
Review of the Submission

Summary

This paper presents an algorithm for the k-means problem in the Massively Parallel Computation
(MPC) model. The algorithm computes a constant-factor approximation. The stated round com-
plexity is O(log log n · log log log n). It operates in the fully scalable MPC setting, utilizing O(nσ)
local memory per machine and O(n1+ϵ) global memory for arbitrarily small constants σ, ϵ > 0. This
provides a constant-factor approximation for the general k-means problem in o(log n) rounds in the
MPC model.

The approach is based on the Jain and Vazirani (JV01) framework, reducing k-means to Facility
Location (FL) via a Lagrangian Multiplier Preserving (LMP) approximation. The core technical
component is a parallel algorithm for LMP FL adapted to the MPC model.

The methodology involves using Locality-Sensitive Hashing (LSH) to create a sparse graph rep-
resentation of the metric space. The algorithm then executes a parallelized primal-dual approach for
FL, which involves directly estimating dual variables rather than iterative doubling, and handling
inconsistencies by identifying ”problematic clients.” A significant component is the computation of
a ruling set on a dependency graph of facilities. Due to the complexity of computing (O(1), O(1))-
ruling sets in the low-memory MPC model, the algorithm uses a hybrid approach: an adapted
Luby’s algorithm covers a large fraction of the weight within O(1) distance, and the algorithm of
[KPP20] covers the remainder within O(log log logn) distance.

Errors and Improvements

Major Issues

1. Invalid Constant Relationships in Lemma 4.2 Proof (Pages 16-17): The proof of
Lemma 4.2 relies on specific relationships between constants defined in Eq. (14), assuming
Γ ≥ 5.

• In the first part of Case 1 (Page 17), the derivation concludes≥ λ based on the assumption
CA ≥ Q · C+

D. The constants are defined as CA = 8Γ8, Q = 8Γ4, and C+
D = 8Γ4. Thus,

Q ·C+
D = 64Γ8. The required inequality 8Γ8 ≥ 64Γ8 does not hold, invalidating this step.

• In the latter part of Case 1 (Page 17), the final inequality requires the derived expression

to be ≤ η · αc,0. The coefficient derived is 12C+
D + 12γ2

2C
+
D + 3η

C+
D

C−
DQ

. Substituting the

defined constants (η = 8000Γ12, etc.) yields 96Γ4 + 7776Γ12 + 12000Γ10. This must be
≤ 8000Γ12, which simplifies to 96Γ4 +12000Γ10 ≤ 224Γ12. This inequality does not hold
for Γ ≥ 5 (e.g., if Γ = 5, 12000(510) > 224(512)).

2. Incorrect Definition/Application of Relaxed Triangle Inequality (Eq. 2): The re-

laxed triangle inequality is defined in Eq. (2) (Page 5) as:
∑ℓ

i=1 cost(xi−1, xi) ≤ ℓ ·cost(x0, xℓ)
(assuming xs is a typo for xℓ). The paper states this holds for squared Euclidean distances
(Page 8). This is incorrect. (E.g., 1D points x0 = 0, x1 = 10, x2 = 0; LHS=200, RHS=0).

The standard property for squared Euclidean distances is the reverse: cost(x0, xℓ) ≤ ℓ ·∑ℓ
i=1 cost(xi−1, xi). The proofs rely on this standard property. For example, in Lemma

4.2 (Page 17), Eq. (2) is cited to justify cost(c, f) ≤ 3 · (cost(c, c′) + cost(c′, c′′) + cost(c′′, f)).
The definition in Eq. (2) needs correction.

Furthermore, Eq. (2) is defined only for sequences alternating between clients and facilities.
The application on Page 17 uses the sequence (c, c′, c′′, f), which does not alternate.

Minor Issues

1. Runtime Inconsistency in Lemma 5.9 (Pages 35, 37): The statement of Lemma 5.9
claims a runtime of O(t · log log n) rounds. The analysis within the proof (Page 37) concludes

1

that the overall time for computing the set S is O(t log log log n+ log logn · log log logn). The
lemma statement should be consistent with the derivation in the proof.

2. Missing Factor in Lemma 5.2 Edge Bound (Page 29): Lemma 5.2 states an edge bound
of |ED| ≤ 5 ln(n)/p1. The algorithm uses t = 5 ln(n)/p1 hash functions, and the proof (Page
31) notes that each adds at most n − 1 edges. The bound should be O(n · ln(n)/p1). The
factor of n is missing in the lemma statement.

3. Incorrect Probability Expression in Lemma 5.2 Proof (Page 31): The proof states:
”The probability that x and y are not connected by a path of length ≤ 2 is therefore at most
1 − (1 − p1)

t ≥ 1 − e−p1·t = · · · = 1/n5.” This expression is mathematically incorrect. The
probability of not being connected is (1− p1)

t, which is upper bounded by e−p1t = 1/n5.

2

