for the column space
of A, since it is contained in the column space of A and by
the property above, preserves all lengths of vectors in the
column space of A up to a relative error. Hence, U is an
(α,O(d log d)β, 1)-well-conditioned basis.

Theorem 10 (Algorithm Efficiency). Let A be an
n×m matrix of rank d. Then there is an algorithm that com-
putes in time (ndω−1 +nm+d3) ·polylog(m) with probability
49/50 an (α, β, 1)-well-conditoned matrix AX of the column

space of A with α = O(d3/2 log1/2 d) and β = O(d log d),
where ω < 2.376 is the matrix multiplication exponent. The
algorithm also outputs X in the same amount of time.

Proof. Theorem 5 asserts that with probability 99/100
the preconditions of Theorem 9 are satisfied, provided we

choose dO(1) ≥ r ≥ r0 = O(d log d). Now, our algorithm
computes U ′ = RAX which is an orthonormal basis. It
follows that each column U ′∗j of U ′ satisfies ‖U ′∗,j‖2 = 1, and
since U ′∗j has O(d log d) coordinates, ‖U ′∗j‖1 = O(

√
d log d).

It follows that ‖U ′‖1 = O(d3/2 log1/2 d). Moreover,

‖x‖∞ ≤ ‖x‖2 = ‖U ′x‖2 ≤ ‖U ′x‖1,

and so U ′ is an (O(d3/2 log1/2 d), 1, 1)-well-conditioned basis
for the column space of RA. It follows by Theorem 9 that
AX is an (O(d3/2 log1/2 d,O(d log d), 1)-well-conditioned ba-
sis for the column space of A.

For the time taken, we show how with probability 99/100,
in (ndω−1 + nm + d3) · polylog(m) time we can replace
A with an n × d · polylog(m) matrix A′ with the same
column space. Given this, the overall time complexity of
(ndω−1 + nm + d3) · polylog(m) follows, since, we can in
d3 ·polylog(m) time compute an orthornormal basis RA′X of
the d log d×d ·polylog(m) matrix RA′, as well as the matrix
X, via a QR-decomposition, and we can perform the matrix
multiplications RA′ and A′X in time ndω−1polylog(m) via
fast matrix (block) multiplication.

To quickly find the rank of A, we use a result of Ailon and
Liberty [3] with a binary search, though other methods are
also possible.

Theorem 11. ([3]) Suppose we choose a k × m matrix
Φ, drawing each row uniformly at random from the unnor-
malized m × m Hadamard matrix, and then we choose an
m ×m diagonal matrix D with each diagonal element uni-
formly chosen from {−1, 1}. Then for any set G of N vec-
tors, with probability at least 3/4, if k = Θ(logN log4 m)

then for every x ∈ G, ‖ΦDx‖2 =
√
k(1± 1/3)‖x‖2. For any

x ∈ Rm, ΦDx can be computed in O(m logm) time.

Let γ = 1
2
√
m

. We apply Theorem 11 to a γ-net G of the

space of {xTA | ‖xTA‖2 = 1}. Since the column space of A
has rank d, the row space of A has rank d. So the number of

points in the γ-net is ≤
(

3
γ

)d
. Suppose we apply Theorem

11 with k = Θ(d log5 m). For y ∈ {xTA | ‖xTA‖2 = 1}, we
write y = g + z, where g ∈ G and ‖z‖2 ≤ γ. Since Φ is a
sign matrix, for any row Φi∗, Φi∗Dz ≤ ‖z‖1. Hence, using
a basic relationship between the `1 and `2 norms,

‖ 1√
k

ΦDz‖2 ≤ ‖z‖1 ≤
√
m · γ ≤ 1

2
.

By the triangle inequality and now assuming that the guar-
antees of the mapping of Theorem 11 hold for all g ∈ G,

‖ 1√
k

ΦDy‖2 ≥ ‖
1√
k

ΦDg‖2 − ‖
1√
k

ΦDz‖2 ≥ 1− 1

3
− 1

2
> 0.

Hence, with probability at least 3/4, rank(ADTΦT) = d.
Now that ADTΦT is an n× d ·polylog(m) matrix, we can

use the following lemma.

Lemma 12. (special case of Lemma 3,4 of [18]) If S is
an O(d) × n sign matrix and B is an n × d matrix with
orthonormal columns, then with probability at least 3/4, for
all x with ‖x‖2 = 1, it holds that ‖SBx‖2 > 0.

