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Abstract
Sketching has emerged as a powerful technique for speeding up problems in numerical linear

algebra, such as regression. In the overconstrained regression problem, one is given an n × d
matrix A, with n � d, as well as an n × 1 vector b, and one wants to find a vector x̂ so as to
minimize the residual error ‖Ax− b‖2. Using the sketch and solve paradigm, one first computes
S · A and S · b for a randomly chosen matrix S, then outputs x′ = (SA)†Sb so as to minimize
‖SAx′ − Sb‖2.

The sketch-and-solve paradigm gives a bound on ‖x′−x∗‖2 when A is well-conditioned. Our
main result is that, when S is the subsampled randomized Fourier/Hadamard transform, the error
x′ − x∗ behaves as if it lies in a “random” direction within this bound: for any fixed direction
a ∈ Rd, we have with 1− d−c probability that

〈a, x′ − x∗〉 . ‖a‖2‖x
′ − x∗‖2

d
1
2−γ

, (1)

where c, γ > 0 are arbitrary constants. This implies ‖x′ − x∗‖∞ is a factor d 1
2−γ smaller than

‖x′−x∗‖2. It also gives a better bound on the generalization of x′ to new examples: if rows of A
correspond to examples and columns to features, then our result gives a better bound for the error
introduced by sketch-and-solve when classifying fresh examples. We show that not all oblivious
subspace embeddings S satisfy these properties. In particular, we give counterexamples showing
that matrices based on Count-Sketch or leverage score sampling do not satisfy these properties.

We also provide lower bounds, both on how small ‖x′ − x∗‖2 can be, and for our new guar-
antee (1), showing that the subsampled randomized Fourier/Hadamard transform is nearly op-
timal. Our lower bound on ‖x′ − x∗‖2 shows that there is an O(1/ε) separation in the di-
mension of the optimal oblivious subspace embedding required for outputting an x′ for which
‖x′ − x∗‖2 ≤ ε‖Ax∗ − b‖2 · ‖A†‖2, compared to the dimension of the optimal oblivious subspace
embedding required for outputting an x′ for which ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, that is, the
former problem requires dimension Ω(d/ε2) while the latter problem can be solved with dimension
O(d/ε). This explains the reason known upper bounds on the dimensions of these two variants
of regression have differed in prior work.
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1 Introduction

Oblivious subspace embeddings (OSEs) were introduced by Sarlos [23] to solve linear algebra
problems more quickly than traditional methods. An OSE is a distribution of matrices
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S ∈ Rm×n with m � n such that, for any d-dimensional subspace U ⊂ Rn, with “high”
probability S preserves the norm of every vector in the subspace. OSEs are a generalization
of the classic Johnson-Lindenstrauss lemma from vectors to subspaces. Formally, we require
that with probability 1− δ,

‖Sx‖2 = (1± ε)‖x‖2

simultaneously for all x ∈ U , that is, (1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2.
A major application of OSEs is to regression. The regression problem is, given b ∈ Rn

and A ∈ Rn×d for n ≥ d, to solve for

x∗ = arg min
x∈Rd

‖Ax− b‖2. (2)

Because A is a “tall” matrix with more rows than columns, the system is overdetermined
and there is likely no solution to Ax = b, but regression will find the closest point to b
in the space spanned by A. The classic answer to regression is to use the Moore-Penrose
pseudoinverse: x∗ = A†b where

A† = (A>A)−1A>

is the “pseudoinverse” of A (assuming A has full column rank, which we will typically do for
simplicity). This classic solution takes O(ndω−1 + dω) time, where ω < 2.373 is the matrix
multiplication constant [9, 25, 12]: ndω−1 time to compute A>A and dω time to compute
the inverse.

OSEs speed up the process by replacing (2) with

x′ = arg min
x

‖SAx− Sb‖2

for an OSE S on d+ 1-dimensional spaces. This replaces the n× d regression problem with
an m× d problem, which can be solved more quickly since m� n. Because Ax− b lies in
the d + 1-dimensional space spanned by b and the columns of A, with high probability S
preserves the norm of SAx− Sb to 1± ε for all x. Thus,

‖Ax′ − b‖2 ≤
1 + ε

1− ε‖Ax
∗ − b‖2.

That is, S produces a solution x′ which preserves the cost of the regression problem. The
running time for this method depends on (1) the reduced dimension m and (2) the time it
takes to multiply S by A. We can compute these for “standard” OSE types:

If S has i.i.d. Gaussian entries, then m = O(d/ε2) is sufficient (and in fact, m ≥ d/ε2 is
required [20]). However, computing SA takes O(mnd) = O(nd2/ε2) time, which is worse
than solving the original regression problem (one can speed this up using fast matrix
multiplication, though it is still worse than solving the original problem).
If S is a subsampled randomized Hadamard transform (SRHT) matrix with random
sign flips (see Theorem 2.4 in [26] for a survey, and also see [8] which gives a recent
improvement) then m increases to Õ(d/ε2 · logn), where Õ(f) = f poly(log(f)). But now,
we can compute SA using the fast Hadamard transform in O(nd logn) time. This makes
the overall regression problem take O(nd logn+ dω/ε2) time.
If S is a random sparse matrix with random signs (the “Count-Sketch” matrix), then
m = d1+γ/ε2 suffices for γ > 0 a decreasing function of the sparsity [5, 18, 19, 3, 6].
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(The definition of a Count-Sketch matrix is, for any s ≥ 1, Si,j ∈ {0,−1/
√
s, 1/
√
s},

