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Clustering

General Goal

e Partition an input set into groups such that
e Items in the same group are similar
e Items in different groups are dissimilar

But what

e |If | care about colors?
e \We need to define (dis)similarity!
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k-Median Clustering

o Problem Formulation
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k-Means Clustering

Problem Formulation

;éo O>§ e Input: Set P of points in RY, number of clusters k

e Output: Set C of k centers in R4
e Objective:

@%@ minimize cost(P,C) := > min_c: ||p-c||?

e Could also use other distance measures




Clustering Very Large Data Sets

Todays Setting

e \ery large input set

o Does not fit into main memory

o Requires distributed or streaming algorithms
e Moderate number of clusters k

o we often think of k as being constant

e Possibly high dimensional data



Coresets

Basic Idea

e “Compress” input point set P to a small weighted set S such that S
approximates P w.r.t. the problem of interest
e Many different notions of coresets around



Coresets

Definition [Har-Peled, Mazumdar, 2004]

e A weighted set S is an (g,k)-coreset for a set of points P with respect to the k-
median (k-means) problem, if for all sets C of k centers we have
(1-€) cost(P,C) < cost(S,C) < (1+¢€) cost(P,C)



Coresets

Composability

e Union of coresets for sets P and Q should be a coreset for PuQ



Coresets and Distributed Algorithms

Use in Distributed Algorithms

e Compute coreset locally
e Send coresets to central server
\ e Compute a solution on union of coresets




Coresets and Streaming Algorithms
[Agarwal, Har-Peled, Varadarajan, 2004 ] [Bentley, Saxe, 1980]
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Coresets and Streaming Algorithms
[Agarwal, Har-Peled, Varadarajan, 2004 ] [Bentley, Saxe, 1980]
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(Some) Related Work

Strong Coresets for k-Median

[Har-Peled, Mazumdar 2004]
[Har-Peled, Kushal 2005]
[Chen 2009]

[Langberg, Schulman, 2010]

[Feldman, Langberg, 2011],
[Braverman, Feldman, Lang, 2016]

O4(k log n/e9)
O,(k/e%)
O(k4d log n/€?)
O(k3d?/€?)

O(kd/e2)




Main Result Presented in This Talk

Main Result [Sohler, W, FOCS 2018]

e There is a coreset with for all guarantee for the k-median problem with a
number of points that is independent of n and d.

Two Steps

e Dimensionality reduction for k-median [new]
o Reduces Dimensionality of input point set to O(k/£2)
e Apply existing coreset construction on the reduced input set



Main Result of This Talk

Outline

e Will first present a new proof of an earlier result of
[Feldman, Schmidt, Sohler, SODA 2013]

e Will discuss why their approach does not work for k-median

e Will discuss our main new idea



Warmup: Pythagorean Theorem

Pythagorean Theorem

Let T be a subspace containing a point g
Let p’ be the projection of ponto T
dist(p,p’)=a

dist(p’,q)=b

dist(p,q)=c

dist?(p,q) = dist*(p,p’) + dist*(p’,q)

\4




Dimensionality Reduction

DimReduction()

1. Let Opt be the cost of the optimal k-means clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of squares of
distances
3. While we can add k dimensions to S to reduce the cost of the subspace
approximation problem by € Opt
a. Let S be the best such subspace
4. Return the projection of P on S and 4 its projection cost



Dimensionality Reduction

DimReduction()

1.
2.

Let Opt be the cost of the optimal k-means clustering

. _r

Compute optimal k-dimensional sul
distances

This is the “k-
means Opt”

inimizing sum of squares of

While we can add k dimensions to-S~oreduce the cost of the subspace

approximation problem by €2(Opt
a. LetS be the best such subspace

Return the projection of P on S and 4 its projection cost



Dimensionality Reduction

Analysis

cost(P,C) = cost(P,T) + cost(P;,C) = cost(P,S) + cost(Pg,C)

e TisspanofCandS o

e P;isprojectionof Pon T [\

e Pgis projectionof Pon S l
Pt x

Ps




k-Means and Subspace Approximation

Idea

p e Split the k-means cost into two parts

o Cost of projecting on a subspace T

a T o And cost within the subspace

o T will contains set of centers C and is used only
P for analysis

q e Find a subspace S that approximates all T
o The projections on S should be close to the

o projections on T
astb?=c o T should contain S

\4




Dimensionality Reduction

T improves S by
at most €2 Opt

V
cost(P,C) = cost(P,T) + cost(P;,C) = cost(P,S) + cost(Pg,C)

Analysis

P
e Tisspanof CandS Pt lk

e P;is projectionof Pon T D
e Pgis projection of Pon S >

e 3Since S € T, the squared distance of a point p to S is the sum of squared
distances of p to T and of pt to ps: cost(P, S) = cost(P, T) + cost(P+, Pg)
cost(P;, Pg) = cost(P,S) — cost(P,T) < € OPT

If cost(P;, Ps)< €2OPT, can show |cost(Pg,C) - cost(P,C)| < € OPT



The k-Means Case

Theorem [Feldman, Schmidt, Sohler, 2013]

e Let A be a matrix storing n points from RY as its rows. Let A_, be its m-rank
approximation for some m=0(k/€?). Then there is a constant 4=||A-A_||c? such
that for all sets of centers C

