Strong Coresets for k-Median and Subspace Clustering: Goodbye Dimension

Christian Sohler and David Woodruff
(Google and TU Dortmund) and (CMU)

Clustering

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

Clustering

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

Clustering

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

But what

- If I care about colors?

Clustering

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

But what

- If I care about colors?

Clustering

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

But what

- If I care about colors?
- We need to define (dis)similarity!

Clustering

Examples of relevant distance and similarity measures

- Euclidean distance
- Squared Euclidean distance
- Metric
- Cosine similarity
- Jaccard coefficient
- Kullback-Leibler divergence
- And many more...

Clustering

Examples of relevant distance and similarity measures

- Euclidean distance
- Squared Euclidean distance
- Metric
- Cosine similarity
- Jaccard coefficient
- Kullback-Leibler divergence
- And many more...

k-Median Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^{d}, number of clusters k
- Output: Set C of k centers in \mathbb{R}^{d}
- Objective:

$$
\text { minimize } \boldsymbol{\operatorname { c o s t }}(\mathrm{P}, \mathrm{C}):=\sum \min _{\mathrm{c} \in \mathrm{C}}\|\mathrm{p}-\mathrm{C}\|
$$

k-Median Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^{d}, number of clusters k
- Output: Set C of k centers in \mathbb{R}^{d}
- Objective:

$$
\text { minimize } \operatorname{cost}(\mathrm{P}, \mathrm{C}):=\sum \min _{\mathrm{c} \in \mathrm{C}}\|\mathrm{p}-\mathrm{C}\|
$$

k-Median Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^{d}, number of clusters k
- Output: Set C of k centers in \mathbb{R}^{d}
- Objective:

$$
\text { minimize } \boldsymbol{\operatorname { c o s t }}(\mathrm{P}, \mathrm{C}):=\sum \min _{\mathrm{c} \in \mathrm{C}}\|\mathrm{p}-\mathrm{C}\|
$$

- Could also use other distance measures

k-Means Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^{d}, number of clusters k
- Output: Set C of k centers in \mathbb{R}^{d}
- Objective:

$$
\text { minimize } \operatorname{cost}(P, C):=\sum \min _{c \in C}\|p-c\|^{2}
$$

- Could also use other distance measures

Clustering Very Large Data Sets

Todays Setting

- Very large input set
- Does not fit into main memory
- Requires distributed or streaming algorithms
- Moderate number of clusters k
- we often think of k as being constant
- Possibly high dimensional data

Coresets

Basic Idea

- "Compress" input point set P to a small weighted set S such that S approximates P w.r.t. the problem of interest
- Many different notions of coresets around

Coresets

Definition [Har-Peled, Mazumdar, 2004]

- A weighted set S is an (ε, k)-coreset for a set of points P with respect to the $k-$ median (k-means) problem, if for all sets C of k centers we have

$$
(1-\varepsilon) \operatorname{cost}(P, C) \leq \operatorname{cost}(S, C) \leq(1+\varepsilon) \operatorname{cost}(P, C)
$$

Coresets

Composability

- Union of coresets for sets P and Q should be a coreset for $P \cup Q$

Coresets and Distributed Algorithms

Use in Distributed Algorithms

- Compute coreset locally
- Send coresets to central server
- Compute a solution on union of coresets

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

00000000000

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

Coresets and Streaming Algorithms

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

(Some) Related Work

Strong Coresets for k-Median

[Har-Peled, Mazumdar 2004]	$\mathrm{O}_{\mathrm{d}}\left(\mathrm{k} \log \mathrm{n} / \varepsilon^{d}\right)$	
[Har-Peled, Kushal 2005]	$\mathrm{O}_{\mathrm{d}}\left(\mathrm{k} / \varepsilon^{d}\right)$	
[Chen 2009]	$\mathrm{O}\left(\mathrm{k}^{2} \mathrm{~d} \log \mathrm{n} / \varepsilon^{2}\right)$	
[Langberg, Schulman, 2010]	\sim	$\mathrm{O}\left(\mathrm{k}^{3} \mathrm{~d}^{2} / \varepsilon^{2}\right)$
[Feldman, Langberg, 2011],		
[Braverman, Feldman, Lang, 2016]	\sim	$\mathrm{O}\left(\mathrm{kd} / \varepsilon^{2}\right)$

Main Result Presented in This Talk

Main Result [Sohler, W, FOCS 2018]

- There is a coreset with for all guarantee for the k -median problem with a number of points that is independent of n and d .

