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ABSTRACT
Given a set ofn points with a matrix of pairwise similarity mea-
sures, one would like to partition the points into clusters so that
similar points are together and different ones apart. We present
an algorithm requiring only matrix powering that performs well
in practice and bears an elegant interpretation in terms of random
walks on a graph. Under a certain mixture model involving plant-
ing a partition via randomized rounding of tailored matrix entries,
the algorithm can be proven effective for only a single squaring.
It is shown that the clustering performance of the algorithm de-
grades with larger values of the exponent, thus revealing that a sin-
gle squaring is optimal.

1. INTRODUCTION
Similarity-based clustering partitions a set of points given a ma-

trix of pairwise similarities and finds application in many important
problems. One motivating example is clustering web search results.
A search for “jaguar” may return numerous pages relevant to either
the car or the cat. Given counts of links between pairs of pages as
an indicator of similarity, one would like to group the car results to-
gether and the cat results together. In the most general form, we are
given a set ofn points and a matrixM , whereMij gives the dis-
tance or similarity between pointsi andj. The goal is to partition
the points such that similar points are grouped together and differ-
ent points apart. Our approach consists of powering the similarity
matrix and comparing rows.

Clustering plays a major role in data mining, with many applica-
tions such as scientific data exploration, information retrieval and
text mining, spatial database applications, web analysis, CRM (cus-
tomer relationship management), marketing, medical diagnostics,
and computational biology. For surveys and recent work on clus-
tering, see [11, 16, 19, 2, 22, 7, 15, 6, 18, 10, 25]. Traditional clus-
tering problems include the “k-center problem” [13, 14] and the
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Figure 1: Dumbbell

“k-median problem” [7, 15, 6, 22]. The objective of thek-center
problem is to minimize the maximum diameter over allk clusters,
whereas the goal of thek-median problem is to findk “centers”
so that the sum of distances from points to their closest center is
minimized.

The spectral and random walk approach to clustering is closely
related to our work. For example, Kannan, Vetta, and Vempala de-
fine a bi-criterial measure of cluster quality in which the number of
clusters is to be minimized while maximizing the minimum clus-
ter conductance [18]. This reflects a desire to keep the number of
groups small, while maintaining a high degree of similarity within
each group. Previously, Papadimitriou, et al., proved theoretical
guarantees for classifying documents to the correct topic under cer-
tain assumptions about topic purity and term overlap, via spectral
methods [23]. Azar, et al., undertake a similar task, but introduce
a more general data mining model [3]. In a different vein, Drineas,
et al., give an approximation algorithm for clustering points in Eu-
clidean space so as to minimize the sum of distances squared to
each cluster center by first solving a continuous relaxation of the
problem using the SVD [12].

To interpret our problem in terms of connectivity in graphs, con-
sider the “dumbbell” of Figure 1, in which there are 2 cliques con-
nected by an edge. The corresponding special case similarity ma-
trix has a 1 in the(i, j) entry if (i, j) is an edge in the graph and 0
otherwise, and grouping into similar clusters corresponds to iden-
tifying the well connected components. Partitioning into clusters
of high connectivity would yield each of the 2 cliques as a cluster.
More generally, each of the parts could be somewhat less densely
connected, and the bridging edges could be somewhat more numer-
ous, but still sparse relative to the connectivity within each part. We
would like an algorithm that could classify the vertices into the de-
sired clusters with good probability, for suitable ranges of the dif-
ference between the number of intra- and inter- cluster edges. This



paper shows that, under a certain generative model for the similar-
ity matrix, our algorithm successfully clusters a large fraction of
the nodes with good probability, so long as a certain probability
gap in the model is sufficiently large.

Section 2 presents our algorithm. Section 3 discusses the model
under which we provide theoretical guarantees, and Section 4 gives
these guarantees. Finally, Section 5 details our experiments and
Section 6 concludes with some future directions.

2. THE MATRIX POWERING ALGORITHM
We propose the following algorithm for clustering a set ofn

points with pairwise similarities. For a symmetric matrixM , let
M t

k denote the k-th row (or column) ofM t.

