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Abstract

In a recent paper in RANDOM three algorithms were presented to (e, §)-approximate the number
of distinct elements in a data stream with different space/time bounds. The paper also posed open
problems about space lower bounds for this problem. In this paper we describe these and several older
algorithms, provide proofs for the existing space lower bounds, and document our attempts at solving the
open problems. In particular, drawing from several other papers, we suggest why common approaches
do not seem to yield progress for this problem.

1 Introduction

Let @ = a1, ..., a, be a sequence of elements from a universe of size m, which we denote by [m] = {1,...,m}.
In this paper we will be interested in counting the number of distinct elements Fy in a in the streaming
model. In practice, m and n are often large and algorithms must execute quickly using little space. This
restriction often makes exact and/or deterministic algorithms too inefficient, as it appears to be the case for
the distinct elements problem. Therefore we consider randomized (e, §)-approximation algorithms.

1.1 Applications

Computing the number of distinct elements is very valuable to the database community. Certain query
optimizers can use Fy to find the number of unique values in a database possessing a certain attribute,
without having to sort all the values. Internet routers may want to gather the number of distinct destination
addresses passing through them, but can only see the data once and have very limited memory. In specific
genome problems the length of the gene sequence is fixed and the number of distinct genes within that
sequence is desired.

With commercial databases approaching the size of 100 terabytes, distinct element algorithms may need
to use minimal space and time per element. It is infeasible to make multiple passes over the data since
the sheer amount of time to look at the data is prohibitive. Unfortunately, for a stream with Fy distinct
elements, there is a provable lower bound of Q(m) space on any deterministic algorithm which computes Fy
exactly. Even if we are content with a 1 £ € approximation to Fy, any deterministic algorithm must still
use Q(m) space. It is not until we introduce randomization that things start to improve. We will present
extremeley efficient randomized approximation algorithms for computing Fj.

1.2 Overview

This paper focuses on space issues. A recent paper [2] gives algorithms running in space O(1/€2 + logm).
The best lower bounds are Q(logm) [1] and 2(1/€) [3]; the authors in [2] ask whether there is an algorithm
matching these bounds or a new lower bound can be proved. In this paper we document our attempts at
answering this question, presenting also the relevant algorithms from [2] and older literature, as well as the
proofs of the lower bounds.

In section 2 we define the problem, fix notation and discuss some conventions. In section 3 we give
a survey of algorithms for distinct elements in the one-pass stream model [1],[2],[10]. In particular, our
presentation of the algorithms in [2] is more explicit and detailed than the original. Next we prove the
two known lower bounds for randomized algorithms in the one-pass stream model. Indeed, there is a gap
between the lower bound 1/€ and the bound given in [2] of 1/€? + logm. The apparent weakness of the



reduction suggests that 1/e may not be tight, and motivates the search for better algorithms. The rest of the
paper illustrates our efforts. In section 5 we explain some attempts at one pass algorithms. The following
section describes natural approaches like sampling and divide-and-conquer. Finally, we give a strategy for
an algorithm using several passes.

2 Preliminaries

A stream is a sequence a = ay,...,a, of elements from a universe of size m, which we denote by [m] =
{1,...,m}. For i € [m], let m; be the number of times i occurs. The kth moment of a, Fy(a) is defined as
Fi(a)=)_ mk.

i€[m]

Of particular interest is Fp, the number of distinct elements in a.

All algorithms will be allowed exactly one pass from left to right over the input elements. Elements that
have passed by that an algorithm has not stored are lost forever. Note that the algorithm cannot change
the order in which items are streamed to it. The order of the elements and their distribution are assumed
to be adversarial. We will use the log-cost RAM in our analysis. When we use O() notation, we follow the
convention in [2] of ignoring sublogarithmic factors and factors of O(log ).

We first clarify the relationship between m and n. Most of our bounds will be in terms of O(logm)
instead of O(logn), which is clearly advantageous in applications where the stream size n is larger than the
universe m. If on the other hand m > n, we simply hash each value in the stream to [n¢] for some constant
¢ > 2 which gives high probability that there are no collisions. This takes O(log(m + n)) time per element,
and lets us assume logm = O(logn) in what follows.

For any binary string x, we let TRATL(z) denote the number of rightmost zeros of z, e.g., TRAIL(01000) =
3 and TRAIL(001010) = 0. The set of distinct elements of stream a will be denoted B = {b1,...br, }.

3 Known Algorithms

3.1 A Preliminary Algorithm Using Fully Random Hash Functions

We begin with an O(logm log(liiﬂ))—space algorithm [10] for computing an approximation Fy of Fy within
a factor of 2, i.e. %FO < Fy < 2F,. with probability of error less than §. The algorithm illustrates the
power of hashing for this problem, and the idea of looking at whether a certain hash bin stays empty or not
is used extensively in [2]. Unfortunately, the space bound ignores the memory necessary to store the fully
random hash functions used in the algorithm. [2] also encounters this problem but deals with it by using
hash functions that are chosen to be just random enough for the (e, d) approximation to hold.

FR(a1,az,...an,0)
1. Vi, 1 <logm, let t; = 2.

2. Vi,j,1 <i<logmand 1 <j < 20010g(1"%) let h;; : [m] — [t;] represent a fully random hash
function and initialize boolean variables b; ; < 0.

3. For each stream item ay
e Vi, j,if hi,j(ak) =0,set b;; =1
4. for i =1 to logm

. 1 .
o if more than 3 of the values i1 .. .b; 500 10g(12m) are 0,



— break, return ﬁb = 2¢ as best estimate for Fy.

5. return m as best estimate for Fy
Theorem 1 Algorithm FR outputs a factor-2 approzimation to Fy.

Proof For a factor-2 approximation, it suffices to choose the best estimate Fp from among the set S =
{2,4,8,16...m}. For every t; € S, FR computes whether Fy < t; or Fy > 2t; with probability of error
at most &. The computation takes place as follows: Consider any value b; j. After the stream has been
processed, b; ; = 0 only if none of the Fy distinct values in the stream hash to bin 0 for the hash function h; ;.
For a fully random hash function, P(b; ; = 0) = (1—%)1?0. Now, if Fy < ¢;, then P(b; ; = 0) > (l—tl—i)ti > .25.

If Fy > 2t;, then P(b;; = 0) < (1—1)?" < e~? ~.13534. By running many different hashes, we can use these

probabilities to distinguish upto any arbitrary level of precision. In particular, after running 200 log(l‘”%)

hashes, we conclude that Fy < t; if more than % of the values are 0s; from Chernoff, it is easy to see that

this many hashes is sufficient to determine whether Fy < t; or Fy > 2t; with probability of error less than
logm. We union bound over all possible values of ¢; to get a total error probability less than §. Assuming all
decisions are correct for each t;, we simply check one by one which ¢; is closest to Fy and output that value

as our best esimate. H

Ignoring the space required to store the description of the hash functions, the total space used equals
O(logmlog(5)). The time for processing each element is dominated by the time necessary to compute all
the hash functions and equals O(log? m log %)

3.2 A Constant Factor Approximation Scheme

We now present an O(log m)-space algorithm [1] for computing an estimate Fy to Fy with %FO < Fy < cFy
that errs with probability at most %, for any constant ¢ > 2. This algorithm is better than FR in that
it only makes use of linear hash functions which can be stored in O(logm) space. Recall that our input
is a stream of up to m distinct elements, comprising m logm memory bits, which is exponentially larger
than the space this algorithm uses. The algorithm will pick a random pairwise independent hash function
h : [m] — [N] for some N (specified below) and apply it to each element a; of the data stream. If there are few
collisions, one would expect m to be a good approximation to Fy because, intuitively, h is splitting

up the discrete interval [0, N] into FLO equally sized buckets. The following algorithm /analysis formalizes this:

Al(ay,...ap)
1. Choose a prime p between n and 2n.