∀i ∈ [m], j ∈ [n] and the column sparsity of matrix S is s. Independently in each column s
positions are chosen uniformly at random without replacement, and each chosen position
is set to −1/

√
s with probability 1/2, and +1/

√
s with probability 1/2. ) Sparse OSEs

can benefit from the sparsity of A, allowing for a running time of Õ(nnz(A)) + Õ(dω/ε2),
where nnz(A) denotes the number of non-zeros in A.

When n is large, the latter two algorithms are substantially faster than the naïve ndω−1

method.

1.1 Our Contributions
Despite the success of using subspace embeddings to speed up regression, often what practi-
tioners are interested is not in preserving the cost of the regression problem, but rather in
the generalization or prediction error provided by the vector x′. Ideally, we would like for
any future (unseen) example a ∈ Rd, that 〈a, x′〉 ≈ 〈a, x∗〉 with high probability.

Ultimately one may want to use x′ to do classification, such as regularized least squares
classification (RLSC) [22], which has been found in cases to do as well as support vector
machines but is much simpler [27]. In this application, given a training set of examples with
multiple (non-binary) labels identified with the rows of an n× d matrix A, one creates an
n× r matrix B, each column indicating the presence or absence of one of the r possible labels
in each example. One then solves the multiple response regression problem minX ‖AX−B‖F ,
and uses X to classify future examples. A commonly used method is for a future example a,
to compute 〈a, x1〉, . . . , 〈a, xr〉, where x1, . . . , xr are the columns of X. One then chooses the
label i for which 〈a, xi〉 is maximum.

For this to work, we would like the inner products 〈a, x′1〉, . . . , 〈a, x′r〉 to be close to
〈a, x∗1〉, . . . , 〈a, x∗r〉, where X ′ is the solution to minX ‖SAX − SB‖F and X∗ is the solution
to minX ‖AX −B‖F . For any O(1)-accurate OSE on d+ r dimensional spaces [23], which
also satisfies so-called approximate matrix multiplication with error ε′ = ε/

√
(d+ r), we get

that

‖x′ − x∗‖2 ≤ O(ε) · ‖Ax∗ − b‖2 · ‖A†‖2 (3)

where ‖A†‖ is the spectral norm of A†, which equals the reciprocal of the smallest singular
value of A. To obtain a generalization error bound for an unseen example a, one has

|〈a, x∗〉 − 〈a, x′〉| = |〈a, x∗ − x′〉| ≤ ‖x∗ − x′‖2‖a‖2 = O(ε)‖a‖2‖Ax∗ − b‖2‖A†‖2, (4)

which could be tight if given only the guarantee in (3). However, if the difference vector
x′ − x∗ were distributed in a uniformly random direction subject to (3), then one would
expect an Õ(

√
d) factor improvement in the bound. This is what our main theorem shows:

I Theorem 1 (Main Theorem, informal). Suppose n ≤ poly(d). Let S be a subsampled
randomized Hadamard transform matrix with m = d1+γ/ε2 rows for an arbitrarily small
constant γ > 0. For x′ = arg minx ‖SAx− Sb‖2 and x∗ = arg minx ‖Ax− b‖2, and any fixed
a ∈ Rd,

|〈a, x∗〉 − 〈a, x′〉| ≤ ε√
d
‖a‖2‖Ax∗ − b‖2‖A†‖2. (5)

with probability 1− 1/dC for an arbitrarily large constant C > 0. This implies that

‖x∗ − x′‖∞ ≤
ε√
d
‖Ax∗ − b‖2‖A†‖2. (6)

ICALP 2017
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with 1− 1/dC−1 probability.
If n > poly(d), then by first composing S with a Count-Sketch OSE with poly(d) rows,

one can achieve the same guarantee.

(Here γ is a constant going to zero as n increases, see Theorem 10 for a formal statement of
Theorem 1).

Notice that Theorem 1 is considerably stronger than that of (4) provided by existing
guarantees. Indeed, in order to achieve the guarantee (6) in Theorem 1, one would need
to set ε′ = ε/

√
d in existing OSEs, resulting in Ω(d2/ε2) rows. In contrast, we achieve only

d1+γ/ε2 rows. We can improve the bound in Theorem 1 to m = d/ε2 if S is a matrix of i.i.d.
Gaussians; however, as noted, computing S ·A is slower in this case.

Note that Theorem 1 also makes no distributional assumptions on the data, and thus
the data could be heavy-tailed or even adversarially corrupted. This implies that our bound
is still useful when the rows of A are not sampled independently from a distribution with
bounded variance.