Letting B be a set of orthonormal columns in the column
space of ADTΦT of maximal rank, and applying Lemma 12,
it follows that for a random O(d) × n sign matrix S, with
probability at least 3/4, rank(SB) = rank(B). By a union

bound, with probability at least 1/2, rank(SADTΦT) = d.
By repeating the procedure O(log log d) times and taking
the maximum rank found, with probability 1− 1/(100 log d)
there will be a repetition for which rank(SADTΦT) = d.

Our algorithm linearly searches for an index i for which
2i+1 > rank(A) ≥ 2i, setting d in the above procedure
to be 2i+1. In the procedure we first compute ADTΦT in
O(nm logm) time. We then compute SADTΦT in 2i(ω−1) ·
n · polylog(m) time. We then compute rank(SADTΦT) in
23ipolylog(m) time by Gaussian elimination.

Since the column space of ADTΦT is contained in that of
A, as soon as rank(ADTΦT) = d, we can set A′ = ADTΦT .
As 2i = O(rank(A)), the overall time complexity follows.
The probability of error is 99/100, by a union bound over
the at most log d guesses of i.

5. L1-REGRESSION
Regression analysis is a basic technique from statistics

used to analyze linear dependencies between data points. In
the algebraic version of `p-regression we are given an n×m
matrix A and an n-dimensional vector b and we would like
to solve

min
x∈Rm

‖Ax− b‖p.

The rows of A can be viewed as measurement points and the
corresponding entries in b as the measured value. We will
consider the regression problem for p = 1. This problem
is called `1-regression or least absolute deviation regression.
Geometrically, the `1-regression problem asks to find a hy-
perplane in Rm+1 such that the sum of absolute differences
between the bi and the values in the last coordinate of the
hyperplane at point Ai∗ are minimized.

The turnstile streaming model we consider here assumes
that the number n of input points in the stream is known (it
will suffice that n is an upper bound on the number of points
in the stream). The input stream consists of updates to an
n×m matrix A and an n-dimensional vector b. Initially, all
entries in A and b are 0. An update specifies the entry in A
or b that is updated and the amount c by which the entry is
changed. For example, an update to position (i, j) in matrix
A by a value c will add c to Ai,j . Note that c may also be
negative. At the end of the stream (or any point in time)
we would like to approximately solve the current regression
problem minx∈Rm ‖Ax− b‖1.

One can also interpret the regression problem as a prob-
lem in the n-dimensional space Rn. Namely, Ax is a linear
combination of the columns of A, so every point that can be
written as such a linear combination lies in a d-dimensional
linear subspace of Rn, where d is the rank of A. Since b is
also a vector in Rn, the regression problem can be viewed
as finding the closest point v = Ax, in a linear subspace
spanned by the columns of A, to a target point b, where the
distance is `1-distance. The vector x is the solution to the
regression problem. The cost of a solution x is ‖Ax − b‖1,
which is the `1-norm of a vector in the space spanned by the
columns of A and the vector b.

We use results from the previous sections to improve an al-
gorithm for `1-regression by Clarkson [16]. In order to solve
the `1-regression problem, the algorithm of Clarkson com-
putes a well-conditioned basis A′ of the column space of A as
well as a constant factor approximation xC . Then it sam-
ples the points (rows) of A′ with probability proportional
to the `1-norm of the rows plus the corresponding entry in

ηb′, where b′ = AxC − b is the residual from the constant
factor approximation scaled by η such that ‖ηb′‖1 = d. It
then solves the regression problem on the sample using linear
programming. The result will be, with high probability, a
(1+ε)-approximation. The time complexity of his algorithm
is O(nm5 logn+ poly(mε−1)), which is an offline algorithm
with linear space.

Our main theorem for `1-regression is the following. We
use L1R(k, d) to denote the time to solve an instance of `1-
regression instance on a k × d matrix with a k-dimensional
column vector. To achieve the dependence on d instead of
m in the offline algorithm, we use Theorem 10.

Theorem 13. There is a (1 + ε)-approximation for the
`1-regression problem with running time

O((ndω−1+β +nm+ L1R(d7/2/ε2 log(d/ε), d)) ·polylog(m)),

were ω is the exponent of matrix multiplication, and β > 0
is an arbitrarily small constant.

The algorithm can be implemented as a streaming algo-
rithm in the turnstile model. The streaming implementation
uses poly(mε−1 logn) space and has poly(mε−1 logn) up-
date time. The algorithm maintains a summary such that
with probability at least 3/4, a (1 + ε)-approximation can be
output. The time to extract a solution from the summary
maintained by the algoritm is poly(mε−1 logn).