2. Choosea € {1,...,p—1} and b € {0,...,p— 1} uniformly at random and define h(z) = az + b mod p.

w

. R+0
4. for i =1 to n,
o if TRAIL(h(a;)) > R, set R <~ TRAIL(h(a;))
5. Output Y = 2F
Theorem 2 Algorithm A1 outputs Y such that 2Fy <Y < cFy with probability at least 1 — 2.

Proof Let r be an arbitrary nonnegative integer less than [log p]. For each distinct element z € B, let W,
be an indicator which is 1 iff TRAIL(h(z)) > r. Since h(z) is uniformly distributed over F,, E[W,] = 5 since



every sequence of rightmost bits is (roughly) equally likely. Set Z, = >~ W,. By linearity of expectation,
E[Z,| = Y, E[W,] = £2. By Markov’s inequality, if 2" > cFp,

F 1
Pr[Z, > 0] = Pr[Z, > c2—f] = Pr[Z, > cE[Z,]] <

By pairwise independence of h, Var[Z,] = 3 Var[W,] = Fy- 5 (1—5) < E[Z,]. By Chebyshev’s inequality,
if 2" < Fp,

Pr(Z, = 0] = Pr(E[Z,] - Z. = B[Z,]] < Prl[E[Z,] - Z,| > B[Z,]] < E"Z[Z])l FT = w <:

Set 7 to be the value R computed by A. Now, A chooses R such that for all integers s > R, Pr[Z;, > 0] =0
since otherwise there would exist an x with s > R rightmost bits set to 0, but R is maximal. Hence, by the
union bound, the above two inequalities imply Pr[FL0 > cor FXO < %] < % |

Theorem 3 Algorithm A1 uses O(logn) memory bits and takes O(logn) time per element.

Proof We need d = O(logn) bits for p, a, b, and O(loglogn) bits to keep R, resulting in O(logn) space.
For each element, we need O(log nloglogn) = O(logn) time to compute the multiplication in h and O(logn)
time for the addition. Computing TRAIL and updating R take O(logn) time. H

3.3 Three Progressively Better (¢, §)-Approximation Algorithms

We will run each of the algorithms that follow O(log %) times in parallel and take the median of the results.
For brevity, we have omitted this step from the pseudocode.

3.3.1 Algorithm A2

We have shown how to achieve an approximation to Fy with error cFy in O(logm) space. We now wish to
improve our estimate to a 1+ € factor with a 1 — 6 confidence, where €, § are user-specified parameters. In [2]

three algorithms are presented to do this, each offering progressively better space. The first algorithm is a

natural generalization of [1]. Instead of computing the minimum, we keep track of ¢t = ©(%) smallest hash

values in a balanced binary tree and output #, where v is the ¢-th smallest distinct value. We expect this
to work for the same reason the algorithm in [1] did. The algorithm follows:

A2(ay,...,an,¢€)

1. Pick a random pairwise independent hash function h : [m] — [m?]
(i.e., of the form ax + b mod p for m3 < p < 2m?).

2. t« [%].
3. BST <+ new balanced binary tree.
4. fori=1tot,
e insert(BST, h(a;))
5. fori=t+1

o if h(a;) < max(BST),
— remove(BST, max(BST))



— insert(BST, h(a;))
3
6. Output Y = %
Theorem 4 Algorithm A2 outputs Y with (1 —€)Fy <Y < (1 + €)Fy with probability at least 1 — 4.

Proof Assume # < %, which since Fy < m and t > 2—2, is true provided m > /57:

Case 1: A2 outputs Y > (1 + ¢€)Fp.

3 €
There must exist at least ¢ distinct elements that are all smaller than Fot{fie) < tm ;,10_2), as otherwise, if v
is the ¢th smallest element, it would be at least #ie) so that Y = @ < Fy(1 +¢). For any b; € B (recall

B is the set of distinct elements in the data stream),

(1—£)tm?

(-9 1 _(-9 e (-
Fy

B Tm ST R i S R

Pr[h(b;) < | <

where we used the fact that h(b;) is uniformly distributed and took into account rounding errors. Let
(1-5)tm®
0

X;,1 < i < Fp, be an indicator random variable which is 1 if and only if h(b;) < 2

E[X;] < % By linearity of expectation, letting X = Ef:"l X; we get E[X] < (1 — {)t. We compute
the variance of X so that we can apply Chebyshev. By pairwise independence of h, the X;s are pairwise
independent so that Var[X] = Zf:(’l Var[X;] < (1 — £)t. Therefore by Chebyshev’s inequality,

. As argued,

L1616 1

< 16Var[X] < 61—t 1
€27 6 6

I< €22 - €2t2

Pr[X > ] = Pr[X > T + (1~ 9)] < Pr[[X — B[X]| >

~Q

Case 2: A2 outputs Y < (1 —¢€)Fp.
3
There must be strictly less than ¢ distinct elements that are smaller than Fot(Tie) < (1+;)Otm , as otherwise,

if v is the tth smallest element, it would be at most #ﬁe) so that ¥ = @ > Fy(1 —¢). For any b,

1+5)t_(1+at 1 (
< —— < i) <
FO -~ FO m3 —_ Pr[h(bl) =

1+ €)tm?
Fy

< Atat, 1 (45
- Fy 3 = Fy

where again we take into account rounding errors and use the fact that # < %. As in case 1, let

X;,1 < i < n, be an indicator which is 1 iff A(b;) < % and define X = )7 | X;. We have that
E[X] > t(1 4+ £) from the bounds above, and also Var[X] = > Var[X;] < >  E[X;] < ¢(1 + ).
Rewriting,

Pr[X < ] = Pr[-X > —f] = Pr[-X+E[X] > —t+E[X]] < Pr[- X+E[X] > —t+(t+%€)] < Pr[|X—E[X]| >

0| &

]

Therefore by Chebyshev’s inequality,

te.  4Var[X] _4t(1+3) 12 1
Pr[X < t] < Pr[|X — E[X]| > =] < < <— <=
X <f) <Pr|X -BX]| > 5] < — 55— < — 552 < 5 < g

Hence, by the union bound, the probability that either case occurs is at most % Since h has range [m3], the
probability that it is not injective is at most %, so that A1 succeeds with probability at least % - % This
probability can be amplified in the standard way to 1 — 4 by running O(log ;) copies in parallel and taking

the median of the results. H



Theorem 5 Algorithm A2 uses O(% lognlog ) memory bits with worst-case O(logm) time per element.

Proof The size of BST is at most ¢t = §(%)logm, and the hash function results in an additive logm to
the space. Running O(log %) parallel copies gives the overall space bound. Since BST is a balanced binary
tree, the time per element is O(log £ logm) since all operations on BST take log |BST|, where |BST| is the
number of elements stored in BST. R

We have achieved space O(% lognlog ). Later we will show space lower bounds of (1) and Q(logn). It is
not known if Q(}z) is a lower bound. Hence, it is possible that this algorithm has space which is the product
of two lower bounds for this problem. Can we do better? Assuming Q(}z) is a lower bound, the best possible
algorithm would take O((}2 + log m) log %) space. Notice that }Q and logm are added together rather than
multiplied.

