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Clustering
General Goal

● Partition an input set into groups such that
● Items in the same group are similar
● Items in different groups are dissimilar

But what

● If I care about colors?
● We need to define (dis)similarity!
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Examples of relevant distance and similarity measures

● Euclidean distance
● Squared Euclidean distance
● Metric
● Cosine similarity
● Jaccard coefficient
● Kullback-Leibler divergence
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k-Median Clustering
Problem Formulation

● Input: Set P of points in Թd, number of clusters k
● Output: Set C of k centers in Թd

● Objective: 

minimize cost(P,C) := ∑ minc∈C ||p-c||



Problem Formulation

● Input: Set P of points in Թd, number of clusters k
● Output: Set C of k centers in Թd

● Objective: 

minimize cost(P,C) := ∑ minc∈C ||p-c||

k-Median Clustering



Problem Formulation

● Input: Set P of points in Թd, number of clusters k
● Output: Set C of k centers in Թd

● Objective: 

minimize cost(P,C) := ∑ minc∈C ||p-c||

● Could also use other distance measures

k-Median Clustering



Problem Formulation

● Input: Set P of points in Թd, number of clusters k
● Output: Set C of k centers in Թd

● Objective: 

minimize cost(P,C) := ∑ minc∈C ||p-c||2

● Could also use other distance measures

k-Means Clustering



Clustering Very Large Data Sets
Todays Setting

● Very large input set
○ Does not fit into main memory 
○ Requires distributed or streaming algorithms

● Moderate number of clusters k 
○ we often think of k as being constant

● Possibly high dimensional data



Coresets
Basic Idea

● “Compress” input point set P to a small weighted set S such that S 
approximates P w.r.t. the problem of interest

● Many different notions of coresets around 



Coresets
Definition [Har-Peled, Mazumdar, 2004]

● A weighted set S is an (ઽ,k)-coreset for a set of points P with respect to the k-
median (k-means) problem, if for all sets C of k centers we have

(1-ઽ) cost(P,C) ≤ cost(S,C) ≤ (1+ઽ) cost(P,C)



Coresets
Composability

● Union of coresets for sets P and Q should be a coreset for P∪Q



Coresets and Distributed Algorithms
Use in Distributed Algorithms

● Compute coreset locally
● Send coresets to central server
● Compute a solution on union of coresets



Coresets and Streaming Algorithms
[Agarwal, Har-Peled, Varadarajan, 2004 ] [Bentley, Saxe, 1980]
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Coresets and Streaming Algorithms
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(Some) Related Work
Strong Coresets for k-Median

[Har-Peled, Mazumdar 2004] Od(k log n/ઽd)

[Har-Peled, Kushal 2005] Od(k/ઽd)

[Chen 2009] O(k2d log n/ઽ2)

[Langberg, Schulman, 2010] O(k3d2/ઽ2)

[Feldman, Langberg, 2011], O(kd/ઽ2)
[Braverman, Feldman, Lang, 2016]

~

~



Main Result Presented in This Talk
Main Result [Sohler, W, FOCS 2018]

● There is a coreset with for all guarantee for the k-median problem with a 
number of points that is independent of n and d.

Two Steps

● Dimensionality reduction for k-median [new]
○ Reduces Dimensionality of input point set to O(k/ઽ2)

● Apply existing coreset construction on the reduced input set



Main Result of This Talk
Outline

● Will first present a new proof of an earlier result of 
[Feldman, Schmidt, Sohler, SODA 2013]

● Will discuss why their approach does not work for k-median
● Will discuss our main new idea



Warmup: Pythagorean Theorem
Pythagorean Theorem

● Let T be a subspace containing a point q
● Let p’ be the projection of p onto T
● dist(p,p’)=a
● dist(p’,q)=b
● dist(p,q)=c
● dist2(p,q) = dist2(p,p’) + dist2(p’,q) 

a

b

c

a2+b2=c2

T

q

p

p’



Dimensionality Reduction 
DimReduction()

1. Let Opt be the cost of the optimal k-means clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of squares of 

distances
3. While we can add k dimensions to S to reduce the cost of the subspace 

approximation problem by ϵଶ Opt
a. Let S be the best such subspace

4. Return the projection of P on S and ߂ its projection cost



DimReduction()