5.1 Sketch of the proof
We will first describe and analyze the offline algorithm.

Then we will sketch how to implement the algorithm in the
streaming setting. A detailed proof will appear in the full
version of the paper. As mentioned, our algorithm is a more
efficient implementation of an algorithm of Clarkson [16].
Our main novelties over Clarkson’s algorithm are the ability
to compute the well-conditioned basis in the sketch space us-
ing our subspace-preserving embedding for `1, and to obtain
an approximate solution from the sketch space.

The main bottleneck in Clarkson’s algorithm is the com-
putation of a well-conditioned basis. We bypass this bot-
tleneck using the algorithm from Theorem 10. We first re-
place A with a well-conditioned basis A′ using Theorem 10.
We further require a constant-factor approximation to de-
fine the distribution of Clarkson’s algorithm. For this, it
is not enough to apply Theorem 5 on the column space of
A′ adjunct b. This results in an O(d log d)-approximation,
whereas we need anO(1)-approximation to achieve our fastest
running time. We instead use a lopsided embedding of In-
dyk.

Theorem 14. (Theorem 5 of [27]) For any 1 > ε > γ >
0 and δ > 0, there is a probability space over linear mappings
f : `m1 → `k1 , where k = (ln(1/δ))1/(ε−γ)/c(γ, 1 − ε), for a
function c(γ, 1−ε) > 0 depending only on γ and ε, such that
for any pair of points p, q ∈ `m1 ,

• Pr[‖f(p)− f(q)‖1 < (1− ε)‖p− q‖1] ≤ δ, and

• Pr[‖f(p)− f(q)‖1 > (1 + ε)‖p− q‖1] ≤ 1+γ
1+ε

.

Remark 15. The only difference between this and In-
dyk’s theorem is that we allow ε < 1, whereas [27] requires
ε ≤ 1/2. This difference allows us to set k to be much closer
to ln(1/δ) by setting ε very close to 1 and γ very close to
0. Inspecting the changes required of Indyk’s proof, we note

that the only difference is on p.11 of [27], where now the
value α satisfies 0 < α < 1 instead of 1/2 ≤ α < 1, but this
does not affect the remainder of the proof.

The mapping in Theorem 14 is a matrix of i.i.d. Cauchy
random variables scaled by C/k for a constant C. Let ζ > 0
be an arbitrarily small positive constant. We apply Theorem
14 with ε = 1− ζ and γ = ζ, while δ = Θ(1/(d log d))O(d+1).
Let the column space of A′ adjunct b be denoted L. By
placing a net on L we can use the first condition of Theorem
14 to argue as in the last paragraph of the proof of Theorem
5 that with probability at least 99/100, ‖f(y)‖1 ≥ ζ‖y‖1
for all y ∈ L. It follows that if also ‖f(Axopt − b)‖1 ≤
(2 − ζ)‖Axopt − b‖1, where xopt is the optimal solution,
which occurs with probability at least 1

3
by the second condi-

tion of Theorem 14, then by solving the regression problem
in the sketch space using linear programming with matrix
f(A′) and vector f(b′), we obtain an O(1)-approximation
with probability at least 1

4
. By repeating this procedure

O(1) times and taking the vector found across the repe-
titions resulting in the minimal cost, we obtain an O(1)-
approximation with probability at least, say, 99/100.

The time complexity is, up to a constant factor, at most
(ndω−1+nm+d3)·polylog(m) to compute A′, then ndω−1+β

to sketch A′, and then L1R(O(d1+β), d) to solve the smaller
regression problems, for β > 0 an arbitrarily small constant
depending on ζ. Let us call the approximate solution xC .
If the approximate solution has cost 0, we return it. Other-
wise, we continue by performing Clarkson’s weighted sam-
pling and solving the regression problem on the sample. The
pseudocode of the algorithm is given below.

FastRegression(A, b, s)
1. Compute a well-conditioned basis A′ of the column

space of A and X, A′ = AX, using the algorithm of
Theorem 10

2. Compute the O(1)-approxiation xC as described above,
using the matrix A′

3. Let R be an r0 × n matrix of i.i.d. Cauchy random variables
4. Compute A∗ = RA′ and b∗ = Rb
5. If ‖A∗xc − b∗‖1 = 0 then return Xxc
6. Compute the residual vector b′ = A′xC − b and

scale it by a factor η such that η · ‖b′‖1 = d3/2 log1/2 d
Define b′′ = η · ‖b′‖1

7. Sample a set of s rows from A′ adjunct b′′

such that the probability to sample row i is

pi = min{1, s · (‖A′i∗‖1 + |b′′i |)/(d3/2 log1/2 d)}
8. Assign a weight wi = 1/pi to each sample row
9. Solve the weighted problem to obtain solution x∗

10. Return Xx∗/η

We now briefly analyze the algorithm and show a value
of s for which it is correct. The idea is to prove that for a
sufficient discretization of the solution space every solution
is approximated by our random sample. From this, it follows
that the solution returned is a (1 + ε)-approximation. The
analysis is similar to that of Clarkson [16].