3.3.2 Algorithm A3

The second algorithm in [2] achieves this space bound modulo logarithmic factors. Rather than estimate Fj
directly, it instead estimates a related quantity which is easier to compute in the stream model. Specifically,
we know that for completely random hash functions h : [m] — [R], r = Pra[h "' (0)NB # 0] = 1—(1— §)".
What’s crucial is that we’ve found an event which algebraically depends on Fy that we can approximate
without knowing Fy. Taking logarithms one can solve for an approlximation to Fy given an approximation
to r. Since R = cFj for some small integer constant, (1 — %)F LS %?, so that r is a constant in expectation,
which is necessary for a good approximation of this event to translate to a good approximation of Fp, as we
will prove below.

It turns out that r will indeed be approximable in the stream model. The reader may wonder why we
choose to approximate r instead of 1 — r. The reason is purely formulaic; the techniques below for approx-
imating r do not work for 1 — r. It remains open whether there is an analysis for 1 — r. The algorithm,
explanation, and analysis follow:

A3(ai,...,an,¢€,0)
1. In parallel run the following two subroutines:

e R+ 2x%25%xAl(as,...,an,€)

Define the master hash function h : [k] — [p1] as h(z) = az + b mod p;.
Initialize y; =0 for all 1 < j < k.
for i =1 to n,

e (@ yemind-1,8)
log(2)
) ¢« [2]
(C) k «— 1850200
(d) Choose a prime p; between mi*! and 2mi*1.
(e) Let d « [logm].
et g(x) be an irreducible polynomial of degree d over .
f) L b irreducibl 1 ial of degree d F
oose a € {1,p1 — an €U,p1 — uniformly at random.
(g) Ch {1 1} and b€ {0 1} uniformly d
)
)
)

i. for j =1tok,
A. z < h(j). Restrict z to its last (¢ + 1) logm bits and chop it up into ¢ + 1 bit strings
each of size logm bits. Let the successive bit strings be denoted z;, 0 < ¢ < ¢t. Define
w; : [k] = Fg to be 22t + z_12'™1 + ... 2141 + 2 (arithmetic in F{ is done modulo
the polynomial q).



B. If TRAIL(w;(a:)) > y;, y;  TRAIL(w;(as)).
2. X(Hg) « 0
3. fori=1tok,

(a) ify; > R, X(Hg) = X(Hg) + 1.

4. X(Hg) = XUn),

5. Output Y = W
This algorithm constructs k t-wise independent hash functions and finds the average number of them X (Hpg)
which map at least one element of the stream to 0. By appropriate choice of k and ¢, this gives a close ap-
proximation to the probability that a completely random hash function v : [m] — [R] maps at least one
item to 0, which as we will show below, gives a good approximation to Fy. Unfortunately, we do not know
R until we have read the entire stream. To combat this, for each hash function w;, the above algorithm
computes y; = max,; TRAIL(w;(a;)). Using the fact that the restriction of w; to its last [ bits is also
a hash function, when we eventually learn R we need only compare the maximum index y; to logR in
order to learn if the restriction of y; to its last log R bits maps at least one element of the stream to 0.
Note that the restriction of a hash function to its last [ bits is not generally a hash function. However, if
its range is is a power of 2, as in our case, this result holds. Also note that A1 returns R which is a power of 2.

In this algorithm we have a so-called master hash function h. When we read each stream element, we
use the master hash function A to get k t-wise independent hash functions which are each polynomials with
coefficents based on the bits returned by h. We then evaluate each of these hash functions on the current
stream element and update the largest number of bits y; from the right which are 0, if necessary. Since we
need to evaluate each of k£ hash functions on each a;, and since extracting each function from h is O(logm)
(in the log-cost RAM) time, we do not lose any time by not storing each hash function explicitly. However,
we replace a potential O(% logm) term in the space count with an O(logm) term. The following lemma
says that approximating r is a good way to approximate Fj.

Lemma 6 Let ¢ > 2 be a constant and let € > 0. Suppose R and Fy are such that ﬁ < % < % Then if
Ir =7 <v=min(: - 1, £), then |Fy = Y| < eFp.

Proof We prove this using some well-known bounds and a bit of calculus. We have:

—2Fy

26%2 —H":l—(l—%)Fogl—e R <1-—

R>2Fp > R>2—> =<-—>1-

& =
N —
& =
Q| =

We also need: v < efll— —»r+9< % — m < 3 and m(T:lf) < R. The calculus we use is that for any
3 R
continuous function f, |f(z) — f(Z)| < €|supye(,,z)f'(y)| for & close to z. Specifically, for f(z) = In(1 — z),

this yields | f(z) — f(Z)] < 2=l __ " The proof follows from the same line in [2]:

1-—max(z,z) "

[In(1—7r) —In(1 —7)| Rjr — 7| 6cFoe
< <3Ry < = ek
—In(1- %) “1—(r+7) — 7= T6e o

|[Fo —Y| =

Theorem 7 Algorithm A3 outputs Y with (1 —€)Fy <Y < (1 + €)Fy with probability at least 1 — 4.



Proof From the above lemma, we see that we have reduced the problem to one of approximating r. Now, r
is defined in terms of completely random hash functions, which are not known to be efficiently constructible.
Instead A3 chooses our hash functions from a family of hash functions H which are ¢t-wise independent.
Define p = Pryey[h 1(0) N B # 0]. Let H; C H be the subset of hash functions of H that map b; € B to
0. Then p = %| since p counts the number of hash functions which map some element to 0, divided
by the total number of hash functions. We expand p using the principle of inclusion-exclusion, and bound

ULTW between successive terms of the expansion. Since the terms alternate signs, for odd ¢ we have:
t—1 t
DD Praeulh e Hiy NN My ) <p <D (DY Praeulh € Hi, 0.0 Hy))
=1 11<...9; =1 11<...9;
Since we have t-wise indepndence, Prpey[h € H;, N...NH;] = (I§°)R*’ since the probability ranges over

(I;‘J) subsets, and h has probability R~! of being in any one of them (i.e., of mapping a particular element
to 0), so by t-wise independence, it has probability R~ of being in I all of them, for [ < ¢t. One can also

expand the expression r =1 — (1 — %)F ¢ using binomial expansion and bound it between the same terms:

=1 =1

If ¢ is large enough, the difference between the two terms bounding r and p can be made arbitrarily small,
implying that r can be made arbitrarily close to p (since they are sandwiched between the same terms).

log(2) 1 1 e
A3 chooses t = {W e 3'6e

X (HR) = %|{j|h;1(0) N B # (}|. k is chosen to be suitably large so that by the law of large numbers, the
average computed in X (Hg) will be close to its expectation, which is just p. For k = 182#, Chebyshev’s
inequality gives Pr[| X (Hg) —p| > 1] < % Now, setting ¢ = 5 in A1 gives an error probability of 2, since,
1Ry < R < cFy = 2¢tFy < 2R < 2¢°Fy — 2Fy < R < 2¢°F, with probability at least 1 — 2, where
we let R’ denote what is returned by Al. Adding this to 21—0 gives the total error probability, which is 29—0.
Hence, with constant probability, A3 is correct, so that repeating it log% times and taking the median of

the outputs gives an (e,d) approximation scheme. B

-|, which makes |p — r| < 7, where v = min( ). A3 then approximates p by

Theorem 8 Algorithm A3 uses O((éi2 +logn)log $) space and worst-case (5(%2 logm) time per element.