Algorithm
Input: A symmetricÂ encoding the pairwise similarities between

nodes
Output: A partitioning of the nodes into clusters

1. Select some appropriate exponent t

2. Select some appropriate thresholdε

3. ComputeÂt

4. For each pair of yet unclassified nodes i,j

• if ||Ât
i − Ât

j ||2 < ε, then i and j are in the same cluster

• else, i and j are in different clusters

Naturally, this leads to the question of how to select the values
in steps 1 and 2. In fact, the very effectiveness and performance
of the algorithm hinges on using the rightt, and depending ont,
the rightε. We give analytic results to show that we can correctly
cluster fort = 2 so long as a certain probability gap under a certain
generative model for̂A is Ω(n− 1

4 ). In fact, t = 2 turns out to
be the optimal value oft in some sense, and we demonstrate that
the required gap only becomes larger for greatert. We support
our theoretical results with experimental evidence. It is important
to note that this algorithm is independent of any generative model
and is applicable to an arbitrary matrix of similaritieŝA, for any
measure of similarity, generated from any (possibly randomized)
process.

2.1 A Connection to Random Walks
It is well known that for any probability distribution vectorx

corresponding to start position,xT M t gives the probabilities of
being at a nodei aftert steps of a random walk on the graph, where
each step selects an out-going edge with probability proportional
to the edge weight. Moreover, ast → ∞, π = xT M t gives the
stationary distribution, andπi = deg(i)

2m
, wheredeg(i) is the degree

(sum of incident edge weights) ofi, andm is the total weight of all
edges [20]. Thus, fort large enough, our algorithm sheds little light
on the clusters, other than what can be deduced from the graph’s
degree sequence.

As may be suggested by the above, there is a pleasing interpre-
tation of the algorithm in the context of random walks. Viewing
Â as a transition matrix and lettingei be the vector with 1 in the
ith position and 0s elsewhere,̂At

i = eT
i Ât gives the probability

distribution on the position of a random walk starting from nodei
aftert steps. From this we see that the algorithm makes a pairwise

grouping decision based on the L2 distance between the probabil-
ity distributions aftert steps of random walks starting fromi andj
in order to classify nodesi andj as being similar or different. As
discussed above, for very large values oft, all probability distri-
butions will be very close to each other, but as will be shown and
experimentally verified for reasonably small (constant) values oft,
the probability distributions of pairs of nodes from the same cluster
will converge more quickly than those of pairs from different clus-
ters. This is the phenomenon that the algorithm exploits to recover
the partitioning.

This paper gives a basis for providing theoretical guarantees for
clustering algorithms used in practice. Szummer and Jaakkola show
how to cluster a large number of points using a random walk given a
small set of correctly clustered points [24]. They likewise observe
that for t large, very little clustering information can be obtained
from the walk since the distribution of points then depends solely
on the graph’s degree sequence. They go on to provide experi-
mental evidence which suggests their random walk is optimal for
small, constantt. In the planted partitions model that we assume,
we show a related algorithm which we can prove to be optimal for
t = 2 steps of a random walk.

3. THE PLANTED PARTITIONS MODEL
We approach this problem from the viewpoint of learning planted

partitions from a mixture model. Amixture modelis a partitioning
of a set of nodes into clusters, and a probabilistic generative model
for edges between nodes. Pairs of nodes from the same cluster have
an edge between them with probability q, and pairs from different
clusters have an edge with probabilityp, whereq > p. The differ-
enceq − p is known as theprobability gap.

Let Â be ann by n matrix of Bernoulli random variables, and
A = E[Â] be the matrix of expectations. The mixture model may
be represented by ann by n matrix of random variableŝA with
expectation matrixA, whereAij = q for (i, j) in the same cluster,
andAij = p for (i, j) in different clusters.A hask distinct rows
corresponding to the existence ofk different clusters, andk blocks
in the expectations matrix. Note that if we assume that the size
smin of the smallest block in the matrix is a constant fraction ofn,
thenk is a constant. The randomized rounding ofA to obtainÂ
preserves symmetry:̂Aij = Âji. For convenience, we denote the
cluster of a nodei by Ψ(i). In the analysis we will assume WLOG
thatA is a block diagonal matrix, andΨ(i) will refer to the cluster
of i or the matrix block ofi depending on context.

We receive as input from the real world the 0,1 similarity matrix
Â, which we assume to be an instantiation of the matrix of random
variables specified by the mixture model. Henceforth, we will refer
to both the matrix of random variables and its instantiation asÂ,
and it should be clear from the context which is intended. Given
this input matrix, and under this model, our goal is to partition the
rows so that a pair of rows are placed in the same partition if and
only if they belong to the same cluster. In other words, givenÂ,
recoverΨ.

