Strong Coresets for k-Median and Subspace Clustering: Goodbye Dimension

Christian Sohler and David Woodruff (Google and TU Dortmund) and (CMU)

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

But what

• If I care about colors?

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

But what

• If I care about colors?

General Goal

- Partition an input set into groups such that
- Items in the same group are similar
- Items in different groups are dissimilar

But what

- If I care about colors?
- We need to define (dis)similarity!

Examples of relevant distance and similarity measures

- Euclidean distance
- Squared Euclidean distance
- Metric
- Cosine similarity
- Jaccard coefficient
- Kullback-Leibler divergence
- And many more...

Examples of relevant distance and similarity measures

- Euclidean distance
- Squared Euclidean distance
- Metric
- Cosine similarity
- Jaccard coefficient
- Kullback-Leibler divergence
- And many more...

k-Median Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^d , number of clusters k
- Output: Set C of k centers in R^d
- Objective:

minimize $cost(P,C) := \sum min_{c \in C} ||p-c||$

k-Median Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^d , number of clusters k
- Output: Set C of k centers in R^d
- Objective:

minimize $cost(P,C) := \sum min_{c \in C} ||p-c||$

k-Median Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^d , number of clusters k
- Output: Set C of k centers in \mathbb{R}^d
- Objective:

minimize $cost(P,C) := \sum \min_{c \in C} ||p-c||$

• Could also use other distance measures

k-Means Clustering

Problem Formulation

- Input: Set P of points in \mathbb{R}^d , number of clusters k
- Output: Set C of k centers in R^d
- Objective:

minimize $cost(P,C) := \sum \min_{c \in C} ||p-c||^2$

• Could also use other distance measures

Clustering Very Large Data Sets

Todays Setting

- Very large input set
 - Does not fit into main memory
 - Requires distributed or streaming algorithms
- Moderate number of clusters k
 - \circ $\$ we often think of k as being constant
- Possibly high dimensional data

Coresets

Basic Idea

- "Compress" input point set P to a small weighted set S such that S approximates P w.r.t. the problem of interest
- Many different notions of coresets around

Coresets

Definition [Har-Peled, Mazumdar, 2004]

A weighted set S is an (ε,k)-coreset for a set of points P with respect to the k-median (k-means) problem, if for all sets C of k centers we have
(1-ε) cost(P,C) ≤ cost(S,C) ≤ (1+ε) cost(P,C)

Coresets

Composability

• Union of coresets for sets P and Q should be a coreset for $P \cup Q$

Coresets and Distributed Algorithms

Use in Distributed Algorithms

- Compute coreset locally
- Send coresets to central server
- Compute a solution on union of coresets

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

0 0 0 0 0

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

0 0 0 0 0

[Agarwal, Har-Peled, Varadarajan, 2004] [Bentley, Saxe, 1980]

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(Some) Related Work

Strong Coresets for k-Median

[Har-Peled, Mazumdar 2004]		$O_d(k \log n/\epsilon^d)$
[Har-Peled, Kushal 2005]		$O_d(k/\epsilon^d)$
[Chen 2009]		$O(k^2 d \log n/\epsilon^2)$
[Langberg, Schulman, 2010]	~	$O(k^3d^2/\epsilon^2)$
[Feldman, Langberg, 2011], [Braverman, Feldman, Lang, 2016]	~	$O(kd/\epsilon^2)$

Main Result Presented in This Talk

Main Result [Sohler, W, FOCS 2018]

• There is a coreset with **for all** guarantee for the k-median problem with a number of points that is independent of n and d.