Proof A1l takes O(logm) space. The master hash function takes O(tlogm) = O(logm) space. Storing
y; for O(%) values takes O(% loglogm) = O(%) space. Finally, running O(log 1) copies in parallel yields
the overall space bound. The time in A3 is dominated by accessing the master hash function O(%) times
for each stream element, yielding an overall O(Ei2 logm) time per elment. H

3.3.3 Algorithm A4

Although the space has dramatically improved, the time per element has increased by a multiplicative factor
of %. The third algorithm in [2] drops this back down to O(logm), at least in the amortized sense.

In a sense this algorithm is a generalization of algorithm A3. The algorithm chooses a pairwise independent
hash function h : [m] — [m], and finds the minimal restriction (defined as in the previous algorithm) h; for
which |h; ' N B| < 578 Here hy refers to h restricted to its last ¢ coordinates, which is also a hash function
(since we assume m is a power of 2 in this algorithm). Intuitively, we are restricting the space to size 2¢,
and then only considering elements which are in one bucket in that space, namely, the elements that hash



to 0. We scale back up to the original space by multiplying by 2¢. The algorithm follows:

Ad(ay,...,an,¢€,90)
1. T « new array of size m + 1.
2. Initialize T'(¢) to a new balanced binary search tree for 0 < i < m.

3. Let d = logm, where we assume m is a power of 2. Choose an irreducible polynomial ¢(z) of degree d
over Fy. We will work in F, i.e., the field with reductions modulo g(z).

4. Choose a € F§ — 0, b € F¢ uniformly at random. Define h : [m] — F¢ as h(z) = az + b mod gq.
2 2
5. Find a prime p between [3((1%%&) 1 and Q[B(W) 1.

6. Choosea € {1,...,p—1}, b€ {0,...,p— 1} uniformly at random and define g(z) = az + b mod p.
7. t+ 0.
8. for i =1 to n,

(a) if TRAIL(h(a;)) > t, insert(T(TRAIL(h(a;))), g(a;)).

(b) if |T| > %2,
i. T; « new balanced binary search tree for all 4, 0 < ¢ <t (garbage collect old values).
il. t+t+1.

9. Output Y = |T| - 2.

There are a couple of cute tricks in the above algorithm. When we get a buffer overflow (i.e., the size of
T becomes too large) and need to increment ¢, we need to find the new set of distinct elements with ¢ + 1
rightmost Os. Instead of rescanning the entire stream, we observe that h; ' (0) C h;"(0) so that we simply
empty the tth entry of T'. Also, the idea of using a second hash function g to store the description of distinct
elements in T improves the space dramatically (from a }2 logm term to a €%log logm term). We argue
correctness and efficiency:

Theorem 9 Algorithm A4 outputs Y with (1 —€)Fy <Y < (1 + €)Fy with probability at least 1 — 4.

Proof We note that there are two sources of error. One comes from g having collisions. The first
observation is that the above algorithm applies g on at most (logm + 1) 5 distinct elements, since ¢ can be

incremented at most logm times, and in the worst case the entire buffer is flushed each time. However, the
22

range of g is [3((logm + 1) %)?] so the expected number of collisions is less than (log "2‘;1) c . 362(105”1 7 =

%. We will assume there are no collisions in the remainder, and add % to the total error probability

(union bound). Computing the remaining probability of error is an exercise in pairwise independence and

Chebyshev’s inequality, as in the previous algorithms. See [2] for the details. Letting ¢' be the value of ¢

that A4 terminates with, we obtain Pr[| X, -2 — Fy| > eFp] = %. Hence, the overall algorithm succeeds
with probability at least 1 — (3 + £) = 3. Running O(log }) copies in parallel and taking the median gives

the desired (e,0) approximation scheme. B

Theorem 10 Algorithm A4 uses O~((€i2 +logn)log $) space and amortized O(log mlog 1) time per element.

Proof Hash functions h and g collectively consume O(logm) space. The array T has logm indices so it
consumes at least O(logm) space, and at any given time it contains at most }2 elements, each of which is
an index into a bit position of h(a;), so it requires at most E% -loglogm bits. Hence, in total, the space is



O~((Ei2 +logn)log %) since we run log % copies in parallel. To see the time bound, note that every element in
the stream is inserted at most once and removed at most once from the buffer, each of which takes O(logm)
time. So even though it takes O(logm + glg) time to empty a buffer, if we charge the removal of an item to
when it was inserted, we have an amortized O(log m) time per stream element. Since we do this log % times

in parallel, the total amortized time per element is O(logmlog ;). M

This algorithm is the best known (in terms of space and time) for solving the distinct elements problem in
the stream model in one pass.

4 Lower bounds

In this section we give the proofs of two lower bounds for Fg in a one-pass streaming model. These proofs rely
on reductions from problems in a communication complexity framework. It is notable that the reductions
are not particularly powerful, suggesting that tighter bounds may hold.

Definition 11 Fiz the alphabet and stream size m,n, respectively. Define DS, 5(Fo) to be the amount of
space used by an optimal (space) randomized algorithm that (e,d)-approxzimates Fy for streams of length n
over an alphabet of size m in one pass.

There are two known space lower bounds for DS, 5(Fp): Q(logm), given in [1], and Q(1/€?), a recent result
given in [3]. We present the proofs of both bounds in this section. Central to the proofs is the idea of
communication complexity. Let f : X x Y — {0,1} be a Boolean function. We will consider two parties,
Alice and Bob, receiving z and y respectively, who try to compute f(z,y). In the protocols we consider,
Alice computes some function A(z) of z and sends the result to Bob. Bob then attempts to compute f(z,y)
from A(z) and y. Note that only one message is sent, and it can only be from Alice to Bob.

Definition 12 For each randomized protocol 11 as described above for computing f, the communication cost
of II is the expected length of the longest message sent from Alice to Bob over all inputs. The §-error
randomized communication complexity of f, Rs(f), is the communication cost of the optimal protocol
computing f with error probability § (that is, Pr[l(z,y) # f(z,y)] <4).

For deterministic protocols with input distribution p, define D, 5(f), the d-error u-distributional com-
munication complexity of f, to be the communication cost of an optimal such protocol. Using the Yao
Minimax Principle, R5(f) is bounded from below by D, s for any p [9]. The following is a famous result of
communication complexity.

Theorem 13 Let EQ : {0,1}" x {0,1}" — {0,1} such that EQ(z,y) = 1 iff x = y. Then Rs(EQ) =
O(logn).

4.1 The Q(logm) Lower Bound

The idea is that EQ can be reduced to computing Fy. The lower bound then follows from Theorem 13. Let
S be a family of t = 2% size m/4 subsets of [m], such that |z Ny| < m/8 for every distinct z,y € S.
The existence of S for sufficiently large n follows from the Probabilistic Method. Let A be a randomized
(e, 9)-approximation algorithm for streams over [m]. A protocol for EQ : S x S — {0,1} works as follows:
on input (z,y), Alice computes A(x) and sends the state of .4 to Bob. Bob continues the computation from
this point on y with A. He returns 1 if the A returns a value greater than (1 — €)3n/8.