The clustering is easy to see in the expected matrixA. However,
we are not givenA, but rather a perturbed version ofA through
randomized rounding. Fortunately, this graph is not entirely ran-
dom, as the desired partitions have been “planted” in some sense,
by setting the probabilities appropriately according to the mixture
model. Intuitively, we see that larger values ofq−p make the parti-
tions easier to learn, as larger gaps cause similar points to be better
connected relative to dissimilar points. Similarly, larger values ofn
make learning easier as we have more samples from which to learn.

3.1 Related Work



Previous work has made use of this mixture model or special
cases of it. Boppana gave a spectral algorithm for the problem
of graph bisection on randomly generated graphs, though he re-
quires the solution to a convex optimization problem [5]. Blum and
Spencer k-color a randomly generated k-colorable graph so long as
p ≥ nε−1. They also consider a semi-random model in which
a graph generated by an adversary is subject to a small probabil-
ity of toggling an edge [4]. Condon and Karp partition a random
graph intok equal parts, minimizing the number of edges across
parts with high probability, so long asq − p ≥ n− 1

2+ε [8]. Jer-
rum and Sorkin resolve an open problem of Boppana and Bui by
optimally bisecting a random graph with high probability so long
asq − p = Ω(nδ−2), δ ≤ 2, via simulated annealing [17].

Finally, McSherry presents an algorithm [21] to learn a hidden
partition in a random graph with high probability so long asq−p =

Ω(n− 1
2+ε), for anyε > 0. The procedure involves a randomized

splitting of the columns into two parts and projecting on to the top
singular vectors of each part to preserve certain independence prop-
erties.

3.2 Our Contribution
In contrast, we show that our algorithm can actually be imple-

mented with only a single squaring of a matrix, and hence is much
simpler than the SVD computation required in [21]. This, as well
as our experimental evidence, suggests that our algorithm may be
very useful in practice. Our simplicity does come at the cost of a
slightly larger probability gap, as we requireq − p = Ω(n− 1

4 ).
Matrix squaring can be implemented to run inO(n2.376) time

using arithmetic progressions [9], and inO(n2.7) time using the
more practical Strassen’s algorithm. This is significantly faster than
theO(n3) time required to compute the SVD, though [21] can be
implemented using a sublinear approximate SVD computation via
the sampling algorithm of [1]. However, the constants and loga-
rithmic terms of the running time of this approximate SVD(on the
order of116(log n)6) seem rather impractical. Furthermore, it may
be possible to speed up low-rank matrix multiplication via tech-
niques similar to those in [1], though this is outside the scope of
current work. Our algorithm is simple and elegant, and should be
well suited to large data sets where the gap requirement ofΩ(n− 1

4 )
is easily satisfied.

Ultimately, we will provide the following guarantee that is our
main result:

Theorem. For t = 2, the matrix powering algorithm correctly
clusters1 − δ of the rows with probability at least1

2
, so long as

|q − p| > 2
√

q( k3
δ

)
1
4

n
1
4

.

We initially consider the special case ofk equal sized blocks of
sizes = n

k
each. We will eventually show that the case of un-

equal blocks does not deviate too far from the case of equal blocks,
and the asymptotics of the performance guarantees given remain
the same so long as the minimum block sizesmin is a constant
fraction ofn.

4. PERFORMANCE GUARANTEES

4.1 Proof of Main Theorem
We now proceed to show the clustering capability of the algo-

rithm under this mixture model fort = 2. The strategy will be
to show that the deviation of̂At

i from At
i is small relative to the

distance betweenAt
i and At

j , wherei and j belong in different
blocks. If so, then even after perturbation, rows from different clus-
ters should remain well separated for large enoughn. Specifically,
if ||Ât

i −At
i||2 < γ, and||At

i −At
j ||2 ≥ 16γ, then

||Ât
i1 − Ât

i2 ||
2 ≤ (||Ât

i1 −At
i||+ ||Ât

i2 −At
i||)2 < 4γ

and

||Ât
i1 − Ât

j1 ||
2 ≥ (||At

i −At
j || − ||Ât

i1 −At
i|| − ||Ât

j1 −At
j ||)2

≥ (4
√

γ −√
γ −√

γ)2

= 4γ

for Ψ(i1) = Ψ(i2) = Ψ(i) andΨ(j1) = Ψ(j) 6= Ψ(i). Thus,
if we chooseε = ||At

i − At
j ||2/4 ≥ 4γ to be our threshold in the

algorithm, then we can cluster correctly in expectation.