(1-€) cost(A,C) =< cost(A,,C)+4 = (1+¢g) cost(A,C)



The k-Median Case

Still True
p e If the distance from p to a pointqin T is
5 close to dist(p,T), then q is close to the
c T projection of ponto T
o P

\4




The k-Median Case

Problem
p e Cannot split cost into cost of projection
5 and cost within subspace
c T
b P
q

\4




The k-Median Case

Cannot hope for k-means type guarantee like

(1-€) cost(P,C) = cost(Pg,C) +4 = (1+¢) cost(P,C)

Counter Example (1-median)

e P is random from high dimensional unit ball centered at origin

e Project on m-dimensional subspace S

e |f d>>m then projected points will all have tiny norm and 4 must be close
to n in case our query centeris (0, O, ..., 0)

e However, a center at (1,0,...,0) has cost roughly v2n for P, but
cost(Pg,C) + 4 is close to 2n




The k-Median Case

The Solution

e Add an extra special dimension to the projected points that is equal to
distance to subspace S

e Compute coreset for this low dimensional point set

e Map points in C into new space by setting special dimension to 0



Dimensionality Reduction for k-Median

DimReduction()

1. Let Opt be the cost of the optimal k-median clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of distances
3. While we can add k dimensions to S to reduce the cost of the subspace
approximation problem by €2 Opt
Let S be the best such subspace
4. For each pointpin P,
(a) compute its distance d(ps, p) to subspace S

(b) return (ps, d(p, ps))



Analysis

P
e Let T be the space containing query centers C and S Pr l&
C

e Lemma (Close Projections): cost(P, Pg) <e -OPT Ps T

e Proof: If Q= {p for which d(pr, ps) < € d(p, ps)}, then X ,cq d(pr, ps) < € OPT

Also, d(pr,ps) = (d(p,ps)? — d(p, pr)?)¥? and d(p, ps) = d(p, pr) and so

d(pr,ps) = (d(p,ps)? — d(p, pr)*)*/? = ((d(p, ps) — d(p, pr))(d(p, ps) + d(p, pr))?

1
(cl(p,ps)—d(p,pT))Z>2 < d(p,ps)—d(p,pT)

€2 - €

which if d(pr, ps) = € d(p, ps) is at most (



Analysis

e Lemma: (Distance To Subspace) cost(P, S) — cost(P, T) < €2 OPT
e Proof:

o Definition of algorithm

e Letp€P,andc, be p’s closest centerin C
e Lemma: (Distance Inside Subspace) )., [(d(pr, ¢p)-d(ps, cp))| < € OPT
e Proof:

o d(ps, ¢p) < d(ps, pr) + d(pr, cp)

o Hence, X, [(d(pT, cp)-d(ps, cp))| < cost(Ps, Pr) < € OPT



Putting it All Together

/
o d(p,cp)= (d(p, pr)? +d(pr, Cp)z)l 2

o\1/2
o d((ps, d(p,ps)). (¢p.0)) = (d(p,ps)? + d(ps,cp)°)

o ¥, ld(p, cp)- d((ps, d(p, Ps)), (cp,0))] is small since

o cost(P, S) = cost(P, T) by Distance to Subspace Lemma

o Xp |(d(pr, cp)-d(ps, cp))| is small by Distance Inside Subspace Lemma



/
o d(p,cp)= (d(p» pr)? +d(pr, Cp)z)l 2

on\1/2
o d((ps, d(p,ps)). (cp.,0)) = (d(p, ps)? + d(ps, cp) )
¢ |d(p’ Cp) - d((pS’ d(p, pS))’ (Cp’o))l

/ /2
= |(d(p, pr)? + d(pr, Cp)z)l E (A ps)? + d(ps, Cp)z)1 |

= l(d(p, pr), d(pr.cp)) |2 — |d(p,ps), d(ps, cp), |

<1depr) = d@ppo). d(pr ) =dlese)l, [ gum over p e

< |d(p, pr) — d(p, ps), d(pr, ¢p) — d(ps, ¢p)|, P and get

< :
= |d(p, pr) — d(p, ps)| + |d(pr. ¢p) — d(ps, cp)| < 2¢- OPT

Distance to subspace + Distance inside subspace



The k-Median Case

The Solution

e Add an extra special dimension to the projected points that is equal to
distance to subspace S

e Compute coreset for this low dimensional point set

e Map input space into new space by setting special dimension to 0

Result [Sohler, W, 2018]
e Coreset of size O(k? log k/e*) by combining dimensionality reduction with
[Feldman, Langberg, 2011] or [Braverman, Feldman, Lang, 2016]



Summary

New Dimensionality Reduction Technique for

e Kk-median
e Subspace approximation
e Any other problem where centers fit into low dimensional subspace

..yields...

e New coresets for k-median and subspace approximation of size independent
ofnand d



Further Results

Subspace Approximation

e Same ideas yield coreset of size poly(k/€) for subspace approximation with
sum of distances error
e Can compute coreset in almost input sparsity time