Two Steps

- Dimensionality reduction for k-median [new]
- Reduces Dimensionality of input point set to $\mathrm{O}\left(\mathrm{k} / \boldsymbol{\varepsilon}^{2}\right)$
- Apply existing coreset construction on the reduced input set

Main Result of This Talk

Outline

- Will first present a new proof of an earlier result of [Feldman, Schmidt, Sohler, SODA 2013]
- Will discuss why their approach does not work for k-median
- Will discuss our main new idea

Warmup: Pythagorean Theorem

Pythagorean Theorem

- Let T be a subspace containing a point q
- Let p^{\prime} be the projection of p onto T
- $\quad \operatorname{dist}\left(p, p^{\prime}\right)=a$
- $\quad \operatorname{dist}\left(p^{\prime}, q\right)=b$
- $\quad \operatorname{dist}(p, q)=c$
- $\operatorname{dist}^{2}(p, q)=\operatorname{dist}^{2}\left(p, p^{\prime}\right)+\operatorname{dist}^{2}\left(p^{\prime}, q\right)$

Dimensionality Reduction

DimReduction()

1. Let Opt be the cost of the optimal k-means clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of squares of distances
3. While we can add k dimensions to S to reduce the cost of the subspace approximation problem by ϵ^{2} Opt
a. Let S be the best such subspace
4. Return the projection of P on S and Δ its projection cost

Dimensionality Reduction

DimReduction()

1. Let Opt be the cost of the optimal k-means clustering
2. Compute optimal k-dimensional sul This is the "k- inimizing sum of squares of distances means Opt"
3. While we can add k dimensions to moduce the cost of the subspace approximation problem by ϵ^{2} Opt
a. Let S be the best such subspace
4. Return the projection of P on S and Δ its projection cost

Dimensionality Reduction

Analysis

$$
\operatorname{cost}(P, C)=\operatorname{cost}(P, T)+\operatorname{cost}\left(P_{T}, C\right) \approx \operatorname{cost}(P, S)+\operatorname{cost}\left(P_{S}, C\right)
$$

- T is span of C and S
- P_{T} is projection of P on T
- P_{S} is projection of P on S

k-Means and Subspace Approximation

Idea

- Split the k-means cost into two parts
- Cost of projecting on a subspace T
- And cost within the subspace
- T will contains set of centers C and is used only for analysis
- Find a subspace S that approximates all T
- The projections on S should be close to the projections on T
- T should contain S

Dimensionality Reduction

Analysis

$$
\begin{aligned}
& \text { T improves } S \text { by } \\
& \text { at most } \varepsilon^{2} \text { Opt }
\end{aligned}
$$

$$
\operatorname{cost}(P, C)=\operatorname{cost}(P, T)+\operatorname{cost}\left(P_{T}, C\right) \approx \operatorname{cost}(P, S)+\operatorname{cost}\left(P_{S}, C\right)
$$

- $\quad T$ is span of C and S
- P_{T} is projection of P on T
- P_{S} is projection of P on S

- Since $S \subseteq T$, the squared distance of a point p to S is the sum of squared distances of p to T and of p_{T} to $p_{S}: \operatorname{cost}(P, S)=\operatorname{cost}(P, T)+\operatorname{cost}\left(P_{T}, P_{S}\right)$

$$
\operatorname{cost}\left(P_{T}, P_{S}\right)=\operatorname{cost}(P, S)-\operatorname{cost}(P, T) \leq \epsilon^{2} O P T
$$

$$
\text { If } \operatorname{cost}\left(\mathrm{P}_{\mathrm{T}}, \mathrm{P}_{\mathrm{S}}\right) \leq \epsilon^{2} \mathrm{OPT} \text {, can show }\left|\operatorname{cost}\left(\mathrm{P}_{\mathrm{S}}, \mathrm{C}\right)-\operatorname{cost}\left(\mathrm{P}_{\mathrm{T}}, \mathrm{C}\right)\right| \leq \epsilon \quad \mathrm{OPT}
$$

The k-Means Case

Theorem [Feldman, Schmidt, Sohler, 2013]

- Let A be a matrix storing n points from R^{d} as its rows. Let A_{m} be its m-rank approximation for some $m=O\left(k / \varepsilon^{2}\right)$. Then there is a constant $\Delta=\left\|A-A_{m}\right\|_{F}{ }^{2}$ such that for all sets of centers C

$$
(1-\varepsilon) \operatorname{cost}(A, C) \leq \operatorname{cost}\left(A_{m}, C\right)+\Delta \leq(1+\varepsilon) \operatorname{cost}(A, C)
$$

The k-Median Case

Still True

- If the distance from p to a point q in T is close to $\operatorname{dist}(p, T)$, then q is close to the projection of p onto T