First, we present a lemma that shows how block structure is pre-
served.

LEMMA 1. LetA be a block diagonal matrix with equally sized
blocks of sizes, with entries ofqa within the blocks, andpa without.
LetB be a matrix with the same block structure and corresponding
entriesqb and pb. Then,AB has the same block structure with
corresponding entriesqab = sqaqb + (n − s)papb and pab =
sqapb + sqbpa + (n− 2s)papb.

PROOF. Let Ψ(i) be the block corresponding to indexi. It is
clear from(AB)ij =

∑
k AikBkj =

∑
k AikBjk that(AB)ij =

sqaqb + (n− s)papb whenΨ(i) = Ψ(j), and(AB)ij = sqapb +
sqbpa + (n− 2s)papb whenΨ(i) 6= Ψ(j).

The following theorem calculates the separation between the rows
of At from different blocks. In some sense, this is the expected
“separation” between two rows belonging to different clusters.

THEOREM 2. ||At
i − At

j ||2 = 2(q − p)2t(n/k)2t−1, where
Ψ(i) 6= Ψ(j)

PROOF. By Lemma 1,At has the same block diagonal structure
asA. Let qt andpt denote the entries inside and outside of the
blocks ofAt, resp., so thatq1−p1 = q−p. We proceed inductively
to show thatqt−pt = (q−p)tst−1. By Lemma 1,qt = sqt−1q +
(n − s)pt−1p andpt = sqt−1p + spt−1q + (n − 2s)pt−1p =
spqt−1+(sq+(n−2s)p)pt−1. Hence, by the inductive hypothesis,
qt−pt = s(q−p)qt−1−s(q−p)pt−1 = s(q−p)(qt−1−pt−1) =
(q − p)tst−1. Thus, we know the gapqt − pt in general, and this
is all we need for the separation:

||At
i−At

j ||2 = 2s(qt−pt)
2 = 2(q−p)2ts2t−1 = 2(q−p)2t(n/k)2t−1,

which shows the claim.

It is easy to see that||At
i − At

j ||2 = 0 whenΨ(i) = Ψ(j), and
in the more general case of unequal sized blocks,||At

i − At
j ||2 ≥

2(q − p)2ts2t−1
min , wheresmin is the size of the smallest block.

The next lemma shows that, relative to the separation between
rows from different clusters inA2, the deviation ofÂ2

k from A2
k

is small in expectation. Thus, the “error” from perturbation is
bounded. The proof is deferred to the appendix and gives an ex-
act analysis of this expectation.

LEMMA 3. E||Â2
i −A2

i ||2 ≤ 2q2n2

We are now ready to prove the main theorem.



THEOREM 4. For t = 2 and some fractionδ > 0, the matrix
powering algorithm correctly clusters1− δ of the rows with prob-

ability at least1
2
, so long as|q − p| > 2

√
q( k3

δ
)
1
4

n
1
4

.

PROOF. Simply letε = (q−p)4(n/k)3/2. Define a good row to
be one for which||Â2

i −A2
i || ≤ 4q2n2/δ. SinceE||Â2

i −A2
i ||2 ≤

2q2n2 by the above lemma,Pr[row i is good] ≥ 1 − δ/2 by ap-
plying Markov’s Inequality to the bad event. Thus, in expectation,
at least1 − δ/2 of the rows are good, and at mostδ/2 of the rows
are bad. Again, by a Markov bound applied to the number of bad
rows, at least1 − δ of the rows are good with probability at least
1
2
. Now, we see that all the good rows will be classified correctly

if 4q2n2/δ < ε/2 = (q − p)4(n/k)3/4, which is equivalent to

|q − p| >
2
√

q( k3
δ

)
1
4

n
1
4

. Thus, we can correctly cluster1 − δ of the

points with probability at least1
2

given this probability gap.

The above analysis can be extended to success probabilities larger
than1/2 by increasing the requirement on|q − p|.

4.2 Optimality of Squaring
A simple calculation shows that for t=1, the gap requirement is

Ω(1), so that squaring does improve the clustering. Unfortunately,
further powering ofÂ does not improve the situation. In fact, we
show that the gap requirement asymptotically increases due to a
rapidly growing error. Specifically, we prove the following lemma:

LEMMA 5. E||Ât
i−At

i||2 = Θ(n2t−2) for all constantst ≥ 2.