If £ = y then Fy(z,y) = n/4. If x # y then Fy(z,y) > 3n/8. Therefore the protocol is correct. Now
suppose that the (randomized) communication complexity of the protocol is less than logt. By Pigeonhole,
there exists « # y such that A(x) is at the same state as A(y). Therefore Bob will see the same answer for
A(z,z) and A(y,z). But this is impossible since x # y. Therefore we have:

Theorem 14 For e < .1, DS, 5(Fp) = Q(logm).
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4.2 The Q(1/¢) Lower Bound

The key result presented in this section is the following;:

Theorem 15 (Bar-Yossef) For every n,m, 0< 3§ <1, and 1/n<e<1/6,

€

DS.s(Fo) = Q (1 1- HQ((S))> .

The proof involves a reduction from the (one-way) communication complexity of a set-disjointness problem.
Before giving the proof, we must define VC dimension [8].

Let H ={h: X = {0,1}} be a family of Boolean functions on a domain X'. Each h € H can be viewed
as a |X|-bit string hy ... h x|

Definition 16 For a subset S C X, the shatter coefficient of S is given by |{h|s}necwu|, the number of
distinct bitstrings obtained by restricting H to S. If the shatter coefficient of S is 2'°!, then S is shattered
by H. The VC dimension of H, VCD(H), is the size of the largest subset S C X shattered by H.

Let f: X xY — {0,1} be a Boolean function. The family of functions fr : Y — {0,1} is defined by
f=(y) = f(z,y) for all z € X,y € Y. The following Theorem lower bounds the (one-way) communcation
complexity of f in information theory terms.

The proof of Theorem 15 uses a reduction from the following problem.

Definition 17 Fiz n and let 1/n < € < 1/2. Let T C X x Y, be where X = {z C [n] : |z| = n/2},
Y={yC[n]:l|yl =en} and if (z,y) € T then either tNy =0 ory C z. The e-set-disjointness problem
is defined as DISJ, ¢ : T — {0,1}, where DISJ, (z,y) =1 iff y C .

In other words, given the promise that = has size n/2, y has size en and either they are disjoint or y C z,
DISJ(z,y) indicates if y C x. We will use the randomized communication complexity of the e-set-disjointness
problem. We first find the VC Dimension of fx, where f = DISJ,, .

Lemma 18 Let f = DISJ, ., where for convenience we assume ne divides n/2. Then VCD(fx) = ZLe

Proof Let £ =1/2¢. First we argue that VCD(fx) < £. Suppose not; then there is a subset S with £+ 1
elements shattered by fx. Therefore for some z € X, f(z,y) = DISJ(z,y) = 1for all y € S, implying y C =
for all y € S. Since |z| = n/2, each y has en elements, and there are £+ 1 such y, by the Pigeonhole Principle
there are two elements y;,y2 € S which have nonempty intersection. But it is impossible to split 1 and ys;
that is, there is no x such that y; C z and y, Nz = () or vice versa. This implies S is not shattered by fx, a
contradiction. Therefore VCD(fx) < £.

Next we demonstrate a subset S C ) of size £ that is shattered by fx. Recall what this means: for every
subcollection 8" of S there is some z € X such that y Cxz fory € S"and yNax =P for y € S — S'. To this
end, let y1, ...,y be disjoint, equally sized subsets contained in [n/2]. Since £-en = n/2 (and we assume en
divides n/2) this is possible. Now for each /—bit sequence b = by ... by, define x; so that y; C zp iff b; = 1;
fill each z; with elements from {n/2 + 1,...,n} arbitrarily so that |z;] = n/2 for all b. Since the y; are
disjoint, for every subcollection S’ C S there is a xp such that y Cz fory € S’ andyNz =P fory € S —S'.
Therefore {f,,} shatters S, so VCD(fx) > ¢.

It follows that VCD(fy) =¢. R

The following Theorem lower bounds the (one-way) communcation complexity of f in terms of information
theory.

Theorem 19 For every f : X x Y — {0,1} and every 0 < & < 1, there exists a distribution u on X x Y
such that

Dy,s(f) > £(1 — H(9)),
where £ = VCD(fx).
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Proof Let X' C X and )’ C Y such that |)’| = £ and fa shatters V. In particular, |X’| = 2¢. The
existence of such subsets follows from the definition of VC Dimension. The input distribution we consider
is p = pxy x py where puy: and py are uniform and independent over X’ and )’, respectively. Let X,Y
be chosen from u. Consider a one-way protocol for f where Alice sends A = A(X) to Bob, who estimates
f(X,Y) from A(X) and Y. Suppose this protocol has complexity D and error . Recall Fano’s Inequality
from information theory [5]: Suppose a message X drawn from a domain X is sent through a noisy channel;
denote the received message by Y, drawn from the set ). For any reconstruction function g : Y — X that
recovers X from'Y with error § satisfies:

Hy(8) + Slog (1] - 1) > Hy(X]Y).
Applying Fano’s Inequality (ignoring the second term) here gives:

H(8) > Ha(f(X,Y)|A(X ZH (X,y)AX),Y =y),
yey’

by conditioning on Y and using the fact that gy is uniform. By independence, H(f(X,y)|A(X),Y =y) =
H(f(X,y)|A(X)). By the subadditivity of entropy, the sum is greater than the entropy of { f (X, y) }yey|A(X).
Applying the entropy chain rule, H({f(X, )}ty |A(X)) > H({f(X,y)}yeyr) — H(A(X)). Therefore

- Hy(6) > Hy({£(X, ) }yeyr) — Ha(A(X)).

Since X' shatters )’ and X is uniform on X', {f(X,y)}yey is uniform over ¢-bit strings. Therefore
Hy({f(X,y)}yey) = L. Since the entropy of A(X) is at most D, the result follows. H

We get the following Corollary from Lemma 18 and Theorem 19:
Corollary 20
Rs(DISJ,, )

1
> _e(l — H>(9)).
Proof Again set f = DISJ, . From Theorem 19, there exists a distribution p on X x Y such that
D,5(f) 2 VOCD(fx)(1 — Hx(9)).

By Lemma 18, VCD(fx) = 2% To complete the proof, we note that the Yao Minimax Principle implies
Rs5(f) = max, D, s(f); that is, to prove a lower bound on the randomized communication complexity, we
choose an input distribution g and prove a lower bound for the deterministic communication complexity

under p. The result follows. B

We are now in a position to prove Theorem 15. Since randomized (one-way) communication complexity is
a lower bound on the amount of space used by a protocol/algorithm, a reduction from DISJ,, . to determining
Fy implies that the bound in Corollary 20 applies to the space of any algorithm computing Fy in the stream
model.

Proof Let A be a space-optimal randomized algorithm that (e,d) approximates Fy on streams from a
universe of size n, and let S = DS, ;(Fy) be the space used by A. We use A to construct a one-way
communication protocol II for DISJ,, ., where n' = 2n/(1 + 6¢) and € = 3e.

Let a = (z,y) be an instance of DISJ, .. Note the following: if z Ny = 0 then Fy(a) =n'/2+ €'n
with probability at least 1 — 4, A(a) > (1 —€)(n'/2 + €'n'). However, if y C z then Fy(a) = n'/2, so Wlth
probability at least 1 — 4, A(a) < (1 + €)n'/2. By our choice of n’ and €', (1+€)n'/2 < (1 —€)(n'/2 + €'n’).
The definition of II follows naturally.