The `∞ bound (6) of Theorem 1 is achieved by applying (5) to the standard basis vectors
a = ei for each i ∈ [d] and applying a union bound. This `∞ guarantee often has a more
natural interpretation than the `2 guarantee—if we think of the regression as attributing
the observable as a sum of various factors, (6) says that the contribution of each factor
is estimated well. One may also see our contribution as giving a way for estimating the
pseudoinverse A† entrywise. Namely, we get that (SA)†S ≈ A† in the sense that each entry
is within additive O(ε

√
log d
d ‖A

†‖2). There is a lot of work on computing entries of inverses
of a matrix, see, e.g., [1, 16].

Another benefit of the `∞ guarantee is when the regression vector x∗ is expected to be
k-sparse (e.g. [14]). In such cases, thresholding to the top k entries will yield an `2 guarantee
a factor

√
k/d better than (3).

One could ask if Theorem 1 also holds for sparse OSEs, such as the Count-Sketch.
Surprisingly, we show that one cannot achieve the generalization error guarantee in Theorem
1 with high probability, say, 1 − 1/d, using such embeddings, despite the fact that such
embeddings do approximate the cost of the regression problem up to a 1 + ε factor with high
probability. This shows that the generalization error guarantee is achieved by some subspace
embeddings but not all.

I Theorem 2 (Not all subspace embeddings give the `∞ guarantee). The Count-Sketch matrix
with d1.5 rows and sparsity d.25—which is an OSE with exponentially small failure probability—
with constant probability will have a result x′ that does not satisfy the `∞ guarantee (6).

We can show that Theorem 1 holds for S based on the Count-Sketch OSE T with dO(C)/ε2

rows with 1− 1/dC probability. We can thus compose the Count-Sketch OSE with the SRHT
matrix and obtain an O(nnz(A)) + poly(d/ε) time algorithm to compute S · TA achieving
(6). We can also compute R · S · T · A, where R is a matrix of Gaussians, which is more
efficient now that STA only has d1+γ/ε2 rows; this will reduce the number of rows to d/ε2.

Another common method of dimensionality reduction for linear regression is leverage
score sampling [10, 15, 21, 7], which subsamples the rows of A by choosing each row with
probability proportional to its “leverage scores”. With O(d log(d/δ)/ε2) rows taken, the result
x′ will satisfy the `2 bound (3) with probability 1− δ. However, it does not give a good `∞
bound:
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I Theorem 3 (Leverage score sampling does not give the `∞ guarantee). Leverage score
sampling with d1.5 rows—which satisfies the `2 bound with exponentially small failure
probability—with constant probability will have a result x′ that does not satisfy the `∞
guarantee (6).

Finally, we show that the d1+γ/ε2 rows that SRHT matrices use is roughly optimal:

I Theorem 4 (Lower bounds for `2 and `∞ guarantees). Any sketching matrix distribution
over m× n matrices that satisfies either the `2 guarantee (3) or the `∞ guarantee (6) must
have m & min(n, d/ε2).

Notice that our result shows the necessity of the 1/ε separation between the results
originally defined in Equation (3) and (4) of Theorem 12 of [23]. If we want to output some
vector x′ such that ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, then it is known that m = Θ(d/ε) is
necessary and sufficient. However, if we want to output a vector x′ such that ‖x′ − x∗‖2 ≤
ε‖Ax∗ − b‖2 · ‖A†‖2, then we show that m = Θ(d/ε2) is necessary and sufficient.

1.1.1 Comparison to Gradient Descent
While this work is primarily about sketching methods, one could instead apply iterative
methods such as gradient descent, after appropriately preconditioning the matrix, see, e.g.,
[2, 28, 5]. That is, one can use an OSE with constant ε to construct a preconditioner for A
and then run conjugate gradient using the preconditioner. This gives an overall dependence
of log(1/ε).

The main drawback of this approach is that one loses the ability to save on storage
space or number of passes when A appears in a stream, or to save on communication or
rounds when A is distributed. Given increasingly large data sets, such scenarios are now
quite common, see, e.g., [4] for regression algorithms in the data stream model. In situations
where the entries of A appear sequentially, for example, a row at a time, one does not need
to store the full n× d matrix A but only the m× d matrix SA.

Also, iterative methods can be less efficient when solving multiple response regression,
where one wants to minimize ‖AX −B‖ for a d× t matrix X and an n× t matrix B. This is
the case when ε is constant and t is large, which can occur in some applications (though there
are also other applications for which ε is very small). For example, conjugate gradient with a
preconditioner will take Õ(ndt) time while using an OSE directly will take only Õ(nd+ d2t)
time (since one effectively replaces n with O (d) after computing S ·A), separating t from d.
Multiple response regression, arises, for example, in the RLSC application above.