Let A′ be an (α, β, 1)-well conditioned basis with α =

O(d3/2 log1/2 d) and β = O(d log d) being the values guar-
anteed by Theorem 10. We will first argue that any solu-
tion x to ‖A′x− b′′‖1 that achieves an approximation ratio
better than 2 satisfies ‖x‖∞ ≤ 3 · β · ‖b′′‖1. This can be
seen as follows. By the definition of a well-conditioned ba-
sis, ‖x‖∞ ≤ β‖Ax‖1 and so ‖x‖∞ > 3 · β · ‖b′′‖1 implies

that ‖A′x − b′′‖1 ≥ ‖A′x‖1 − ‖b′′‖1 > 2 · ‖b′′‖1. Further
the solution x = 0 has cost ‖b′′‖1. Hence, x is not a 2-
approximation.

The cost of an optimal solution is Θ(d3/2 log1/2 d) since
the solution xC is an O(1)-approximation (and due to the
scaling of b′).

Our next step is to prove the following lemma, which,
together with an appropriate discretization of the solution
space, proves the approximation guarantee of the algorithm.

Lemma 16. Let Z be a diagonal matrix with Zii = 1/pi
with probability pi and 0, otherwise. Let xf ∈ Rd be fixed

with ‖xf‖∞ = O(d5/2 log3/2 d). There is an

s0 = O(d5/2 log3/2 d ln(1/δ)/ε2),

such that for any s ≥ s0 we have

Pr[
∣∣‖Z(A′xf − b′′)‖1 −‖A′xf − b′′‖1

∣∣ > ε‖A′xf − b′′‖1] ≤ δ.

Proof. We first observe that E[‖Z(A′xf−b′′)‖1] = ‖A′xf−
b′′‖1 = Ω(d3/2 log1/2 d). We can assume that pi < 1 for ev-
ery pi since any pi = 1 will only increase the expected value
but does not contribute to the variance. Further, we have
‖A′i∗xf −b′′i ‖1 ≤ ‖A′i∗xf‖1 +‖b′′i ‖1 ≤ ‖A′i∗‖1 ·‖xf‖∞+‖b′′i ‖1
by Hölder’s inequality. Hence,

‖A′i∗xf−b
′′
i ‖1

‖A′i∗‖1+‖b′′i ‖
≤ ‖xf‖∞ + 1.

This implies that 1
pi
· ‖A′i∗xf‖1 = O(d4 log2 d/s). We choose

s0 = O(d5/2 log3/2 d ln(1/δ)/ε2) sufficiently large. After ap-
propriate scaling we can apply Chernoff bounds on inde-
pendent random variables in the real unit interval [0, 1] to
obtain:

Pr[
∣∣‖Z(A′xf − b′′)‖1 −‖A′xf − b′′‖1

∣∣ > ε‖A′xf − b′′‖1] ≤ δ.

It remains to find a sufficiently dense discretization of the
possible solutions. We observe that ‖A′x − b′′‖1 changes
by at most κ · ‖A′‖1 ≤ κα, if we change a coordinate of
x by κ. If we discretize all coordinates in steps of κ, then
changing to the nearest coordinate changes the cost of a
solution to ‖A′x−b′′‖1 by at most κ·d·α. Further, ‖ZA′‖1 =

dO(1) with probability at least 99/100 by Markov’s bound.

Hence, a solution to ‖Z(A′x− b′′)‖ with ‖x‖∞ ≤ dO(1) also

changes by at most κ · dO(1). It follows that by setting κ =
ε/dO(1) we have a net of the solution space of all x, ‖x‖∞ =

O(d5/2 log1.5 d) of size (d/ε)O(d) and such that any solution
in our solution space is approximated by the closest solution
from the net. If we apply Lemma 16 with δ = (ε/d)O(d)

to all solutions from the net, we know by the union bound
and the previous discussion that each solution with ‖x‖∞ =

O(d5/2 log1.5 d) is approximated by our sample upto a factor
of 1 +O(ε). Thus, the solution returned by our algorithm is
a (1 + ε)-approximation.