The protocol will break the computation of A(a) into two parts. First, Alice runs A on the first n'/2
elements of a; note this is z. Alice records the state of A at this point and sends it to Bob. Bob runs
A from this state on the rest (e'n') of a. If A returns a value greater than (1 — €)(n'/2 + €'n'), then Bob
sets DISJ(a) = 0, and 1 otherwise. As noted, with probability at most 1 — § Bob will compute DISJ(z,y)
incorrectly. The result follows from Corollary 20. B
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5 Some Initial One-pass Attempts

In this section we present some of our naive attempts at achieving the O(%polylog(m)) space bound using only
one pass. First, we begin by analyzing good algorithms constructed for some special cases: Fo = O(logm)
and Fy = 6(m). The algorithms are instructive in analyzing tradeoffs over the range of possible values for
Fy, and when combined provide a O(‘/Tm logmlog(1/d)) space algorithm for all Fp.

We also provide another slightly more involved O(@ log m log®(1/8))-space algorithm that is based on
sampling and choosing an appropriate event estimator. The poor space achieved in this algorithm illustrates
the difficulties inherent in using a purely sampling-based approach.

5.1 Fy=O(logm)

If Fo = O(logm), we can afford to allocate as much space as needed to store all the distinct elements in the
stream. The main idea of the algorithm Naive-Storing below is to simply maintain a data structure (we
use a balanced binary search tree) containing the current distinct elements seen so far, and to update the
data structure as necessary when we encounter a new distinct element. After the stream has been processed,
we simply output the number of elements in the data structure as our best estimate for Fjp.

Naive-Storing(ay, az, .. . an,0)

1. For each i, 1 < i < log(1/4), initialize an empty balanced binary search tree BST; and a counter ¢; < 0
to indicate the number of elements in BST;.

2. Let t = O(log m) be a threshold for the maximum number of items that we allow in any BST;.
3. Pick a prime p, 4t < p < 8t2.

4. For each i, 1 < i < log(1/4), choose a random element a; # 0 in the field GF(p) to define a nearly
universal hash function h; = a;z mod p.

5. For each stream element ay.
e Vi, if h;(ay) does not exist in BST; and ¢; < t, add h;(ag) to BST; and increment ¢; by 1.
6. Output ﬁ‘o = mazx; c¢; as best estimate for Fy.

The purpose of hashing is to reduce the description of an element ay in the stream from O(logm) bits
to O(log(logm)) bits; this can be done because we are assuming that Fy = O(logm). We choose our
hash functions to hash to tables of size O(log?m) in the hope that we might get at least one perfect hash
function; if we get a perfect hash function then all Fy = O(logm) distinct values in the stream will have
distinct hashes, and we can store the hashes instead of the values to save space. From Corollary 8.20, for the
type of nearly universal hash family used in the above algorithm, at least half the choices of hash functions
will be perfect. Choosing O(log(1/d)) hash functions then ensures that at least one hash function will be
perfect with probability 1 — §. The total space used equals O(logmlog(1/d)). The time for processing each
element is dominated by the time necessary to compute all the hashes: O(log(1/5) logm).

The algorithm presented here is attractive because it can always be run in parallel with algorithms suited
for the case that Fy = Q(logm) without harming the space bound (except for by a constant factor). It is also
attractive because it never uses no more space as necessary. Furthermore, the algorithm can signal failure
when any BST; has more elements than the threshold, so that we can know in which cases its estimates for
Fy are invalid. This facet of the algorithm will be used later when combining it with the naive Monte Carlo
algorithm presented next..

13



5.2 F() = G(m)

Suppose we know that Fy > e¢m for some constant ¢. Then we can use the naive Monte Carlo sampling
approach to obtain a good estimate for Fy. If we sample k = O(Z) values from the universe [m] and check
how many of them appear in the data stream, we can achieve a (1 & ¢€) approximation to Fy with a constant
probability of error. We let X; = lAif the 7th sample from the universe appears in the stream and 0 otherwise.
Let S = ), X;. Our estimator Fy = STT” To achieve a (1 + €) approximation to Fy, we must achieve a
(1 + €) approximation to S. From Chebyshev,

k- Ly  p-1

€2k2(%)2 T2k

P(|S - E[S]| > €E[S]) <

Since 7 is restricted to be at most ¢, k = O(1/ €2) samples are sufficient to approximate Fy with a constant
probability of error. We can achieve a (¢, d) approximation with the usual median-finding procedure by using
O(log(1/4)) times as many samples. The total space necessary is O(Z log(1/6)logm) bits to store each of
the O(Z log(1/6)) values for whose presence we want to check for in the stream. To generate the random
samples from the universe, it is sufficient to use a pairwise-independent pseudorandom generator of the
form azx + b mod p, where p is a prime which is §(m) and a and b are randomly chosen elements of GF(p).
The processing time per stream element is dominated by the time spent comparing it to the O(% log(1/4))
samples. If we use O(log(1/d)) balanced binary search trees to store the samples, we can bring down the
processing time per element to O(logm log(1/6)).

5.3 Combining Naive-Storing and Monte Carlo

We have presented above two algorithms whose space requirements are good provided certain constraints
hold. When Fy = O(logm), a storage approach works well while when Fy = 6(m), a sampling approach works
well. Since both these algorithms work well in very different regimes, it seems logical that we can combine
them in order to do better. The algorithm NSMC does exactly that and achieves a O(%/mlog(1/8)log(m))
space bound.

NSMC(a1,az...an,¢,0d)

1. Initialize O(log(1/4)) empty balanced binary search trees BST;. The BST;’s will be used for the Monte-
Carlo part of the algorithm. In addition, initialize one empty binary balanced search tre BSTn g, which
will be used for the Naive-Storing part of the algorithm. Let ¢ + 0 represent the number of elements
stored in BSTns. Set the threshold ¢ to be 6(1/m).

2. Choose a prime p between m and 2m, and randomly generate two elements a and b from the field
GF(p). Use the function az + b mod p to generate O(%,/mlog(1/8)) pairwise independent samples
from [m] and insert ¢ samples into each BST;.

3. Initialize 6(tlog(1/4)) boolean random variables b; ; - 0 which will indicate whether the jth element
inserted into BST; has appeared in the stream.

4. Initialize boolean overflow flag f + 0.
5. For each stream item ay,

e If a; does not appear in BSTngs and ¢ < t, insert ay into BSTng. If ¢ =t and this is the ¢ + 1st
distinct element seen, set f = 1.

e Vi, search for a, in BST;. If a; matches the jth inserted element of BST;, set b; ; = 1.

6. If f = 0 return Fy = ¢. Otherwise compute log(1/8) estimates Fji = % 22 bi,j- Return the median of
the F¥’s as the estimator Fp.
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The algorithm basically runs the Naive-Storing and Monte-Carlo algorithms in parallel. The major
difference is that we have eliminated the hash functions in the original Naive-Storing algorithm because
very little can be gained from reducing the description size of each element; in the worst case the description
size for each element appearing in the stream would still be O(logm). What we have gained is that we no
longer need O(log(1/d)) balanaced binary search trees to compensate for the fact that the hash functions
may not be perfect.

Theorem 21 Algorithm NSMC returns a (€,8) approzimation to Fy.