1.1.2 Proof Techniques
Theorem 1. As noted in Theorem 2, there are some OSEs for which our generalization
error bound does not hold. This hints that our analysis is non-standard and cannot use
generic properties of OSEs as a black box. Indeed, in our analysis, we have to consider
matrix products of the form S>S(UU>S>S)k for our random sketching matrix S and a fixed
matrix U , where k is a positive integer. We stress that it is the same matrix S appearing
multiple times in this expression, which considerably complicates the analysis, and does not
allow us to appeal to standard results on approximate matrix product (see, e.g., [26] for a
survey). The key idea is to recursively reduce S>S(UU>S>S)k using a property of S. We
use properties that only hold for specifics OSEs S: first, that each column of S is unit vector;
and second, that for all pairs (i, j) and i 6= j, the inner product between Si and Sj is at most√

logn/
√
m with probability 1− 1/ poly(n).

ICALP 2017
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Theorems 2 and 3. To show that Count-Sketch does not give the `∞ guarantee, we
construct a matrix A and vector b as in Figure 1, which has optimal solution x∗ with all
coordinates 1/

√
d. We then show, for our setting of parameters, that there likely exists an

index j ∈ [d] satisfying the following property: the jth column of S has disjoint support
from the kth column of S for all k ∈ [d + α] \ {j} except for a single k > d, for which Sj
and Sk share exactly one common entry in their support. In such cases we can compute x′j
explicitly, getting |x′j − x∗j | = 1

s
√
α
. By choosing suitable parameters in our construction, this

gives that ‖x′ − x∗‖∞ � 1√
d
. The lower bound for leverage score sampling follows a similar

construction.
Theorem 4 The lower bound proof for the `2 guarantee uses Yao’s minimax principle.

We are allowed to fix an m× n sketching matrix S and design a distribution over [A b]. We
first write the sketching matrix S = UΣV > in its singular value decomposition (SVD). We
choose the d+ 1 columns of the adjoined matrix [A, b] to be random orthonormal vectors.
Consider an n × n orthonormal matrix R which contains the columns of V as its first m
columns, and is completed on its remaining n−m columns to an arbitrary orthonormal basis.
Then S · [A, b] = V >RR> · [A, b] = [UΣIm, 0] · [R>A,R>b]. Notice that [R>A,R>b] is equal
in distribution to [A, b], since R is fixed and [A, b] is a random matrix with d+ 1 orthonormal
columns. Therefore, S · [A, b] is equal in distribution to [UΣG,UΣh] where [G, h] corresponds
to the first m rows of an n× (d+ 1) uniformly random matrix with orthonormal columns.

A key idea is that if n = Ω(max(m, d)2), then by a result of Jiang [13], any m× (d+ 1)
submatrix of a random n× n orthonormal matrix has o(1) total variation distance to a d× d
matrix of i.i.d. N(0, 1/n) random variables, and so any events that would have occurred
had G and h been independent i.i.d. Gaussians, occur with the same probability for our
distribution up to an 1 − o(1) factor, so we can assume G and h are independent i.i.d.
Gaussians in the analysis.

The optimal solution x′ in the sketch space equals (SA)†Sb, and by using that SA has
the form UΣG, one can manipulate ‖(SA)†Sb‖ to be of the form ‖Σ̃†(ΣR)†Σh‖2, where
the SVD of G is RΣ̃T . We can upper bound ‖Σ̃‖2 by

√
r/n, since it is just the maximum

singular value of a Gaussian matrix, where r is the rank of S, which allows us to lower
bound ‖Σ̃†(ΣR)†Σh‖2 by

√
n/r‖(ΣR)†Σh‖2. Then, since h is i.i.d. Gaussian, this quantity

concentrates to 1√
r
‖(ΣR)†Σh‖, since ‖Ch‖2 ≈ ‖C‖2F /n for a vector h of i.i.d. N(0, 1/n)

random variables. Finally, we can lower bound ‖(ΣR)†Σ‖2F by ‖(ΣR)†ΣRR>‖2F by the
Pythagorean theorem, and now we have that (ΣR)†ΣR is the identity, and so this expression
is just equal to the rank of ΣR, which we prove is at least d. Noting that x∗ = 0 for our
instance, putting these bounds together gives ‖x′ − x∗‖ ≥

√
d/r. The last ingredient is a

way to ensure that the rank of S is at least d. Here we choose another distribution on inputs
A and b for which it is trivial to show the rank of S is at least d with large probability. We
require S be good on the mixture. Since S is fixed and good on the mixture, it is good for
both distributions individually, which implies we can assume S has rank d in our analysis of
the first distribution above.

Notation. For a positive integer, let [n] = {1, 2, . . . , n}. For a vector x ∈ Rn, define
‖x‖2 = (

∑n
i=1 x

2
i )

1
2 and ‖x‖∞ = maxi∈[n] |xi|. For a matrix A ∈ Rm×n, define ‖A‖2 =

supx ‖Ax‖2/‖x‖2 to be the spectral norm of A and ‖A‖F = (
∑
i,j A

2
i,j)1/2 to be the Frobenius

norm of A. We use A† to denote the Moore-Penrose pseudoinverse of m× n matrix A, which
if A = UΣV > is its SVD (where U ∈ Rm×n, Σ ∈ Rn×n and V ∈ Rn×n for m ≥ n), is given
by A† = V Σ−1U>. In addition to O(·) notation, for two functions f, g, we use the shorthand
f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for an absolute constant C. We use f h g

to mean cf ≤ g ≤ Cf for constants c, C.
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A ∈ Rn×d b ∈ Rn×1

1
. . .