PROOF. By the definition of matrix multiplication,

At
ij =

∑
i1,··· ,it−1∈[n]

Aii1Ai1i2 ...Ait−1j

Thus,

E||Ât
i −At

i||2 =

n∑
j=1

E
[
(Ât

ij −At
ij)

2
]

=

n∑
j=1

(
E
[
(Ât

ij)
2
]
− 2E

[
Ât

ij

]
At

ij + (At
ij)

2
)

=

n∑
j=1

∑
k1,...,kt−1,k′1,...,k′t−1∈[n]

E
[
Ât

ik1 · · · Â
t
kt−1jÂ

t
ik′1

· · · Ât
k′t−1j

]
−2E

[
Ât

ik1 · · · Â
t
kt−1j

]
At

ik′1
· · ·At

k′t−1j

+At
ik1 · · ·A

t
kt−1jA

t
ik′1

· · ·At
k′t−1j

≥
n∑

j=1

∑
k1,...,kt−1,k′1,...,k′t−1∈[n]

E
[
Ât

ik1 · · · Â
t
kt−1jÂ

t
ik′1

· · · Ât
k′t−1j

]
−E

[
Ât

ik1 · · · Â
t
kt−1j

]
At

ik′1
· · ·At

k′t−1j

Observe that the above expression is a polynomial inn of degree
at most2t−1. Also, the number of summands in the inner sum for
which |{k1, . . . , kt−1, k

′
1, . . . , k

′
t−1}| = l is at most

(
n
l

)
l2t−2 =

Θ(nl). Hence, to compute the coefficient ofn2t−1 in the above

it suffices to consider only tuples(k1, . . . , kt−1, k
′
1, . . . , k

′
t−1) for

which

|{k1, . . . , kt−1, k
′
1, . . . , k

′
t−1}| = 2t− 2

In this case though, the expectations split completely so that the
inner sum vanishes. It follows that the above is a polynomial inn
of degree at most2t − 2. To compute the coefficient ofn2t−2, it
suffices to consider tuples(k1, . . . , kt−1, k

′
1, . . . , k

′
t−1) for which

|{k1, . . . , kt−1, k
′
1, . . . , k

′
t−1}| = 2t− 3, i.e., there is exactly one

repetition.

Observe that the inner sum is always positive, so the above is at
least:

n∑
j=1

∑
|{k1,...,kt−1,k′1,...,k′t−1}|=2t−3, k1=k′1

E
[
Ât

ik1 · · · Â
t
kt−1jÂ

t
ik′1

· · · Ât
k′t−1j

]
−E

[
Ât

ik1 · · · Â
t
kt−1j

]
At

ik′1
· · ·At

k′t−1j ,

which simplifies to

n∑
j=1

∑
|{k1,...,kt−1,k′1,...,k′t−1}|=2t−3, k1=k′1

(At
ik1 − (At

ik1)
2)At

k1k2 · · ·A
t
kt−1jA

t
k′1k′2

· · ·At
k′t−1j

As long asp, q = Ω(1) andmax{p(1−p), q(1−q)} = Ω(1), each
term in the inner sum is a positive constant. There are

(
n

2t−3

)
(2t−

3)! = Θ(n2t−3) tuples for whichk1 = k′1, so we haveE||Ât
i −

At
i||2 = Ω(n2t−2), which completes the proof.

From the analysis of theorem 4, this lemma implies that the gap

requirement|q−p| is Ω
(

1
n

) 1
2t , which is clearly optimal fort = 2.

This is supported by experimental evidence presented later.

4.3 Blocks of Different Sizes
Here, we justify the earlier claim that it suffices to consider blocks

of equal sizes, and that blocks of different sizes do not alter the
asymptotics of the performance guarantee by more than constant
factors, so long as the minimum block sizesmin is a constant frac-
tion of n. For the separation, forΨ(i) 6= Ψ(j), we have seen that

||At
i −At

j ||2 ≥ 2(q − p)2ts2t−1
min

It remains to consider the error for unequal blocks. We begin by
proving a certain monotonicity property.

LEMMA 6. LetA be the symmetric block diagonal matrix of ex-
pectations defined previously. LetB be the matrix obtained by sym-
metrically inserting a row and a column of fractional(probability)
entries intoA. Then,E||Ât

i − At
i||2 ≤ E||B̂t

i − Bt
i ||2, whereÂ

andB̂ are the randomized roundings ofA andB, resp., preserving
symmetry.