Proof The correctness of the algorithm is as follows: If f = 0, then BSTxgs must have < ¢ elements in
it. Since we are not using the hashing scheme in the original Naive-Storing algorithm, we can be certain
with probability 1 that the overflow flag is set correctly. The analysis just becomes that of a deterministic
algorithm and our estimate Fj is exact. If f = 1, then it must be the case that Fy > t = 6(1y/m). From

the analysis of the Monte-Carlo algorithm, we have that k£ = O( Tz; 1) samples are sufficient to achieve an
approximation to Fy with a constant probability of error. Since Fy = Q(%\/ﬁ), we have that k should be
(£\/m). But each BST; has 6((%y/m)) samples so we satisfy the requirement for k. As usual, we keep
O(log(1/6)) balanced binary search trees and return the median of our estimates to reduce the probability

of error to . l

The threshold ¢ is in fact optimal for minimizing the total space used by the algorithm. It was obtained by
setting the space requirement for the Naive-Storing algorithm equal to the space requirement necessary
for the Monte-Carlo algorithm.

Theorem 22 Algorithm NSMC uses §(\/mlog(1/8)logm) space and takes O(log? mlog(1/8)) time to
process each element.

Proof BSTng can store at most O(%\/ﬁ) distinct elements from the stream, and each BST; stores
6(%/m) samples from the universe. Since there are O(log(1/8)) BSTy’s, the total space usage is 8(/mlog(1/5) logm)
bits. The processing time per stream element aj depends on the search time in the binary trees. Since we are

using balanced binary search trees, the number of samples aj is compared to is at most O(log(log(%/m)))

for each binary search tree. Since there are O(log(1/4)) BST’s and a comparison takes O(logm) time, the

total processing time per element is O(log” mlog(1/4)). M

When 1 = w(y/m), algorithm NSMC performs strictly better than all three algorithms in [2] in terms of
space usage. Unfortunately, for this case, the naive O(m)-space determinstic outperforms NSMC and all
three algorithms from [2].

5.4 A Second Sampling-Based Algorithm

In this section we present a sampling-based algorithm that achieves O(%/m log(1/6) logm) space and
ON(%\/E log?(1/6) logm) processing time per element. The space and time achieved are atrocious, even
worse than the NSMC algorithm, but it may be of interest to understand the algorithm to avoid taking an
approach similar to it in the future. The algorithm is based on choosing a collisions-based events estimator
over a sample of elements of size t = O(y/m2 log(1/6)). The key fact is that each element in this sample is
equally likely to be one of the Fy distinct stream elements.

SS(a1,az,...an,d,€)

1. Let t = O(+y/mlog(1/d)). Choose an appropriate prime p = 6(m?). For 1 < i < O(log(1/8)t),
randomly and independently generate a hash function h; : [m] — [p] from the family of universal hash
functions of the form az + b mod p.
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2. Vi, let v; + 0o denote the minimum hash value seen so far in the stream for hash function h;, and let
8; + NULL denote the first element from the stream that was hashed to the value v;. Let boolean
b; <+ 0 be used to indicate if two or more distinct elements have hashed to v;.

3. For each stream element ay,
o Vi, if h;(ax) < v;, set v; = hi(ag), s; = ag, and b; = 0. If h;(ar) = v; and ag = s;, set b; = 1.
4. Let set T «+ {}. Vi, if b; =0, add s; to T'.

5. Break up T into O(log(1/d)) disjoint sets T*, each with an equal number of elements. Let ¥ denote
the ith element of T*. Let random variable Xf; = 1 if ¢ = t¥ and 0 otherwise.
6. Vk, efficiently compute C* =37, .. . XF,.
) . L))
7. Let C™ equal the median of the values C¥, and return Fy = ~ 2~
Theorem 23 Algorithm SS produces a (¢€,06) approximation for Fy.

Proof The algorithm begins by generating a set 7' containing at least ¢t = O(L+/mlog(1/6)) samples. Each
element is independently and equally likely to be one of the Fy distinct stream elements. The main idea is
that, provided that our hash function produces a unique minimum, the element that has the minimum hash
value is equally likely to be any of the Fy distinct elements. We want our hash functions to be have unique
minima to avoid the problem of having to distinguish duplicates in the stream. The boolean values b; in
the algorithm are used to determine which hash functions actually have a unique minimum. If we choose
a perfect hash function, then we are guaranteed to have a unique minimum. From Chernoff and Corollary
8.20, we need to choose O(log(1/4)t) hash functions to guarantee with error probability 6(§) that we will get
at least ¢ valid samples.

Next we argue that ¢ samples are sufficient to produce an (e, §) approximation to Fy. If there are ¢ samples
in T, then each subset T* is guaranteed to have at least t' = Q(/m2) samples. WLOG, consider the case
where VE, |T*| = t'. We have denoted t} as the ith sample of T¥, and indicator random variable Xf,,i # j
equals 1if tf = tf. CF =3, ; Xi,j is the sum of all the possible pairs of elements in T* which have equal
values, or collide. Intuitively, the number of collisions should increase with the number of distinct elements
in the stream, so C* should be a good estimator for Fy. For any k, the expected value of C* = (g) 7 since
P(X}; =1) = 4. Tt is easy to see that for fixed k, the X ’s are pairwise independent, so the variance
of C* = (g)Fio(l — 7). From Chebyshev, O(y/m%) samples is sufficient to achieve an estimate to the
expected number of collisions in a sample of ¢' elements with a constant probability of error (we substitute
for Fp its maximum value m). With O(log(1/8)) subsets T*, we can achieve an (¢, §) approximation to the
expected number of collisions using the usual median-finding procedure. Now, because (g) can be treated
as a constant and because an (e/2,d) approximation to the expected number of collisions provides an (g, )
approximation to Fy, if we choose the constants appropriately we can generate an (€,d) estimate for Fy. B

Theorem 24 The algorithm SS uses O(log”(1/8)1\/mlogm) bits of space and processes each element in
O~(10g2(1/6)%\/ﬁlogm) time.

Proof The space consumption is dominated by the number of hash functions and the values stored
with each hash function: namely the description of the hash function, v;, s;, and b;. In total, we use
O(log?(1 /6)L\/m) hash functions, each needing O(logm) bits of space. The processing time per element
is dominated by the amount of time necessary to compute all the hash functions. Since a multiply takes
O(logm) time, the total processing time per element equals O(logz(l/é)%\/ﬁlog m). i
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We have not described exactly how each C* is computed. Using a balanced binary search tree, it is probably
possible to compute C* in much less time than the naive approach of comparing every pair of different
elements.

The /m factor in the space bound is reminiscent of the birthday paradox. With a universe of size Fp, a
subset of size /Fy elements drawn with replacement from [Fp] has at least two elements of equal value with
constant probability. Intuitively, if we have asymptotically less than 1/Fy elements, then we should expect
all the elements in the set to be distinct; in this case, all we can hope for is an underestimate for Fg.

The space in the algorithm suffers primarily because there really isn’t a way to sample uniformly from the
Fy distinct elements until the entire stream has been processed; and, furthermore, even if we could sample
while processing the stream, we need to be able to compute the estimator as we process the stream as well.
In general, the algorithm illustrates the problems with using a sampling-based approach for this problem.

