Sublinear Time Low Rank Approximation of PSD Matrices

Cameron Musco MIT David Woodruff CMU

Low Rank Approximation

- A is an n x d matrix
 - Think of n points in R^d
- E.g., A is a customer-product matrix
 - A_{i,i} = how many times customer i purchased item j
- A is typically well-approximated by low rank matrix
 - E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
 - Easy to store, quick to multiply, data more interpretable

What is a Good Low Rank Approximation?

Singular Value Decomposition (SVD)

Any matrix $A = U\Sigma V$

- U has orthonormal columns
- Σ is diagonal with non-increasing non-negative entries down the diagonal
- V has orthonormal rows
- Truncated SVD rank-k approximation: $A_k = U_k \Sigma_k V_k$

$$\left(egin{array}{c} \mathbf{A} \end{array}
ight) = \left(egin{array}{c} \mathbf{U}_k \end{array}
ight) \left(egin{array}{c} \mathbf{\Sigma}_k \end{array}
ight) \left(egin{array}{c} \mathbf{V}_k \end{array}
ight) + \left(egin{array}{c} \mathbf{E} \end{array}
ight)$$

What is a Good Low Rank Approximation?

■ $A_k = \operatorname{argmin}_{\operatorname{rank} k \text{ matrices } B} |A-B|_F$

•
$$|C|_F = (\Sigma_{i,j} C_{i,j}^2)^{1/2}$$

Computing A_k exactly is expensive

Approximate Low Rank Approximation

- Goal: output a rank k matrix A', so that
 - $|A-A'|_F \le (1+\varepsilon) |A-A_k|_F$

- Can do this in nnz(A) + (n+d)*poly(k/ε) time
 w.h.p. [CW13]
- Proof based on sparse random projections

How Good Is this Algorithm?

 For general matrices A, there is an nnz(A) time lower bound for relative error approximation

Lower bounds hold even to estimate $|A|_F^2$ up to relative error

What if Your Input Matrix is Itself PSD?

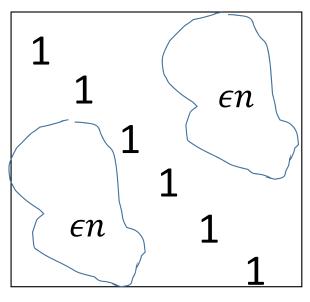
- Let A be an arbitrary n x n PSD matrix
- Covariance matrices, kernel matrices, Laplacians are PSD
 - Want to approximate them for efficiency
- Is there an nnz(A) time lower bound for low rank approximation of PSD matrices?
- Is there an nnz(A) time lower bound for estimating the norm |A|²_F of a PSD matrix?

Estimating the Norm of a PSD Matrix

■
$$|A|_F^2 = |BB^T|_F^2 = \sum_{i,j} < B_i$$
, $B_j > 2$, where $A = BB^T$

$$- < B_i, B_j >^2 \le |B_i|_2^2 \cdot |B_j|_2^2$$

- If $|B_i|_2^2 = 1$ for all i, then
 - (1) < B_i, B_j >² \le 1 for all i and j
 - (2) if $\sum_{i \neq j} \langle B_i, B_j \rangle^2 \ge \epsilon \sum_i \langle B_i, B_i \rangle^2$ then $\sum_{i \neq j} \langle B_i, B_j \rangle^2 \ge \epsilon n$
- Uniformly sampling $n \cdot poly(\frac{1}{\epsilon})$ terms $< B_i, B_j >^2$ for $i \neq j$ suffices for estimating $\sum_{i \neq j} < B_i, B_j >^2$



$$(1) < B_i, B_j >^2 \le 1$$
 for all i,j

$$(2)\sum_{i\neq j} < B_i, B_j >^2 \geq \varepsilon n$$

Conditions imply uniformly sampling $n \cdot poly(\frac{1}{\epsilon})$ entries works

- When $|B_i|_2 \neq 1$ for all i, sample an entry with probability $p_{i,j} = |B_i|^2 \cdot |B_j|^2 / |B|_F^4$
- Let $X = \langle B_i, B_j \rangle^2/p_{i,j}$ if entry i,j is sampled