. . .
. . .

. . .
1

0

0

0

d

d

n

1/
√
d

...

...

...

...
1/
√
d

d

1/
√
α

...

...

...
1/
√
α

α

0
...
...
...
...
0

Figure 1 Our construction of A and b for the proof that Count-Sketch does not obey the `∞
guarantee. α < d.

I Definition 5 (Subspace Embedding). A (1 ± ε) `2-subspace embedding for the column
space of an n× d matrix A is a matrix S for which for all x ∈ Rd, ‖SAx‖22 = (1± ε)‖Ax‖22.

I Definition 6 (Approximate Matrix Product). Let 0 < ε < 1 be a given approximation
parameter. Given matrices A and B, where A and B each have n rows, the goal is to output
a matrix C so that ‖A>B − C‖F ≤ ε‖A‖F ‖B‖F . Typically C has the form A>S>SB, for a
random matrix S with a small number of rows. In particular, this guarantee holds for the
subsampled randomized Hadamard transform S with O(ε−2) rows [11].

Due to space constraints, several proofs are deferred to the full version of our paper.

2 Warmup: Gaussians OSEs

We first show that if S is a Gaussian random matrix, then it satisfies the generalization
guarantee. This follows from the rotational invariance of the Gaussian distribution.

I Theorem 7. Suppose A ∈ Rn×d has full column rank. If the entries of S ∈ Rm×n are i.i.d.
N(0, 1/m), m = O(d/ε2), then for any vectors a, b and x∗ = A†b, we have, with probability
1− 1/poly(d),

|a>(SA)†Sb− a>x∗| . ε
√

log d√
d
‖a‖2‖b−Ax∗‖2‖A†‖2.

Because SA has full column rank with probability 1, (SA)†SA = I. Therefore

|a>(SA)†Sb− a>x∗| = |a>(SA)†S(b−Ax∗)| = |a>(SA)†S(b−AA†b)|.

Thus it suffices to only consider vectors b where A†b = 0, or equivalently U>b = 0. In such
cases, SU will be independent of Sb, which will give the result. The proof is in the full
version.

3 SRHT Matrices

We first provide the definition of the subsampled randomized Hadamard transform(SRHT):
Let S = 1√

rn
PHnD, where D is an n× n diagonal matrix with i.i.d. diagonal entries Di,i,

for which Di,i in uniform on {−1,+1}. Here Hn is the Hadamard matrix of size n× n, and
we assume n is a power of 2. Here, Hn = [Hn/2, Hn/2;Hn/2, −Hn/2] and H1 = [1]. The
r × n matrix P samples r coordinates of an n dimensional vector uniformly at random.

ICALP 2017
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For other subspace embeddings, we no longer have that SU and Sb are independent. To
analyze them, we start with a claim that allows us to relate the inverse of a matrix to a
power series.
I Claim 8. Let S ∈ Rm×n, A ∈ Rn×d have SVD A = UΣV >, and define T ∈ Rd×d by
T = Id − U>S>SU. Suppose SA has linearly independent columns and ‖T‖2 ≤ 1/2. Then

(SA)†S = V Σ−1

( ∞∑
k=0

T k

)
U>S>S. (7)

Proof.

(SA)†S = (A>S>SA)−1A>S>S = (V ΣU>S>SUΣV >)−1V ΣU>S>S

=V Σ−1(U>S>SU)−1U>S>S = V Σ−1(Id − T )−1U>S>S = V Σ−1(
∞∑
k=0

T k)U>S>S,

where in the last equality, since ‖T‖2 < 1, the von Neumann series
∑∞
k=0 T

k converges to
(Id − T )−1. J

We then bound the kth term of this sum:

I Lemma 9. Let S ∈ Rr×n be the subsampled randomized Hadamard transform, and let a
be a unit vector. Then with probability 1− 1/poly(n), we have

|a>S>S(UU>S>S)kb| = O(logk n) · (O(d(logn)/r) + 1)
k−1

2 · (
√
d‖b‖2(logn)/r + ‖b‖2(log

1
2 n)/r

1
2 ).

Hence, for r at least d log2k+2 n log2(n/ε)/ε2), this is at most O(‖b‖2ε/
√
d).

We defer the proof of this lemma to the next section, and now show how the lemma lets us
prove that SRHT matrices satisfy the generalization bound with high probability:

I Theorem 10. Suppose A ∈ Rn×d has full column rank with logn = do(1). Let S ∈ Rm×n be
a subsampled randomized Hadamard transform with m = O(d1+α/ε2) for α = Θ(

√
log logn

log d ).
For any vectors a, b and x∗ = A†b, we have

|a>(SA)†Sb− a>x∗| . ε√
d
‖a‖2‖b−Ax∗‖2‖Σ−1‖2

with probability 1− 1/poly(d).