6 Coupling Sampling with Divide and Conquer Algorithms

Algorithms NMSC and SS show that it is important to distinguish between the number of samples required
and the amount of space used by an algorithm. Most (e, §)-randomized approximation algorithms which sam-
ple the input require Q(é%) samples to achieve the desired confidence level. However, these algorithms are
not required to store all the samples before computing and returning a final estimate. Instead, they can
partially compute the estimate along the way, and throw away samples as they go, saving space. To illus-
trate what is meant by this, we first outline an elegant median-finding technique from [7] in the stream model.

The technique works by sampling (%) elements of the input stream and returning an approximation
to the median of the sample as an estimate to the median of the entire stream. As the samples are taken
from the stream they are fed into a deterministic divide and conquer approximation algorithm D. In each
subproblem, D takes in some number b of buffers, each of size k, and collapses them into a single buffer of
size k, containing the elements of rank % + jb,0 < j < k, of the sorted subproblems (i.e., we take all bk
elements from the bk buffers, we sort them, and we extract the elements of the specified rank, and put them
in a single buffer and free up the input buffers). The exact strategy of when to collapse buffers is left up to
the algorithm. Different collapsing strategies give different error guarantees. In [7] the following theorem is
proven:

Theorem 25 For any stream of size n, there exists an algorithm that with probability at least 1 -4, computes
an approrimation to the median with absolute error at most en in a single pass using O(%log n) bits of
memory.

We run into two problems when we try to apply the above technique to the distinct elements problem. The
first is that we cannot simply sample some subset of the stream to concentrate on. In [4] the following
theorem is proven:

Theorem 26 Any algorithm which computes an (e, 0)— approximation to the number of distinct elements in

a data stream of n elements must examine at least stream elements in the worst case.

nln 3
62(262-"-11'1 %)
Hence, we need to examine almost the entire stream in the worst case to accurately compute the number of
distinct elements. On top of this, there do not even exist good deterministic divide and conquer algorithms
for approximating Fy in the stream model, where good is taken to mean efficient in space. This negative
result for computing Fy is summarized in the following theorem, shown in [1]:

Theorem 27 Any deterministic algorithm that outputs, given a stream of 5 elements of a universe of size
m, an estimate Y such that |Y — Fy| < .1Fy, must use at least (m) bits of space

Note that even though we did not state this theorem in terms of €, the requirement on space only gets worse
for € < .1 and the Q(m) space bound is already prohibitive. Hence, we see that the “sampling followed by
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deterministic divide and conquer approach” used for median-finding does not look like a promising technique
for estimating Fy. Note that in particular the above theorem gives an Q(m) space lower bound for any de-
terministic exact algorithm. O(mlogm) is clearly an upper bound since one can always create a table to
keep track of a count of the number of times each distinct element occurs.

Another attempt one might try is to reduce the problem of computing Fy to that of finding an appro-
priate quantile in a data stream. The above median-finding procedure presented in [7] generalizes to an
O(% log m)-space algorithm for computing arbitrary quantiles. Recall that algorithm A2 kept track of the
smallest O (%) hashed distinct values and then output an estimate based solely on a single value, which had
rank [27] amongst the image of the hash function applied to the entire stream. What if instead we were
to use a quantile-finding algorithm to approximately find the [g—g]th hashed value in the stream, instead
of storing a linked list as in A2? The problem is that the quantile-finding algorithm of [7] computes the
specified quantile over all elements of the stream, not just the distinct elements, which is what we want.
Unfortunately we do not see a way of reducing this problem to that of finding a specified quantile over
nondistinct elements.

7 Multiple Pass Algorithms

Another interesting idea would be to relax the model to allow for a small number of passes over the data.
It’s conceivable that we could first try to approximate Fp in two passes, for instance, and then devise clever
data structures to perform the computations we had previously done in the second pass in parallel with the
first one. Note that this might have been how the authors of [2] approached algorithm A3, namely, they
might have initially assumed R was computed in the first pass before coming up with their one-pass solution
(which was achieved by recording indices, then taking hash function restrictions with their knowledge of R).

Although we did not achieve a novel 2-pass solution to this problem, we made the simple observation
that in algorithm A3 (recall that this algorithm achieves the best known space for computing Fp), one can
split up the computation of X (Hg) over multiple passes. Suppose we make [ + 1 passes. We use the first
pass solely to compute R. Then we run a slightly modified form of A3 in the remaining [ passes. Note that
not computing R in each pass drops a glg loglogm factor to a glg factor in the space bound, since, instead
of remembering y;, we can compare to TRAIL(w;(a;))tolog R immediately and keep a single bit denoting
whether a stream element hashed to 0 under w; = h(j) (so that we do not add 1 to X (Hg) more than once
for the same h(j)).

Now in each successive pass, instead of setting k = 8900 in step b of A3, we set k = 1390 1In each
pass we will use a different master hash function h;,2 < i < I+ 1, each with domain [k]. Then in each
pass we compute |[{j|hi(j) 1 (0) N B # 0}[,1 < j < k, divide by 8%% and add the result to a running
sum. At the end we will have the same value X (Hg) as the unaltered A3 would compute, but we only used
O~((l%2 + logm) log %) space in each pass, and hence in total. Intuitively, we have split up the computation
of an average into computing an average of averages. For a real world application, suppose that we do not
care how much time we spend per element, but are only limited by space. Using this technique, we can
knock down the space of A3 to O(logmlog %) by setting 1%2 = logm and solving for [. We see that if we
allow for m passes, we only use O(logm) space per iteration. Note that achieving minimal space could
be important in real life when we need to make due with how much physical RAM we have while streaming
over some massive dataset, perhaps through an internet connection.

8 Conclusion

In this paper we considered the problem of providing a (€,d) approximation for the number of distinct
elements Fp in a stream under extreme space constraints. With a lower space bound of Q(m) for any
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deterministic algorithm for this problem, it is natural to consider efficient randomized algorithms. We
began with a survey of the current state-of-the-art algorithms [2] and a review of the tightest known lower
bounds [1], [3]. We then tried to address two related open questions posed in [2]: 1) can we construct a
%polylog(m)—space algorithm for this problem, or 2) can we prove a Q(e%) space lower bound?

Although we failed in both pursuits, we gained several insights into the nature of the problem. One key
insight is that any sampling-based approach is probably doomed to failure. Too many samples are required
for storage in the worst-case to produce a good estimate; this was illustrated in algorithms NSMC and SS
and proven in [4]. Even combining sampling with a strategy like divide and conquer to avoid storing the
samples seems to not provide an adequate solution.

A common thread in the most efficient algorithms for this problem is that they try use as an estimator
for Fy the probability of hashing to a specific bin. The approach is very robust to adversaries, requires very
little space to compute, and is easy to compute on the fly. It seems that if we were to come up with a better
algorithm for this problem, this estimator itself will not be improved. A better approach might be to view
the problem in terms of data structures: all the algorithms in [2] essentially improve existing algorithms by
using better data structures and clever hashing tricks. In all of this, of course, we have to also consider the
possibility that the (%) space bound might be tight.

Another insight we gained is that it is surprisingly difficult to come up with algorithms that do better
than the ones in [2] even if we relax the problem to allow for multiple passes. This is partially because the
best algorithms already run several smaller algorithms in parallel; for instance, A3 runs A1 and does other
processing on the side to refine the estimate from A1. It is a non-trivial matter to determine exactly what
information should be stored on the first pass of the algorithm that could aid in future passes.
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