PROOF. WLOG and for notational convenience, we may as-
sume that we are inserting the last row and column. Letbij be
the(i, j) entry ofB and similarlyb̂ij for B̂. We usei to denote a
tuple(i1, . . . , it−1) ∈ [n+1]t−1. For fixed starting indexi, define
b(i, j) = bii1bi1i2 ...bit−1j , and similarly definêb(i, j).



E||B̂t
i −Bt

i ||2

= E
∑

j

∑
i

(b̂(i, j)− b(i, j))
∑
i′

(b̂(i′, j)− b(i′, j))

= E
∑

j

∑
i, i′

(b̂(i, j)− b(i, j))(b̂(i′, j)− b(i′, j))

= E
∑

j

∑
i, i′∈[n]t−1

(b̂(i, j)− b(i, j))(b̂(i′, j)− b(i′, j))

+E
∑

j

∑
i,i′∈S

(b̂(i, j)− b(i, j))(b̂(i′, j)− b(i′, j))

= E||Ât
i −At

i||2

+E
∑

j

∑
i,i′∈S

(b̂(i, j)− b(i, j))(b̂(i′, j)− b(i′, j)),

whereS is the set of tuplesi for which at least one index has value
n + 1. It remains to show that the second summand in the last
equation is nonnegative.

E
∑

j

∑
i,i′∈S

(b̂(i, j)− b(i, j))(b̂(i′, j)− b(i′, j))

=
∑

j

∑
i,i′∈S

E[b̂(i, j)b̂(i′, j)]−E[b̂(i, j)b(i′, j)]

− E[b(i, j)b̂(i′, j)] + E[b(i, j)b(i′, j)]

≥
∑

j

∑
i,i′∈S

E[b̂(i, j)]E[b̂(i′, j)]−E[b̂(i, j)]b(i′, j)

− b(i, j)E[b̂(i′, j)] + b(i, j)b(i′, j)

=
∑

j

∑
i,i′∈S

(E[b̂(i, j)]− b(i, j))(E[b̂(i′, j)]− b(i′, j))

≥ 0,

since for our Bernoulli variables, we have

E[b̂(i, j)b̂(i′, j)] ≥ E[b̂(i, j)]E[b̂(i′, j)]

andE[b̂(i, j)]− b(i, j) ≥ 0.

Let A be the original expectations matrix of unequal blocks. Let
C be the matrix obtained fromA by contracting each block to size
smin, and letB be obtained by expanding each block to sizesmax.
Note that we can symmetrically insert rows and columns to obtain
B from A, andA from C. From the above lemma, we deduce that
the errors increase monotonically:

E||Ĉt
i − Ct

i ||2 ≤ E||Ât
i −At

i||2 ≤ E||B̂t
i −Bt

i ||2

We know that the errors for equal sized blocks are polynomials in
n of degree≤ 2t. Therefore,

(
smax

smin

)2t

E||Ĉt
i − Ct

i ||2 ≥ E||B̂t
i −Bt

i ||2

Sincesmin is a constant fraction ofn, smax
smin

= O(1). If t is also
a constant, then this shows that the error forC is within a constant
factor of the error forB, and hence the error for the matrixA of
unequal blocks is also within a constant factor of the error forC,
the matrix with equal blocks of sizesmin. This yields the following
theorem:

THEOREM 7. Let A be a symmetric block-diagonal matrix of
expectations of unequal blocks, wheresmin is a constant fraction
of n. Let C be obtained fromA by contracting each block to size
smin. Then, for some constantr depending on the constantt,

E||Ât
i −At

i||2 ≤ rE||Ĉt
i − Ct

i ||2

From this theorem, we may conclude that the asymptotics of the
performance guarantees are unaffected by taking unequal blocks,
and that the algorithm continues to work in this more general set-
ting, for constant values oft.

5. EXPERIMENTS
We run two simulations to experimentally investigate the behav-

ior of the matrix powering algorithm. First and foremost, we would
like to examine the performance of the algorithm for different val-
ues of the powert. We generate the matrix̂A from the matrixA via
randomized rounding preserving symmetry as specified by the mix-
ture model withq = 0.45, p = 0.05, andN = 200 nodes divided
evenly into 4 clusters. The success of the algorithm is measured
by the percentage of the

(
N
2

)
pairwise relationships (classified as

same cluster or different) that it guesses correctly. Note that a score
of 75% is not impressive and corresponds to the case where every
node is classified to its own cluster. In the other extreme, a score of
25% corresponds to the case in which all of the nodes are classified
to the same cluster. The results are shown in Figure 2, percentage
correct againstt.