•
$$E[X] = \sum_{i,j} p_{i,j} < B_i, B_j >^2 / p_{i,j} = \sum_{i,j} < B_i, B_j >^2 = |B^T B|_F^2 = |A|_F^2$$

■
$$Var[X] = \sum_{i,j} p_{i,j} < B_i, B_j >^4 / p_{i,j}^2 \le n \cdot |A|_F^4$$

Sublinear Time Low Rank Approximation of PSD Matrices

• Our Result: Given an n x n PSD matrix A, in $n \cdot k^2 \cdot poly(\frac{1}{\epsilon})$ time we can output a (factorization of a) rank-k matrix A' for which w.h.p.

$$|A - A'|_F \le (1 + \epsilon)|A - A_k|_F$$

- The number of entries read is $n \cdot k \cdot poly(\frac{1}{\epsilon})$
- Lower Bound: Any algorithm requires reading $\Omega(\mathbf{n} \cdot \mathbf{k} \cdot \frac{1}{\epsilon})$ entries

Starting Point: Connection to Adaptive Sampling

Adaptively sample a column proportional to its distance to the span of columns chosen so far [DV06]:

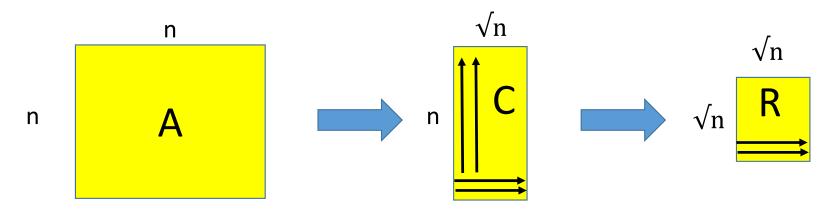
- C $\leftarrow \emptyset$ For i = 1, 2, ..., $\frac{k^2}{\epsilon}$
- Sample a column A_i with probability $\frac{|A_i P_C A_i|_2^2}{|A P_C A_i|_2^2}$
- $C \leftarrow C \cup \{A_i\}$
- End
- There is a k-dimensional subspace V inside the span of C so that

$$|A - P_V A|_F^2 \le (1 + \epsilon)|A - A_k|_F^2$$

Connection to Adaptive Sampling

- The adaptive sampling algorithm only requires knowing inner products between columns of A and C
- Algorithm needs $n \cdot \frac{k^2}{\epsilon} \ll n^2$ inner products
- Since A is PSD, $A = B^TB$, and given A, all inner products between columns of B have been precomputed!
- Run adaptive sampling algorithm in n k²/ ϵ time using A to output P_VB : $|B P_VB|_F^2 \le (1 + \epsilon)|B B_k|_F^2$
- Setting $\epsilon=1/\sqrt{n}$, B^TP_VB can be shown to be a good approximation to A

Improving the Running Time



- Show how to compute sampling probabilities of columns and rows of A in $\widetilde{O}(nk)$ poly $\left(\frac{1}{\epsilon}\right)$ time to reduce A to a \sqrt{n} x \sqrt{n} matrix R
- Sampling probabilities are the "ridge leverage scores" of B, where $A = B^T B$
 - Can be computed in $\widetilde{O(nk)}$ time given A
- R is a small matrix, and can spend nnz(R) time to find its top k principal components

Conclusions

- Sublinear time algorithm for relative error low rank approximation of PSD matrices, bypassing an nnz(A) lower bound for general matrices
- Tight $\widetilde{\Theta}(nk)$ bounds for constant ϵ
- Spectral norm error impossible in sublinear time, but can find a rank-k A' with $|A-A'|_2^2 \leq (1+\epsilon)|A-A_k|_2^2 + \frac{\epsilon}{k}|A-A_k|_F^2 \text{ in } n \cdot \text{poly}(\frac{k}{\epsilon}) \text{ time}$
- Can output a PSD rank-k matrix A' in $n \cdot poly(\frac{k}{\epsilon})$ time
- Open questions: (1) tighter dependence on ϵ , (2) other families of matrices?