The running time of the algorithm is, as discussed above,
(ndω−1+nm+d3)·polylog(m)+ndω−1+β+L1R(O(d1+β), d)
for steps 1 and 2. Steps 3-8 can be implemented in ndω−1

time. The remaining steps can be done in L1R(O(d7/2/ε2 ·
log(d/ε)), d) time.

The streaming algorithm.
We will now discuss, how the previous algorithm can be

turned into a streaming algorithm. We observe that lines
1-5 of the algorithm can be implemented relatively easy in

the streaming setting. The main difference is that in order
to compute a well-conditioned basis, in Theorem 10 we do
not perform the optimization using Theorem 11 to replace
the number m of columns of A with d. Instead, we just use
m (this is because we cannot do a binary search to find d in
a single-pass). As a result, we get slightly different parame-
ters for the well-conditioned basis and our space complexity
depends more significantly on m (rather than d). Maintain-
ing the product of a matrix R and the input matrix A and
vector b is easy in a data stream since R is a linear map.
The only issue here is that we cannot store the whole ma-
trix R. Instead we use a standard approach introduced by
Indyk [27] to generate the entries on the fly using Nisan’s
pseudorandom generator. Details can be found in the full
version of the paper.

The main difficulty is to implement the sampling step in
lines 6-8. In the streaming context it is not possible to
sample using exactly the distribution of Clarkson. Fortu-
nately, data structures with approximately the same guar-
antees were already designed by Andoni et al. [5] in an unre-
lated context of estimating the earthmover distance, and we
can almost directly use them here. The only obstacle to ap-
ply their sampling algorithm is that Clarkson’s distribution
depends on the well-conditioned basis A′ and the approxi-
mate solution xC rather than the input matrix A. The main
novelty of our streaming algorithm and its analysis is show-
ing that noisy approximations to sampled rows as provided
by [5] can be maintained and used instead of exact sam-
ples to solve a smaller regression instance in a single pass,
providing a good approximation to the original regression
problem.

Thus, we need to maintain a sketch that on input X and
xC returns a row of AX adjunct b′′ distributed according
to the distribution in Clarkson’s algorithm. This sketch is
independent of the sketch used for the computation of xC
and X. It receives X and xC as input at the end of the
stream. This sketch

1. only approximates the distribution in Clarkson’s algo-
rithm,

2. only guarantees that a noisy sampled row is returned,

3. works even if X and b′′ are not known until the end of
the stream.

For our space complexity, we also need later that we can
round the entries of X in such a way that AX is still well-
conditioned when X is of bounded precision. The proof of
this is given in the full version of the paper.

Lemma 17. Suppose the entries of A are integer multiples
of (nm)−O(1), and bounded in absolute value by (nm)O(1)

and that α, β = (nm)O(1). Suppose AX ′ is an (α, β, 1)-well-
conditioned basis with ‖AX ′‖1 ≤ α and ‖z‖∞ ≤ β‖AX ′z‖1
for all z ∈ Rd and we round each of the entries of X ′ to the
nearest integer multiple of (nm)−O(1), obtaining a matrix
X. Then the matrix AX is a 1-well-conditioned basis of
the columnspace of A with ‖AX‖1 ≤ α + 1 and ‖z‖∞ ≤
(β + 1)‖AXz‖1 for all z ∈ Rd.

In the streaming algorithm we will round the entries in
matrix X to the nearest multiple of (nm)−O(1), satisfying
the requirements of Lemma 17.

The sampling data structure.
During the processing of the stream we treat several quan-

tities as formal random variables. Since our sketch is linear,
it suffices to maintain the coefficients of these variables and
plug in their values when they become available. For exam-
ple, we do not know b′, so we write b′ = A′xC−b treating the
vector xC as a formal variable. Similarly, we do not know
X, so we treat the entries of X as formal random variables.

Our algorithm requires a value W for which ‖A′xc−b‖1 ≤
W ≤ 2·‖A′xc−b‖1. Since we do not know xc until the end of
the stream, it suffices to guess the value W , and O(log(nm))
guesses suffice. In parallel we run the sketching algorithm
of Theorem 14, which can naturally be implemented in as
a streaming algorithm, to obtain an O(1)-approximation.
These sketches are linear, so we can treat the entries of
xC as formal variables, and plug them in at the end of the
stream, thereby obtaining W . Similarly, we obtain M ′ with
‖AX‖1 ≤ M ′ ≤ 2 · ‖AX‖1. These sketches use O(m2 logn)
total bits of space (since we treat the entries of X as for-
mal variables, since we do not know X until the end of the
stream). Here we use the sketching algorithm of [31] which
estimates the `1-norm of a vector (or matrix) up to an O(1)-
factor in O(logn) bits of space.