Notice that the results basically conform to theoretical expecta-
tions, but the algorithm seems to perform unusually well fort = 3.
We find this to be purely a matter of constant factors, as the power
of q in the leading coefficient for the error oft = 3 is larger than
the corresponding power fort = 2. Wereq in our experiment much
closer to 1 than 0.45, this effect would not be observed.

In addition, we would like to see how performance varies with
probability gap, and to verify our intuition that clustering should
become easier with larger gaps. We again instantiate the mixture
model with N=200 nodes divided evenly into 4 clusters and p=0.05.
We plot the percentage correct for t=3 against varying probability
gaps(q − p) in Figure 3.

In practice, implementing the algorithm requires that we know
the thresholdε, which requires knowledge ofq−p andsmin, since
ε = (q − p)4s3

min/2. Actually, sincesmin is a constant fraction
of n in our model, the guarantees continue to hold asymptotically
if we simply estimatesmin by n. One might also imagine that
the values ofq andp, or just the gapq − p, are known to us via
experimentation or some understanding of the underlying planted
partitions model specific to the particular application. However, if
ε is unknown to us, we may try a binary search for the correct value
ranging between 1 andn3, incurring an additionalO(log n) factor
in running time, and take the best clustering found. This assumes
that we have some application specific way of evaluating the quality
of a clustering, and is independent of the planted partitions model.

Finally, if new points arrive in an online fashion, one can up-
date the clusters in timeO(n2) incrementally without computing
another matrix multiplication.

6. FUTURE DIRECTIONS
The matrix powering algorithm successfully clusters a large por-

tion of the nodes with good probability given a probability gap of
Ω(n− 1

4 ). It is simple, elegant, and runs as fast as a single matrix
multiplication. The matrix powering algorithm is independent of
the mixture model, and applicable to any matrix of similarities. An
interesting direction of future research might be to investigate under
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which other models this algorithm performs well. As our algorithm
is likely practical and potentially of high-impact, more involved im-
plementations on typical datasets in various applications should be
explored.

7. ACKNOWLEDGMENTS
We would like to thank Santosh Vempala for problem introduc-

tion and guidance. Josh Tauber and John Kelner were also helpful
in providing tips on the exposition and insightful discussions.

8. REFERENCES
[1] D. Achlioptas and F. McSherry. Fast computation of low

rank matrix approximations. InACM Symposium on Theory
of Computing, 2001.

[2] S. Arora, P. Raghavan, and S. Rao. Approximation schemes
for euclidean k -medians and related problems. InACM
Symposium on Theory of Computing, pages 106–113, 1998.

[3] Y. Azar, A. Fiat, A. Karlin, and F. McSherry. Data mining
through spectral analysis. InIEEE Symposium on
Foundations of Computer Science, 2001.

[4] A. Blum and J. Spencer. Coloring random and semi-random
k-colorable graphs. InJournal of Algorithms, 1995.

[5] R. Boppana. Eigenvalues and graph bisection: An
average-case analysis. InIEEE Symposium on Foundations
of Computer Science, pages 280–285, 1985.

[6] M. Charikar and S. Guha. Improved combinatorial
algorithms for the facility location and k-median problems.
In IEEE Symposium on Foundations of Computer Science,
pages 378–388, 1999.

[7] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A
constant-factor approximation algorithm for the k -median
problem (extended abstract). InACM Symposium on Theory
of Computing, pages 1–10, 1999.

[8] A. Condon and R. Karp. Algorithms for graph partitioning
on the planted partition model. InRandom Structure and
Algorithms, 1999.

[9] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions, 1990.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In9th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 2003.

[11] Z. Drezner.Facility Location: A survey of Applications and
Methods. Springer-Verlag, 1995.

[12] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
Clustering in large graphs and matrices. InACM-SIAM
Symposium on Discrete Algorithms, 1999.

[13] M. Dyer and A. M. Frieze. A simple heuristic for the p-center
problem.Operations Research Letters, 3:285– 288, 1985.

[14] D. S. Hochbaum and D. B. Shmoys. A best possible
approximation algorithm for the k-center problem.Math.
Oper. Res., 10:180–184, 1985.

[15] K. Jain and V. V. Vazirani. Primal-dual approximation
algorithms for metric facility location and k-median
problems. InIEEE Symposium on Foundations of Computer
Science, pages 2–13, 1999.