The k-Median Case

Problem

- Cannot split cost into cost of projection and cost within subspace

The k-Median Case

Cannot hope for k-means type guarantee like

$$
(1-\varepsilon) \operatorname{cost}(P, C) \leq \operatorname{cost}\left(P_{S}, C\right)+\Delta \leq(1+\varepsilon) \operatorname{cost}(P, C)
$$

Counter Example (1-median)

- P is random from high dimensional unit ball centered at origin
- Project on m-dimensional subspace S
- If d>>m then projected points will all have tiny norm and Δ must be close to n in case our query center is $(0,0, \ldots, 0)$
- However, a center at $(1,0, \ldots, 0)$ has cost roughly $\sqrt{2} n$ for P, but $\operatorname{cost}\left(\mathrm{P}_{\mathrm{s}}, \mathrm{C}\right)+\Delta$ is close to 2 n

The k-Median Case

The Solution

- Add an extra special dimension to the projected points that is equal to distance to subspace S
- Compute coreset for this low dimensional point set
- Map points in C into new space by setting special dimension to 0

Dimensionality Reduction for k-Median

DimReduction()

1. Let Opt be the cost of the optimal k-median clustering
2. Compute optimal k-dimensional subspace S for minimizing sum of distances
3. While we can add k dimensions to S to reduce the cost of the subspace approximation problem by $\varepsilon^{2} \mathrm{Opt}$

Let S be the best such subspace
4. For each point p in P,
(a) compute its distance $d\left(p_{S}, p\right)$ to subspace S
(b) return $\left(\mathrm{p}_{\mathrm{S}}, \mathrm{d}\left(\mathrm{p}, \mathrm{p}_{\mathrm{S}}\right)\right)$

Analysis

- Let T be the space containing query centers C and S
- Lemma (Close Projections): $\operatorname{cost}\left(\mathrm{P}_{\mathrm{T}}, \mathrm{P}_{\mathrm{S}}\right) \leq \epsilon \quad$.OPT

- Proof: If $\mathrm{Q}=\left\{\mathrm{p}\right.$ for which $\left.\mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{p}_{\mathrm{S}}\right) \leq \in \mathrm{d}\left(\mathrm{p}, \mathrm{p}_{\mathrm{S}}\right)\right\}$, then $\sum_{\mathrm{p} \in \mathrm{Q}} \mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{p}_{\mathrm{S}}\right) \leq \in$ OPT Also, $d\left(p_{T}, p_{S}\right)=\left(d\left(p, p_{S}\right)^{2}-d\left(p, p_{T}\right)^{2}\right)^{1 / 2}$ and $d\left(p, p_{S}\right) \geq d\left(p, p_{T}\right)$ and so $d\left(p_{T}, p_{S}\right)=\left(d\left(p, p_{S}\right)^{2}-d\left(p, p_{T}\right)^{2}\right)^{1 / 2}=\left(\left(d\left(p, p_{S}\right)-d\left(p, p_{T}\right)\right)\left(d\left(p, p_{S}\right)+d\left(p, p_{T}\right)\right)^{\frac{1}{2}}\right.$
which if $d\left(p_{T}, p_{S}\right) \geq \epsilon \cdot d\left(p, p_{S}\right)$ is at $\operatorname{most}\left(\frac{\left(d\left(p, p_{S}\right)-d\left(p, p_{T}\right)\right)^{2}}{\epsilon^{2}}\right)^{\frac{1}{2}} \leq \frac{d\left(p, p_{S}\right)-d\left(p, p_{T}\right)}{\epsilon}$

Analysis

- Lemma: (Distance To Subspace) $\operatorname{cost}(\mathrm{P}, \mathrm{S})-\operatorname{cost}(\mathrm{P}, \mathrm{T}) \leq \epsilon^{2} O P T$
- Proof:
- Definition of algorithm
- Let $\mathrm{p} \in \mathrm{P}$, and c_{p} be p's closest center in C
- Lemma: (Distance Inside Subspace) $\sum_{\mathrm{p}}\left|\left(\mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{c}_{\mathrm{p}}\right)-\mathrm{d}\left(\mathrm{p}_{\mathrm{S}}, \mathrm{c}_{\mathrm{p}}\right)\right)\right| \leq \epsilon$ OPT
- Proof:
- $d\left(p_{s}, c_{p}\right) \leq d\left(p_{s}, p_{T}\right)+d\left(p_{T}, c_{p}\right)$
- Hence, $\sum_{\mathrm{p}}\left|\left(\mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{c}_{\mathrm{p}}\right)-\mathrm{d}\left(\mathrm{p}_{\mathrm{S}}, \mathrm{c}_{\mathrm{p}}\right)\right)\right| \leq \operatorname{cost}\left(\mathrm{P}_{\mathrm{S}}, \mathrm{P}_{\mathrm{T}}\right) \leq \in$ OPT