Proof. Define ∆ = Θ
(

1√
m

)
(logc d)‖a‖2‖b− Ax∗‖2‖Σ−1‖2. For a constant c > 0, we have

that S is a (1± γ) `2-subspace embedding (Definition 5) for γ =
√

d logc n
m with probability

1−1/poly(d) (see, e.g., Theorem 2.4 of [26] and references therein), so ‖SUx‖2 = (1±γ)‖Ux‖2
for all x, which we condition on. Hence for T = Id−U>S>SU , we have ‖T‖2 ≤ (1+γ)2−1 . γ.
In particular, ‖T‖2 < 1/2 and we can apply Claim 8.

As in Section 2, SA has full column rank if S is a subspace embedding, so (SA)†SA = I

and we may assume x∗ = 0 without loss of generality.
By the approximate matrix product (Definition 6), we have for some c that

|a>V Σ−1U>S>Sb| ≤ logc d√
m
‖a‖2‖b‖2‖Σ−1‖2 ≤ ∆, (8)

with 1− 1/poly(d) probability. Suppose this event occurs, bounding the k = 0 term of (7).
Hence it suffices to show that the k ≥ 1 terms of (7) are bounded by ∆.
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By approximate matrix product, we also have with 1− 1/d2 probability that

‖U>S>Sb‖F ≤
logc d√
m
‖U>‖F ‖b‖2 ≤

logc d
√
d√

m
‖b‖2.

Combining with ‖T‖2 . γ we have for any k that

|a>V Σ−1T kU>S>Sb| . γk(logc d)
√
d√
m
‖a‖2‖Σ−1‖2‖b‖2.

Since this decays exponentially in k at a rate of γ < 1/2, the sum of all terms greater than k
is bounded by the kth term. As long as

m &
1
ε2
d1+ 1

k logc n, (9)

we have γ =
√

d logc n
m < εd−1/(2k)/ logc n, so that

∑
k′≥k

|a>V Σ−1T k
′
U>S>Sb| . ε√

d
‖a‖2‖Σ−1‖2‖b‖2.

On the other hand, by Lemma 9 (increasing m by a Ck factor) we have for all k that

|a>V >Σ−1U>S>S(UU>S>S)kb| . 1
2k

ε√
d
‖a‖2‖b‖2‖Σ−1‖2,

with probability at least 1 − 1/ poly(d), as long as m & d(C logn)2k+2 log2(n/ε)/ε2, for a
sufficiently large constant C. Since the T k term can be expanded as a sum of 2k terms of
this form, we get that

k∑
k′=1
|a>V Σ−1T k

′
U>S>Sb| . ε√

d
‖a‖2‖b‖2‖Σ−1‖2,

with probability at least 1 − 1/ poly(d), as long as m & d(C logn)2k+2 log2(n/ε)/ε2 for
a sufficiently large constant C. Combining with (9), the result holds as long as m &

ε−2d logc nmax((C logn)2k+2, d
1
k ), for any k. Setting k = Θ(

√
log d

log logn ) gives the result. J

Combining Different Matrices. In some cases it can make sense to combine different
sketching matrices that satisfy the generalization bound. We defer the details to the full
version.

I Theorem 11. Let A ∈ Rn×d, and let R ∈ Rm×r and S ∈ Rr×n be drawn from distributions
of matrices that are ε-approximate OSEs and satisfy the generalization bound (6). Then
RS satisfies the generalization bound with a constant factor loss in failure probability and
approximation factor.

4 Proof of Lemma 9

Proof. Each column Si of the subsampled randomized Hadamard transform has the same
distribution as σiSi, where σi is a random sign. It also has 〈Si, Si〉 = 1 for all i and
| 〈Si, Sj〉 | .

√
log(1/δ)√

r
with probability 1− δ, for any δ and i 6= j. See, e.g., [17].
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By expanding the following product into a sum, and rearranging terms, we obtain

a>S>S(UU>S>S)kb =
∑

i0,j0,i1,j1,··· ,ik,jk

ai0bjk
σi0σi1 · · ·σikσj0σj1 · · ·σjk

·〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk
〉

=
∑
i0,jk

ai0bjk
σi0σjk

∑
j0,i1,j1,··· ,ik

σi1 · · ·σikσj0σj1 · · ·σjk−1

· 〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk
〉

=
∑
i0,jk

σi0σjk
Zi0,jk

where Zi0,jk
is defined to be

Zi0,jk
= ai0bjk

∑
i1,···ik
j0,···jk−1

k∏
c=1

σic

k−1∏
c=0

σjc
·
k∏
c=0
〈Sic , Sjc

〉
k∏
c=1

(UU>)ic−1,jc
.

Note that Zi0,jk
is independent of σi0 and σjk

. We observe that in the above expression if
i0 = j0, i1 = j1, · · · , ik = jk, then the sum over these indices equals a>(UU>) · · · (UU>)b = 0,
since 〈Sic , Sjc

〉 = 1 in this case for all c. Moreover, the sum over all indices conditioned
on ik = jk is equal to 0. Indeed, in this case, the expression can be factored into the form
ζ · U>b, for some random variable ζ, but U>b = 0.