[16] M. Jambu and M. O. Lebeaux.Cluster Analysis and Data
Analysis. North-Holland, New York, 1983.

[17] M. Jerrum and G. Sorkin. Simulated annealing for graph
bisection. InIEEE Symposium on Foundations of Computer
Science, 1993.

[18] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good,
bad, and spectral. InIEEE Symposium on Foundations of
Computer Science, 2000.

[19] J. Kleinberg, C. Papadimitriou, and P. Raghavan.
Segmentation problems. In(ACM) Symposium on Theory of
Computing, pages 473–482, 1998.

[20] L. Lovasz. Random walks on graphs: a survey. In
Combinatorics, pages 1–46, 1993.

[21] F. McSherry. Spectral partitioning of random graphs. InIEEE
Symposium on Foundations of Computer Science, 2001.

[22] R. Ostrovsky and Y. Rabani. Polynomial time approximation
schemes for geometric k-clustering. InIEEE Symposium on
Foundations of Computer Science, pages 349–358, 2000.

[23] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala.
Latent semantic indexing: a probabilistic analysis. InACM
Conference on Principles of Database Systems, 1998.

[24] M. Szummer and T. Jaakkola. Partially labeled classification
with markov random walks. InAdvances in Neural
Information Processing Systems, volume 14, 2001.

[25] S. Virtanen. Clustering the chilean web. InLA-WEB, 2003.



APPENDIX

A. PROOF OF LEMMA 3 (ERROR BOUND)

PROOF.

E||Â2
i −A2

i ||2 = E

[∑
m

(
∑

l

âilâlm − ailalm)2
]

=
∑
m

∑
l1,l2

E [(âil1 âl1m − ail1al1m)(âil2 âl2m − ail2al2m)]

the product terms in the expectation are dependent whenl1 = l2

OR if m 6= i and(l1, l2) = (m, i) or (i, m)

=
∑
m

∑
l1 6=l2

(l1,l2)6=(m,i)
(l1,l2) 6=(i,m)

E[âil1 âl1m − ail1al1m]E[âil2 âl2m − ail2al2m]

+
∑
m

∑
l1=l2

E[(âilâlm − ailalm)2]

+
∑
m 6=i

(l1,l2)=(m,i)or(i,m)

E[(âil1 âl1m − ail1al1m)(âil2 âl2m − ail2al2m)]

Note that̂ail = âlm only when m=i

=
∑

l1 6=l2

(ail1 − a2
il1)(ail2 − a2

il2) +
∑
m

∑
l

E[â2
ilâ

2
lm − 2ailalmâilâlm + a2

ila
2
lm]

+2
∑
m6=i

E[(âimâmm − aimamm)(âiiâim − aiiaim)]

=
∑
l1,l2

ail1(1− ail1)ail2(1− ail2)−
∑

l

a2
il(1− ail)

2 +
∑
m

∑
l

E[â2
ilâ

2
lm]

−2
∑
m

∑
l

ailalmE[âilâlm] +
∑
m

∑
l

a2
ila

2
lm

+2
∑
m6=i

aiiammaim − 2aiiamma2
im + aiiamma2

im

We are now in position to expand out all of the expectations.

E||Â2
i −A2

i ||2 =

(∑
l

ail(1− ail)

)2

−
∑

l

a2
il(1− ail)

2 +
∑
m

∑
l

ailalm −
∑

l

a2
il +

∑
l

ail

−2(
∑
m

∑
l

a2
ila

2
lm −

∑
l

a4
il +

∑
l

a3
il) +

∑
m

∑
l

a2
ila

2
lm

+2
∑
m6=i

aiiammaim(1− aim)

=

(∑
l

ail(1− ail)

)2

−
∑

l

a2
il(1− ail)

2 +
∑
m

∑
l

ailalm +
∑

l

ail(1− ail)

−
∑
m

∑
l

a2
ila

2
lm − 2

∑
l

a3
il(1− ail)

+2[(
∑
m

aiiammaim(1− aim))− a3
ii(1− aii)]

= (sq(1− q) + (n− s)p(1− p))2 − (sq2(1− q)2 + (n− s)p2(1− p)2)

+(sq + (n− s)p)2 + sq(1− q) + (n− s)p(1− p)− (sq2 + (n− s)p2)2

−2(sq3(1− q) + (n− s)p3(1− p))

+2(q2(sq(1− q) + (n− s)p(1− p))− q3(1− q))

≤ 2q2n2 for large enoughn