Putting it All Together

- $\mathrm{d}\left(\mathrm{p}, \mathrm{c}_{\mathrm{p}}\right)=\left(\mathrm{d}\left(\mathrm{p}, \mathrm{p}_{\mathrm{T}}\right)^{2}+\mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{c}_{\mathrm{p}}\right)^{2}\right)^{1 / 2}$
- $d\left(\left(p_{S}, d\left(p, p_{S}\right)\right),\left(c_{p}, 0\right)\right)=\left(d\left(p, p_{S}\right)^{2}+d\left(p_{S}, c_{p}\right)^{2}\right)^{1 / 2}$
- $\sum_{p}\left|d\left(p, c_{p}\right)-d\left(\left(p_{S}, d\left(p, p_{s}\right)\right),\left(c_{p}, 0\right)\right)\right|$ is small since
- $\operatorname{cost}(\mathrm{P}, \mathrm{S}) \approx \operatorname{cost}(\mathrm{P}, \mathrm{T})$ by Distance to Subspace Lemma
- $\sum_{\mathrm{p}}\left|\left(\mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{c}_{\mathrm{p}}\right)-\mathrm{d}\left(\mathrm{p}_{\mathrm{S}}, \mathrm{c}_{\mathrm{p}}\right)\right)\right|$ is small by Distance Inside Subspace Lemma
- $d\left(p, c_{p}\right)=\left(d\left(p, p_{T}\right)^{2}+d\left(p_{T}, c_{p}\right)^{2}\right)^{1 / 2}$
- $d\left(\left(p_{S}, d\left(p, p_{S}\right)\right),\left(c_{p}, 0\right)\right)=\left(d\left(p, p_{S}\right)^{2}+d\left(p_{S}, c_{p}\right)^{2}\right)^{1 / 2}$
- $\left|d\left(p, c_{p}\right)-d\left(\left(p_{S}, d\left(p, p_{S}\right)\right),\left(c_{p}, 0\right)\right)\right|$

$$
\begin{aligned}
& =\left|\left(d\left(p, p_{T}\right)^{2}+d\left(p_{T}, c_{p}\right)^{2}\right)^{1 / 2}-\left(d\left(p, p_{S}\right)^{2}+d\left(p_{S}, c_{p}\right)^{2}\right)^{1 / 2}\right| \\
& =\|\left.\left(d\left(p, p_{T}\right), d\left(p_{T}, c_{p}\right)\right)\right|_{2}-\left|d\left(p, p_{S}\right), d\left(p_{S}, c_{p}\right)\right|_{2} \mid
\end{aligned}
$$

$$
\leq\left|d\left(p, p_{T}\right)-d\left(p, p_{S}\right), d\left(p_{T}, c_{p}\right)-d\left(p_{S}, c_{p}\right)\right|_{2}
$$

$$
=\left|\mathrm{d}\left(\mathrm{p}, \mathrm{p}_{\mathrm{T}}\right)-\mathrm{d}\left(\mathrm{p}, \mathrm{p}_{\mathrm{S}}\right)\right|+\left|\mathrm{d}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{c}_{\mathrm{p}}\right)-\mathrm{d}\left(\mathrm{p}_{\mathrm{S}}, \mathrm{c}_{\mathrm{p}}\right)\right|
$$

Distance to subspace + Distance inside subspace

$$
\leq\left|d\left(p, p_{T}\right)-d\left(p, p_{S}\right), d\left(p_{T}, c_{p}\right)-d\left(p_{S}, c_{p}\right)\right|_{1}
$$

The k-Median Case

The Solution

- Add an extra special dimension to the projected points that is equal to distance to subspace S
- Compute coreset for this low dimensional point set
- Map input space into new space by setting special dimension to 0

Result [Sohler, W, 2018]

- Coreset of size $O\left(\mathrm{k}^{2} \log \mathrm{k} / \varepsilon^{4}\right)$ by combining dimensionality reduction with [Feldman, Langberg, 2011] or [Braverman, Feldman, Lang, 2016]

Summary

New Dimensionality Reduction Technique for

- k-median
- Subspace approximation
- Any other problem where centers fit into low dimensional subspace
...yields...
- New coresets for k-median and subspace approximation of size independent of n and d

Further Results

Subspace Approximation

- Same ideas yield coreset of size poly $(\mathrm{k} / \varepsilon)$ for subspace approximation with sum of distances error
- Can compute coreset in almost input sparsity time