Let W be a matrix with Wi,j = σiσjZi,j . We need Khintchine’s inequality:
I Fact 12. (Khintchine’s Inequality) Let σ1, . . . , σn be i.i.d. sign random variables, and let
z1, . . . , zn be real numbers. Then there are constants C,C ′ > 0 so that
Pr[|

∑n
i=1 ziσi| ≥ Ct‖z‖2] ≤ e−C′t2 .

We note that Khintchine’s inequality sometimes refers to bounds on the moment of |
∑
i ziσi|,

though the above inequality follows readily by applying a Markov bound to the high moments.
We apply Fact 12 to each column of W , so that if Wi is the i-th column, we have by a

union bound that with probability 1− 1/poly(n), ‖Wi‖2 = O(‖Zi‖2
√

logn) simultaneously
for all columns i. It follows that with the same probability, ‖W‖2F = O(‖Z‖2F logn), that is,
‖W‖F = O(‖Z‖F

√
logn). We condition on this event in the remainder.

Thus, it remains to bound ‖Z‖F . By squaring Zi0,j0 and using that E[σiσj ] = 1 if i = j

and 0 otherwise, we have,

E
σ

[Z2
i0,jk

] = a2
i0b

2
jk

∑
i1,···ik
j0,···jk−1

k∏
c=0
〈Sic , Sjc

〉2
k∏
c=1

(UU>)2
ic−1,jc

. (10)

Due to space considerations, we defer to the full version the proof that

E
S

[‖Z‖2F ] ≤ (O(d(logn)/r) + 1)k−1 · (d‖b‖22(log2 n)/r2 + ‖b‖22(logn)/r).

Note that we also have the bound:

(O(d(logn)/r) + 1)k−1 ≤ (eO(d(logn)/r))k−1 ≤ eO(kd(logn)/r) ≤ O(1),

for any r = Ω(kd logn).
Having computed the expectation of ‖Z‖2F , we now would like to show concentration.

Consider a specific

Zi0,jk = ai0bjk

∑
ik

σik 〈Sik , Sjk 〉 · · ·
∑

j1

σj1 (UU>)j1,i2

∑
i1

σi1〈Si1 , Sj1〉
∑

j0

σj0〈Si0 , Sj0〉(UU
>)j0,i1 .
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By Fact 12, for each fixing of i1, with probability 1− 1/poly(n), we have∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 = O(
√

logn)(
∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1) 1

2 . (11)

Now, we can apply Khintchine’s inequality for each fixing of j1, and combine this with (11).
With probability 1− 1/poly(n), again we have∑

i1

σi1〈Si1 , Sj1〉
∑

j0

σj0〈Si0 , Sj0〉(UU
>)j0,i1

=
∑

i1

σi1〈Si1 , Sj1〉O(
√

logn)(
∑

j0

〈Si0 , Sj0〉
2(UU>)2

j0,i1 )
1
2

= O(logn)(
∑

i1

〈Si1 , Sj1〉
2
∑

j0

〈Si0 , Sj0〉
2(UU>)2

j0,i1 )
1
2 .

Thus, we can apply Khintchine’s inequality recursively over all the 2k indexes j0, i1, j1, · · · , jk−1,

ik, from which it follows that with probability 1 − 1/poly(n), for each such i0, jk, we
have Z2

i0,jk
= O(logk n)E

S
[Z2
i0,jk

], using (10). We thus have with this probability, that

‖Z‖2F = O(logk n)E
S

[‖Z‖2F ], completing the proof. J

5 Lower bound for `2 and `∞ guarantee

We prove a lower bound for the `2 guarantee, which immediately implies a lower bound for
the `∞ guarantee.

I Definition 13. Given a matrix A ∈ Rn×d, vector b ∈ Rn and matrix S ∈ Rr×n, denote
x∗ = A†b. We say that an algorithm A(A, b, S) that outputs a vector x′ = (SA)†Sb “succeeds”
if the following property holds: ‖x′ − x∗‖2 . ε‖b‖2 · ‖A†‖2 · ‖Ax∗ − b‖2.

I Theorem 14. Suppose Π is a distribution over Rm×n with the property that for any
A ∈ Rn×d and b ∈ Rn, Pr

S∼Π
[A(A, b, S) succeeds ] ≥ 19/20. Then m & min(n, d/ε2).

Proof. The proof uses Yao’s minimax principle. Let D be an arbitrary distribution over
Rn×(d+1), then E

(A,b)∼D
E

S∼Π
[A(A, b, S) succeeds ] ≥ 1−δ. Switching the order of probabilistic

quantifiers, an averaging argument implies the existence of a fixed matrix S0 ∈ Rm×n such
that E

(A,b)∼D
[A(A, b, S0) succeeds ] ≥ 1 − δ. Thus, we must construct a distribution Dhard

such that E
(A,b)∼Dhard

[A(A, b, S0) succeeds ] ≥ 1 − δ cannot hold for any Π0 ∈ Rm×n which

does not satisfy m = Ω(d/ε2). The proof can be split into three parts. First, we prove a
useful property. Second, we prove a lower bound for the case rank(S) ≥ d. Third, we show
why rank(S) ≥ d is necessary.

