Review of the Submission

Summary

This paper presents an algorithm for the k-means problem in the Massively Parallel Computation
(MPC) model. The algorithm computes a constant-factor approximation. The stated round com-
plexity is O(loglogn - logloglogn). It operates in the fully scalable MPC setting, utilizing O(n?)
local memory per machine and O(n'*¢) global memory for arbitrarily small constants o, e > 0. This
provides a constant-factor approximation for the general k-means problem in o(logn) rounds in the
MPC model.

The approach is based on the Jain and Vazirani (JV01) framework, reducing k-means to Facility
Location (FL) via a Lagrangian Multiplier Preserving (LMP) approximation. The core technical
component is a parallel algorithm for LMP FL adapted to the MPC model.

The methodology involves using Locality-Sensitive Hashing (LSH) to create a sparse graph rep-
resentation of the metric space. The algorithm then executes a parallelized primal-dual approach for
FL, which involves directly estimating dual variables rather than iterative doubling, and handling
inconsistencies by identifying ”problematic clients.” A significant component is the computation of
a ruling set on a dependency graph of facilities. Due to the complexity of computing (O(1), O(1))-
ruling sets in the low-memory MPC model, the algorithm uses a hybrid approach: an adapted
Luby’s algorithm covers a large fraction of the weight within O(1) distance, and the algorithm of
[KPP20] covers the remainder within O(logloglogn) distance.

Errors and Improvements
Major Issues

1. Invalid Constant Relationships in Lemma 4.2 Proof (Pages 16-17): The proof of
Lemma 4.2 relies on specific relationships between constants defined in Eq. (14), assuming
I >5.

e In the first part of Case 1 (Page 17), the derivation concludes > X based on the assumption
Ca > Q- C};. The constants are defined as Cy = 8I'%, Q = 8T**, and C}; = 8I'*. Thus,
Q- C’g = 64I'®. The required inequality 8I'® > 64I'® does not hold, invalidating this step.

e In the latter part of Case 1 (Page 17), the final inequality requires the derived expression
+

to be < 1+ acpo. The coefficient derived is 1207 + 12930} + 377%17@. Substituting the
D

defined constants (7 = 8000T12, etc.) yields 96T + 777612 + 12000I'!°. This must be
< 8000I''2, which simplifies to 96I'% 4 12000I''° < 224I"''2. This inequality does not hold
for I' > 5 (e.g., if I =5, 12000(5'°) > 224(5'2)).

2. Incorrect Definition/Application of Relaxed Triangle Inequality (Eq. 2): The re-
laxed triangle inequality is defined in Eq. (2) (Page 5) as: Zle cost(z;_1,x;) < L-cost(xg,xp)
(assuming x5 is a typo for xy). The paper states this holds for squared Euclidean distances
(Page 8). This is incorrect. (E.g., 1D points zo = 0,27 = 10, zo = 0; LHS=200, RHS=0).
The standard property for squared Euclidean distances is the reverse: cost(zg,xp) < £ -

Zle cost(z;_1,x;). The proofs rely on this standard property. For example, in Lemma
4.2 (Page 17), Eq. (2) is cited to justify cost(c, f) < 3 - (cost(c, ') + cost(c,) + cost(c”, f)).
The definition in Eq. (2) needs correction.

Furthermore, Eq. (2) is defined only for sequences alternating between clients and facilities.
The application on Page 17 uses the sequence (¢, ¢, ¢, f), which does not alternate.
Minor Issues

1. Runtime Inconsistency in Lemma 5.9 (Pages 35, 37): The statement of Lemma 5.9
claims a runtime of O(¢ - loglogn) rounds. The analysis within the proof (Page 37) concludes

that the overall time for computing the set S is O(tlog loglogn + loglogn - logloglogn). The
lemma statement should be consistent with the derivation in the proof.

. Missing Factor in Lemma 5.2 Edge Bound (Page 29): Lemma 5.2 states an edge bound
of |Ep| < 51In(n)/p1. The algorithm uses ¢ = 5In(n)/p; hash functions, and the proof (Page
31) notes that each adds at most n — 1 edges. The bound should be O(n - In(n)/p1). The
factor of n is missing in the lemma statement.

. Incorrect Probability Expression in Lemma 5.2 Proof (Page 31): The proof states:
”The probability that x and y are not connected by a path of length < 2 is therefore at most
1—(1—p1)t >1—ePt=... =1/n%" This expression is mathematically incorrect. The
probability of not being connected is (1 — p;)?, which is upper bounded by e~P1 = 1/n5.