Define b′′ = mb′/W and let B be the matrix AX adjunct
b′′. Furthermore, let M = M ′ + m be an upper bound on
‖B‖1. Define thresholds tj := η ·M/2j , where η is chosen
uniformly at random from [1, 2]. Define level j to be the set
Ij = {i : ‖Bi∗‖1 ∈ (tj , 2 · tj]}.

We fix a level j and consider only the rows indexed in Ij .
Since each row ofB whose index is in Ij has roughly the same
norm, it is sampled with roughly the same probability in the
regression algorithm. We therefore try to sample from these
rows roughly uniformly at random. The idea is to subsample
elements from Ij and hash them to buckets such that, ideally,
no elements from

⋃
j′≤j Ij′ collide. The hashing also creates

noise based on rows from
⋃
j′>j Ij′ . However, the norm of

the noise is typically small compared to the norm of elements
of
⋃
j′≤j Ij′ . So we can recognize all buckets containing rows

from Ij , and return them.
The sampling data structures by Andoni et al. [5] are

referred to as Sampler and Extract. Algorithm Sampler
hashes rows randomly into a small number of buckets. In
each bucket the vector sum of rows hashed to the bucket is
maintained. The vectors with large norm will be perfectly
hashed. Sampler also sub-samples the rows in powers of 2,
and maintains a hashing for each level of sub-sampling. The
idea behind Extract is to walk through the buckets in each
sub-sampling phase, check if the norm in the bucket is in a
given level (up to a small error for noise), and if so, return a
weighted version of the row to be used in a smaller regression
instance. Our data structures only differ in the following
simple ways from the Sampler and Extract algorithms
used in [5] for other purposes: (1) we do not know the matrix
AX until the end of the first pass, and (2) we need (at least)
(1 ± ε)-approximations to the norms of the sampled rows
for regression (as opposed to just O(1)-approximations), so
we need to use randomly shifted thresholds. This makes it
unlikely that any of the rows we sample will be near the
borders of the level it belongs to, and so it will be correctly
classified. We note that the idea of using randomly shifted
thresholds was also used in a precursor to the work of [5],
namely in [29]. We defer these data structures to the full
version of the paper.

The analysis of the streaming algorithm is similar to that
of the offline algorithm. The main difference is that we also
have to handle the noise incurred by our data structure, i.e.,
we do not recover rows of B (recall that B is the matrix AX
adjunct b′′), but rather there are other rows of B of small
`1-norm which also collide with the sampled rows of B (the
`1-norms of the colliding rows are smaller because in the
level of sub-sampling for which the sampled row is obtained,
it is one of the rows of largest `1-norm). The sampling data
structure guarantees that with high probability, the noise
of colliding rows for every sample row Bi∗ is of `1-norm at
most ζ‖Bi∗‖1 for a value ζ > 0 specified below. Thus, the
output of the sampler is a vector Bi∗ + Ni∗, where Ni∗ is
an arbitrary noise vector of `1-norm at most ζ‖Bi∗‖1. From
the analysis of the offline algorithm, we can restrict ourselves
to solutions x with ‖x‖1 = mO(1) (recall that we use m in
place of d for the streaming algorithm). Further, the cost
of any such solution is well-approximated by the solution
to the `1-regression problem on our set of sampled rows.
Also, by the scaling of b′ used to obtain b′′, we have that
an optimal solution has cost Ω(m). Hence, any solution has
cost Ω(m), plus or minus the cost incurred by the noise.

We further have that wi · ‖Ni∗‖1 = ζ ·mO(1)/s since wi =

max{1,mO(1)/(s · ‖Bi∗‖1)} and ‖Ni∗‖1 ≤ ζ‖Bi∗‖1. Hence,

since ‖x‖1 = mO(1), we also have that wi · ‖Ni∗ · x‖1 =

ζ ·mO(1)/s. If we now sum up over all sampled rows and set

ζ = ε/mO(1), then the overall effect of the noise is bounded
byO(ε·m) with high probability, and so any solution changes
its cost by at most an additional factor of 1 + ε. Thus, it is
sufficient to continue the analysis as in the case of the offline
algorithm, for which there is no noise on the samples.

6. L1-NORM BEST FIT HYPERPLANE
PROBLEM

Our `1-regression algorithm gives the first efficient so-
lution for the `1-norm best fit hyperplane problem in the
streaming model. Here one has n points in Rm, and one
wants a hyperplane that minimizes the sum of `1-distances
of the input points to the hyperplane. Our algorithm for
the `1-norm best fit hyperplane problem is the first 1-pass
algorithm, works in the general turnstile model, and uses
poly(mε−1 logn) space for (1+ε)-approximation. The total
time is n · poly(mε−1 logn).