1. Let Opt be the cost of the optimal k-means clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of squares of 

distances
3. While we can add k dimensions to S to reduce the cost of the subspace 

approximation problem by ϵଶ Opt
a. Let S be the best such subspace

4. Return the projection of P on S and ߂ its projection cost

Dimensionality Reduction 

This is the “k-
means Opt”



Analysis

cost(P,C) = cost(P,T) + cost(PT,C)  ≈ cost(P,S) + cost(PS,C)

● T is span of C and S
● PT is projection of P on T
● PS is projection of P on S

Dimensionality Reduction 

p

p୘

T

S

pୗ
c



k-Means and Subspace Approximation
Idea

● Split the k-means cost into two parts
○ Cost of projecting on a subspace T
○ And cost within the subspace
○ T will contains set of centers C and is used only 

for analysis
● Find a subspace S that approximates all T

○ The projections on S should be close to the 
projections on T

○ T should contain S

a

b

c

a2+b2=c2
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Dimensionality Reduction 

Analysis

cost(P,C) = cost(P,T) + cost(PT,C)  ≈ cost(P,S) + cost(PS,C)

● T is span of C and S
● PT is projection of P on T
● PS is projection of P on S

● Since S ⊆ T, the squared distance of a point p to S is the sum of squared 
distances of p to T and of p୘ to	pୗ:	cost(P, S) = cost(P, T) + cost(PT, PS)

cost(PT, PS) ൌ cost(P,S) – cost(P,T) ൑ ϵଶ OPT

If cost(PT, PS)൑ ϵଶOPT, can show |cost(PS,C) - cost(P୘, Cሻ| ൑ ϵ OPT

ઽଶ
T improves S by 
at most ઽଶ Opt 

p

p୘

T
pୗ

c



The k-Means Case
Theorem [Feldman, Schmidt, Sohler, 2013]

● Let A be a matrix storing n points from Rୢ as its rows. Let Am be its m-rank 
approximation for some m=O(k/ઽ2). Then there is a constant ߂=||A-Am||F2 such 
that for all sets of centers C

(1-ઽ) cost(A,C)  ≤  cost(Am,C) + ߂ ≤  (1+ઽ) cost(A,C)



The k-Median Case

a

b

c

√a2+b2=c

T

q

p

p’

Still True

● If the distance from p to a point q in T is 
close to dist(p,T), then q is close to the 
projection of p onto T  



The k-Median Case

a

b

c

√a2+b2=c

T

q

p

p’

Problem

● Cannot split cost into cost of projection 
and cost within subspace



Cannot hope for k-means type guarantee like

(1-ઽ) cost(P,C)  ≤  cost(PS,C) + ߂ ≤  (1+ઽ) cost(P,C)

Counter Example (1-median)

● P is random from high dimensional unit ball centered at origin
● Project on m-dimensional subspace S
● If d>>m then projected points will all have tiny norm and ߂ must be close 

to n in case our query center is (0, 0, …, 0)
● However, a center at (1,0,...,0) has cost roughly √2n for P, but 

cost(PS,C) + ߂ is close to 2n

The k-Median Case 



The Solution

● Add an extra special dimension to the projected points that is equal to  
distance to subspace S

● Compute coreset for this low dimensional point set 

● Map points in C into new space by setting special dimension to 0

The k-Median Case 



Dimensionality Reduction for k-Median 
DimReduction()

1. Let Opt be the cost of the optimal k-median clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of distances
3. While we can add k dimensions to S to reduce the cost of the subspace 

approximation problem by ઽ2 Opt
Let S be the best such subspace

4. For each point p in P, 
(a) compute its distance dሺpୗ, pሻ to subspace S
(b) return (pୗ, dሺp, pୗሻ)



Analysis

● Let T be the space containing query centers C and S

● Lemma (Close Projections): cost(PT, PS) ൑ ϵ ⋅OPT

● Proof:  If Q = {p for which d p୘	, pୗ ൑ ϵ	d p, pୗ ሽ, then	 ∑ d p୘, pୗ ൑ ϵ	OPT୮∈୕