Two Steps

- Dimensionality reduction for k-median [new]
 - Reduces Dimensionality of input point set to $O(k/\epsilon^2)$
- Apply existing coreset construction on the reduced input set

Main Result of This Talk

Outline

- Will first present a new proof of an earlier result of [Feldman, Schmidt, Sohler, SODA 2013]
- Will discuss why their approach does not work for k-median
- Will discuss our main new idea

Warmup: Pythagorean Theorem

Pythagorean Theorem

- Let T be a subspace containing a point q
- Let p' be the projection of p onto T
- dist(p,p')=a
- dist(p',q)=b
- dist(p,q)=c
- dist²(p,q) = dist²(p,p') + dist²(p',q)

Dimensionality Reduction

DimReduction()

- 1. Let Opt be the cost of the optimal k-means clustering
- 2. Compute optimal k-dimensional subspace S for minimizing sum of squares of distances
- 3. While we can add k dimensions to S to reduce the cost of the subspace approximation problem by ϵ^2 Opt
 - a. Let S be the best such subspace
- 4. Return the projection of P on S and \varDelta its projection cost

Dimensionality Reduction

DimReduction()

- 1. Let Opt be the cost of the optimal k-means clustering
- 2. Compute optimal k-dimensional sul distances This is the "kmeans Opt"
- 3. While we can add k dimensions to so reduce the cost of the subspace approximation problem by ϵ^2 Opt
 - a. Let S be the best such subspace
- 4. Return the projection of P on S and \varDelta its projection cost

Dimensionality Reduction

Analysis

 $cost(P,C) = cost(P,T) + cost(P_T,C) \approx cost(P,S) + cost(P_S,C)$

- T is span of C and S
- P_T is projection of P on T
- P_S is projection of P on S

k-Means and Subspace Approximation

Since S ⊆ T, the squared distance of a point p to S is the sum of squared distances of p to T and of p_T to p_S: cost(P, S) = cost(P, T) + cost(P_T, P_S) cost(P_T, P_S) = cost(P,S) - cost(P,T) ≤ ε² OPT

If $cost(P_T, P_S) \le \epsilon^2 OPT$, can show $|cost(P_S, C) - cost(P_T, C)| \le \epsilon$ OPT

Theorem [Feldman, Schmidt, Sohler, 2013]

• Let A be a matrix storing n points from \mathbb{R}^d as its rows. Let A_m be its m-rank approximation for some m=O(k/ ϵ^2). Then there is a constant $\Delta = ||A-A_m||_F^2$ such that for all sets of centers C

 $(1-\varepsilon) \operatorname{cost}(A,C) \leq \operatorname{cost}(A_m,C) + \Delta \leq (1+\varepsilon) \operatorname{cost}(A,C)$

Still True

 If the distance from p to a point q in T is close to dist(p,T), then q is close to the projection of p onto T

Problem

 Cannot split cost into cost of projection and cost within subspace

Cannot hope for k-means type guarantee like

```
(1-\varepsilon) \operatorname{cost}(\mathsf{P},\mathsf{C}) \leq \operatorname{cost}(\mathsf{P}_{\mathsf{S}},\mathsf{C}) + \varDelta \leq (1+\varepsilon) \operatorname{cost}(\mathsf{P},\mathsf{C})
```

Counter Example (1-median)

- P is random from high dimensional unit ball centered at origin
- Project on m-dimensional subspace S
- If d>>m then projected points will all have tiny norm and ∆ must be close to n in case our query center is (0, 0, ..., 0)
- However, a center at (1,0,...,0) has cost roughly √2n for P, but cost(P_S,C) + ∆ is close to 2n

The Solution

- Add an extra special dimension to the projected points that is equal to distance to subspace S
- Compute coreset for this low dimensional point set
- Map points in C into new space by setting special dimension to 0

Dimensionality Reduction for k-Median

DimReduction()

- 1. Let Opt be the cost of the optimal k-median clustering
- 2. Compute optimal k-dimensional subspace S for minimizing sum of distances
- 3. While we can add k dimensions to S to reduce the cost of the subspace approximation problem by ϵ^2 Opt

Let S be the best such subspace

- 4. For each point p in P,
 - (a) compute its distance $d(p_S, p)$ to subspace S
 - (b) return (p_S , $d(p, p_S)$)