Our algorithm relies on the following lemma, shown in
[10, 38]. For each subset S of m− 1 columns of A, let A(S)
be the n × (m − 1) submatrix of A consisting of columns
in S. Let Am−1 be the n ×m matrix representing the `1-
projections of the n points onto a hyperplane minimizing the
sum of `1-distances, where we use `1-projection of a point
p on a hyperplane to denote the closest point to p on the
hyperplane (breaking ties arbitrarily).

Lemma 18. (Observed in [10])

‖A−Am−1‖1 = min
j∈[m]

min
x∈Rm

‖A([m] \ {j})x−A({j})‖1.

Proof. In Corollary 2.3 of [38], it is shown that if w
is the normal vector for the hyperplane and q is the `1-
projection onto it, then one of its possible `1-projections is

p(q) = q − 〈w,q〉
‖w‖∞ · y(w), where y(w) is any vector which

is sign(wi) on a coordinate i for which wi = ‖w‖∞, and
is 0 on all other coordinates. The `1-projection amounts
to changing one coordinate of q, and the identity of this

coordinate depends only on w. Hence, ‖A − Am−1‖1 =
minj∈[m] minx∈Rm |A([m] \ {j})x−A({j})|1.

This leads to the following algorithm. For each j ∈ [m], we
solve the `1-regression problem minx∈Rm ‖A([m] \ {j})x −
A({j})‖1 up to a (1 + ε)-factor using our `1-regression algo-
rithm. We can solve `1-regression for all sets S by multiply-
ing the space and time by a factor of m. We return the set
S and corresponding x which result in the minimum cost.
We therefore have the following theorem.

Theorem 19. There is a 1-pass n·poly(mε−1 logn)-time
poly(mε−1 logn)-space algorithm for approximating the `1-
norm best fit hyperplane problem up to a factor of 1 + ε in
the turnstile model.

Acknowledgements. We thank Ken Clarkson, Piotr In-
dyk, and the anonymous referees for helpful comments.

7. REFERENCES
[1] S. Agarwal, M. K. Chandraker, F. Kahl, D. J. Kriegman, and

S. Belongie. Practical global optimization for multiview
geometry. In ECCV (1), pages 592–605, 2006.

[2] N. Ailon and B. Chazelle. The fast johnson–lindenstrauss
transform and approximate nearest neighbors. SIAM J.
Comput., 39(1):302–322, 2009.

[3] N. Ailon and E. Liberty. An almost optimal unrestricted fast
johnson-lindenstrauss transform. In SODA, 2011.

[4] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of
Approximating the Frequency Moments. J. Comput. Syst.
Sci., 58(1):137–147, 1999.

[5] A. Andoni, K. D. Ba, P. Indyk, and D. P. Woodruff. Efficient
sketches for earth-mover distance, with applications. In FOCS,
pages 324–330, 2009.

[6] H. Auerbach. On the Area of Convex Curves with Conjugate
Diameters. PhD thesis, University of Lwów, Lwów, Poland,
1930. (in Polish).

[7] J. Bernués and M. López-Valdes. Tail estimates and random

embedding of `np into `(1+ε)n
r , 0 < r < p < 2. 1–2:9–18, 2007.

[8] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation
of zonoids by zonotopes. Acta Math, 162:73–141, 1989.

[9] B. Brinkman and M. Charikar. On the impossibility of
dimension reduction in `1. J. ACM, 52(5):766–788, 2005.

[10] J. Brooks and J. Dulá. The `1-norm best-fit hyperplane
problem. Technical report, Optimization Online, 2009.

[11] J. Brooks, J. Dulá, and E. Boone. A pure `1-norm principal
component analysis. Technical report, Optimization Online,
2010.

[12] N. Campbell. Robust procedures in multivariate analysis i:
Robust covariance estimation. Applied Statistics, 29:231–237,
1980.

[13] E. J. Candès and T. Tao. Near-optimal signal recovery from
random projections: Universal encoding strategies? IEEE
Transactions on Information Theory, 52(12):5406–5425, 2006.

[14] M. Charikar and A. Sahai. Dimension reduction in the `1
norm. In FOCS, pages 551–560, 2002.

[15] S. Chetterjee, A. Hadi, and B. Price. Regression Analysis by
Example. Wiley, New York, 2000.

[16] K. L. Clarkson. Subgradient and sampling algorithms for `1
regression. In SODA, 2005.