Also, d p୘	, pୗ = d p, pୗ ଶ െ d p, p୘ ଶ ଵ/ଶ	and d p, pୗ ൒ dሺp, p୘ሻ and so

d p୘	, pୗ = d p, pୗ ଶ െ d p, p୘ ଶ ଵ/ଶ ൌ ሺ d p, pୗ െ d p, p୘ d p, pୗ ൅ d p, p୘
భ
మ

which if d p୘, pୗ ൒ ϵ ⋅ dሺp, pୗሻ is at most ୢ ୮,୮౏ ିୢ ୮,୮౐
మ

஫మ

భ
మ
൑ ୢ ୮,୮౏ ିୢ ୮,୮౐

஫
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Analysis
● Lemma: (Distance To Subspace) cost(P, S) – cost(P, T)	൑ ϵଶ	OPT
● Proof:

○ Definition of algorithm

● Let p ∈ P, and c୮ be p’s closest center in C
● Lemma: (Distance Inside Subspace) ∑ |ሺ୮ d(p୘, c୮ሻ-d(pୗ, c୮ሻሻ| ൑ ϵ OPT
● Proof: 

○ d pୗ, c୮ ൑ d pୗ, p୘ ൅ dሺp୘, c୮ሻ

○ Hence, ∑ |ሺd୮ (p୘, c୮ሻ-d(pୗ, c୮ሻሻ| ൑ cost(Pୗ, P୘ሻ ൑ ϵ	OPT



Putting it All Together

● d(p,c୮) = d p, p୘ ଶ ൅ d p୘, c୮
ଶ ଵ/ଶ

● d((pୗ, dሺp, pୗሻ), (c୮,0)) = d p, pୗ ଶ ൅ d pୗ, c୮
ଶ ଵ/ଶ

● ∑୮ |d(p, c୮) - d((pୗ, dሺp, pୗሻ), (c୮,0))| is small since 

○ cost(P, S) ൎ cost(P, T) by  Distance to Subspace Lemma

○ ∑ |ሺ୮ d(p୘, c୮ሻ-d(pୗ, c୮ሻሻ| is small by Distance Inside Subspace Lemma



● d(p,c୮) = d p, p୘ ଶ ൅ d p୘, c୮
ଶ ଵ/ଶ

● d((pୗ, dሺp, pୗሻ), (c୮,0)) = d p, pୗ ଶ ൅ d pୗ, c୮
ଶ ଵ/ଶ

● |d(p, c୮) - d((pୗ, dሺp, pୗሻ), (c୮,0))| 

= | d p, p୘ ଶ ൅ d p୘, c୮
ଶ ଵ/ଶ

- d p, pୗ ଶ ൅ d pୗ, c୮
ଶ ଵ/ଶ

|

= ||(d p, p୘ , d p୘, c୮ ሻ |ଶ െ d p, pୗ , d pୗ, c୮ ଶ
|

൑ d p, p୘ െ d p, pୗ , d p୘, c୮ െ d pୗ, c୮ ଶ

൑ d p, p୘ െ d p, pୗ , d p୘, c୮ െ d pୗ, c୮ ଵ

= d p, p୘ െ d p, pୗ ൅ |d p୘, c୮ െ d pୗ, c୮ |
Distance	to	subspace	൅			Distance	inside	subspace

Sum over 
and get 
2



The Solution

● Add an extra special dimension to the projected points that is equal to  
distance to subspace S

● Compute coreset for this low dimensional point set 
● Map input space into new space by setting special dimension to 0

Result [Sohler, W, 2018]
● Coreset of size O(k2 log k/ઽ4) by combining dimensionality reduction with 

[Feldman, Langberg, 2011] or [Braverman, Feldman, Lang, 2016]

The k-Median Case 



Summary
New Dimensionality Reduction Technique for

● k-median
● Subspace approximation
● Any other problem where centers fit into low dimensional subspace

...yields...

● New coresets for k-median and subspace approximation of size independent 
of n and d



Further Results
Subspace Approximation

● Same ideas yield coreset of size poly(k/ઽ) for subspace approximation with 
sum of distances error

● Can compute coreset in almost input sparsity time