Analysis

- Let T be the space containing query centers C and S
- Lemma (Close Projections): $cost(P_T, P_S) \le \epsilon$ ·OPT
- Proof: If Q = {p for which $d(p_T, p_S) \le \epsilon d(p, p_S)$ }, then $\sum_{p \in Q} d(p_T, p_S) \le \epsilon \text{ OPT}$ Also, $d(p_T, p_S) = (d(p, p_S)^2 - d(p, p_T)^2)^{1/2}$ and $d(p, p_S) \ge d(p, p_T)$ and so $d(p_T, p_S) = (d(p, p_S)^2 - d(p, p_T)^2)^{1/2} = ((d(p, p_S) - d(p, p_T))(d(p, p_S) + d(p, p_T))^{\frac{1}{2}}$

which if
$$d(p_T, p_S) \ge \epsilon \cdot d(p, p_S)$$
 is at most $\left(\frac{(d(p, p_S) - d(p, p_T))^2}{\epsilon^2}\right)^{\frac{1}{2}} \le \frac{d(p, p_S) - d(p, p_T)}{\epsilon}$

Analysis

- Lemma: (Distance To Subspace) $cost(P, S) cost(P, T) \le \epsilon^2 OPT$
- Proof:
 - Definition of algorithm
- Let $p \in P$, and c_p be p's closest center in C
- Lemma: (Distance Inside Subspace) $\sum_{p} |(d(p_T, c_p)-d(p_S, c_p))| \le \epsilon \text{ OPT}$
- Proof:
 - $\circ \quad d\big(p_S,c_p\big) \leq d(p_S,p_T) + d(p_T,c_p)$
 - Hence, $\sum_{p} |(d(p_T, c_p) d(p_S, c_p))| \le cost(P_S, P_T) \le \epsilon \text{ OPT}$

Putting it All Together

- $d(p,c_p) = (d(p,p_T)^2 + d(p_T,c_p)^2)^{1/2}$
- $d((p_S, d(p, p_S)), (c_p, 0)) = (d(p, p_S)^2 + d(p_S, c_p)^2)^{1/2}$
- $\sum_{p} |d(p, c_p) d((p_S, d(p, p_S)), (c_p, 0))|$ is small since
 - $cost(P, S) \approx cost(P, T)$ by Distance to Subspace Lemma
 - $\circ ~ \sum_p |(d(p_T,c_p)-d(p_S,c_p))|$ is small by Distance Inside Subspace Lemma

- $d(p,c_p) = (d(p,p_T)^2 + d(p_T,c_p)^2)^{1/2}$
- $d((p_S, d(p, p_S)), (c_p, 0)) = (d(p, p_S)^2 + d(p_S, c_p)^2)^{1/2}$
- $|d(p, c_p) d((p_S, d(p, p_S)), (c_p, 0))|$

$$= \left| \left(d(p, p_T)^2 + d(p_T, c_p)^2 \right)^{1/2} - \left(d(p, p_S)^2 + d(p_S, c_p)^2 \right)^{1/2} \right|$$

= $||(d(p, p_T), d(p_T, c_p))|_2 - |d(p, p_S), d(p_S, c_p)|_2|$

$$\leq \left| d(p, p_T) - d(p, p_S), d(p_T, c_p) - d(p_S, c_p) \right|_2$$

 $\leq \left| d(p, p_T) - d(p, p_S), d(p_T, c_p) - d(p_S, c_p) \right|_1$

Sum over $p \in$ P and get $\leq 2\epsilon \cdot OPT$

= $|d(p, p_T) - d(p, p_S)| + |d(p_T, c_p) - d(p_S, c_p)|$ Distance to subspace + Distance inside subspace

The Solution

- Add an extra special dimension to the projected points that is equal to distance to subspace S
- Compute coreset for this low dimensional point set
- Map input space into new space by setting special dimension to 0

Result [Sohler, W, 2018]

 Coreset of size O(k² log k/ε⁴) by combining dimensionality reduction with [Feldman, Langberg, 2011] or [Braverman, Feldman, Lang, 2016]

Summary

New Dimensionality Reduction Technique for

- k-median
- Subspace approximation
- Any other problem where centers fit into low dimensional subspace

...yields...

• New coresets for k-median and subspace approximation of size independent of n and d

Further Results

Subspace Approximation

- Same ideas yield coreset of size poly(k/ε) for subspace approximation with sum of distances error
- Can compute coreset in almost input sparsity time