[17] K. L. Clarkson. Tighter bounds for random projections of
manifolds. In Symposium on Computational Geometry, pages
39–48, 2008.

[18] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra
in the streaming model. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC), pages
205–214, 2009.

[19] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W.
Mahoney. Sampling algorithms and coresets for `p regression.
SIAM J. Comput., 38(5):2060–2078, 2009.

[20] M. Day. Polygons circumscribed about closed convex curves.
Trans. Amer. Math. Soc., 62:315–319, 1947.

[21] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós.
Faster least squares approximation. CoRR, abs/0710.1435,
2007.

[22] D. Feldman, M. Monemizadeh, C. Sohler, and D. P. Woodruff.
Coresets and sketches for high dimensional subspace problems.
In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2010.

[23] O. Friedland and O. Guéden. Random embedding of `np into

`nr . 2010.

[24] J. Galpin and D. Hawkins. Methods of `1 estimation of a
covariance matrix. Computational Statistics and Data
Analysis, 5:305–319, 1987.

[25] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer-Verlag, New York, 2003.

[26] P. Indyk. Algorithmic applications of low-distortion
embeddings. In FOCS, pages 10–33, 2001.

[27] P. Indyk. Stable distributions, pseudorandom generators,
embeddings, and data stream computation. J. ACM,
53(3):307–323, 2006.

[28] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC, pages
604–613, 1998.

[29] P. Indyk and D. P. Woodruff. Optimal approximations of the
frequency moments of data streams. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing (STOC),
pages 202–208, 2005.

[30] W. Johnson and G. Schechtman. Very tight embeddings of
subspaces of lp, 1 = p < 2, into `np . Geometric and Functional

Analysis, (4):845–851, 2003.

[31] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact
space complexity of sketching and streaming small norms. In
SODA, 2010.

[32] Q. Ke and T. Kanade. Robust subspace computation using `1
norm, 2003. Technical Report CMU-CS-03-172, Carnegie
Mellon University, Pittsburgh, PA.

[33] Q. Ke and T. Kanade. Robust l1 norm factorization in the
presence of outliers and missing data by alternative convex
programming. In CVPR (1), pages 739–746, 2005.

[34] N. Kwak. Principal component analysis based on l1-norm
maximization. IEEE Trans. Pattern Anal. Mach. Intell.,
30(9):1672–1680, 2008.

[35] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online
learning. Technical report, 2007.

[36] J. R. Lee, A. Naor, and A. Immediate. Embedding the
diamond graph in `p and dimension reduction in `1, 2003.

[37] D. Lewis. Finite dimensional subspaces of lp. Studia Math,
63:207–211, 1978.

[38] O. L. Mangasarian. Arbitrary-norm separating plane.
Operations Research Letters, 24:15–23, 1997.

[39] R. A. Maronna, D. R. Martin, and V. J. Yohai. Robust
Statistics: Theory and Methods. Wiley, 2006.

[40] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science, 1(2):117–236, 2005.

[41] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm
for principal component analysis. SIAM Journal on Matrix
Analysis and Applications, 31(3):1100, 1124, 2009.

[42] T. Sarlós. Improved approximation algorithms for large
matrices via random projections. In FOCS, pages 143–152,
2006.

[43] Schechtman. More on embedding subspaces of lp into `nr .
Composition Math, 61:159–170, 1987.

[44] G. A. Seber and A. J. Lee. Linear Regression Analysis. Wiley
Series in Probability and Statistics, 2003.

[45] Q. Shi, J. Petterson, G. Dror, J. Langford, A. J. Smola,
A. Strehl, and V. Vishwanathan. Hash kernels. In AISTATS
12, 2009.

[46] D. A. Spielman and N. Srivastava. Graph sparsification by
effective resistances. In STOC, pages 563–568, 2008.

[47] M. Talagrand. Embedding subspaces of l1 into `n1 . Proceedings
of the American Mathematical Society, 108(2):363–369, 1990.

[48] A. Taylor. A geometric theorem and its applications to
biorthogonal systems. Bull. Amer. Math Soc., 53:614–616,
1947.

[49] M. Thorup and Y. Zhang. Tabulation based 4-universal
hashing with applications to second moment estimation. In
SODA, pages 615–624, 2004.

[50] K. Q. Weinberger, A. Dasgupta, J. Attenberg, J. Langford,
and A. J. Smola. Feature hashing for large scale multitask
learning. CoRR, abs/0902.2206, 2009.

[51] X. Yan and X. Su. Linear Regression Analysis: Theory and
Computing. World Scientific, 2009.