(I) We show that [SA, Sb] are independent Gaussian, if both [A, b] and S are orthonormal
matrices. We can rewrite SA in the following sense,

S︸︷︷︸
m×n

· A︸︷︷︸
n×d

= S︸︷︷︸
m×n

R︸︷︷︸
n×n

R>︸︷︷︸
n×n

A︸︷︷︸
n×d

= S
[
S> S

>] [S
S

]
A =

[
Im 0

] [S
S

]
A =

[
Im 0

]
Ã︸︷︷︸

n×d

= Ãm︸︷︷︸
m×d

where S is the complement of the orthonormal basis S, Im is a m×m identity matrix, and
Ãm is the left m × d submatrix of Ã. Thus, using [13] as long as m = o(

√
n) (because of

n = Ω(d3)) the total variation distance between [SA, Sb] and a random Gaussian matrix is
small, i.e.,

DTV ([SA, Sb], H) ≤ 0.01 (12)
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where each entry of H is i.i.d. Gaussian N (0, 1/n).
(II) Here we prove the theorem in the case when S has rank r ≥ d (we will prove this is

necessary in part III. Writing S = UΣV > in its SVD, we have

S︸︷︷︸
m×n

A = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

V >︸︷︷︸
r×n

RR>A = UΣG (13)

where R =
[
V V

]
. By a similar argument in Equation (12), as long as r = o(

√
n) we have

that G also can be approximated by a Gaussian matrix, where each entry is sampled from
i.i.d. N (0, 1/n). Similarly, Sb = UΣh, where h also can be approximated by a Gaussian
matrix, where each entry is sampled from i.i.d. N (0, 1/n).

Since U has linearly independent columns, (UΣG)†UΣh = (ΣG)†U>UΣh = (ΣG)†Σh.
The r×d matrix G has SVD G = R︸︷︷︸

r×d

Σ̃︸︷︷︸
d×d

T︸︷︷︸
d×d

, and applying the pseudo-inverse property

again, we have

‖(SA)†Sb‖2 = ‖(ΣG)†Σh‖2 = ‖(ΣRΣ̃T )†Σh‖2 = ‖T †(ΣRΣ̃)†Σh‖2 = ‖(ΣRΣ̃)†Σh‖2
= ‖Σ̃†(ΣR)†Σh‖2,

where the the first equality follows by Equation (13), the second equality follows by the
SVD of G, the third and fifth equality follow by properties of the pseudo-inversewhen T has
orthonormal rows and Σ̃ is a diagonal matrix, and the fourth equality follows since ‖T †‖2 = 1
and T is an orthonormal basis.

Because each entry of G = RΣ̃T ∈ Rr×d is sampled from an i.i.d. Gaussian N (0, 1),
using the result of [24] we can give an upper bound for the maximum singular value of G:
‖Σ̃‖ .

√
r
n with probability at least .99. Thus,

‖Σ̃†(ΣR)†Σh‖2 ≥ σmin(Σ̃†) · ‖(ΣR)†Σh‖2 = σ−1
max(Σ̃)‖(ΣR)†Σh‖2 &

√
n/r‖(ΣR)†Σh‖2.

Because h is a random Gaussian vector which is independent of (ΣR)†Σ, Eh[‖(ΣR)†Σh‖22] =
1
n · ‖(ΣR)†Σ‖2F , where each entry of h is sampled from i.i.d. Gaussian N (0, 1/n). Then,
using the Pythagorean Theorem, ‖(ΣR)†Σ‖2F = ‖(ΣR)†ΣRR>‖2F + ‖(ΣR)†Σ(I −RR>)‖2F ≥
‖(ΣR)†ΣRR>‖2F = ‖(ΣR)†ΣR‖2F = rank(ΣR) = rank(SA) = d. Thus, ‖x′ − x∗‖2 &√
d/r ≥

√
d/m = ε.

(III) Now we show that we can assume that rank(S) ≥ d.
We sample A, b based on the following distribution Dhard: with probability 1/2, A, b are

sampled from D1; with probability 1/2, A, b are sampled from D2. In distribution D1, A is a
random orthonormal basis and d is always orthogonal to A. In distribution D2, A is a d× d
identity matrix in the top-d rows and 0s elsewhere, while b is a random unit vector. Then,
for any (A, b) sampled from D1, S needs to work with probability at least 9/10. Also for
any (A, b) sampled from D2, S needs to work with probability at least 9/10. The latter two
statements follow since overall S succeeds on Dhard with probability at least 19/20.

Consider the case where A, b are sampled from distribution D2. Then x∗ = b and OPT = 0.
Then consider x′ which is the optimal solution to minx ‖SAx − Sb‖22, so x′ = (SA)†Sb =
(SL)†SLb, where S can be decomposed into two matrices SL ∈ Rr×d and SR ∈ Rr×(n−d), S =[
SL SR

]
. Plugging x′ into the original regression problem, ‖Ax′− b‖22 = ‖A(SL)†SLb− b‖22,

which is at most (1 + ε) OPT = 0. Thus rank(SL) is d. Since SL is a submatrix of S, the
rank of S is also d. J
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