Tight Bounds For L1 Oblivious Subspace Embeddings

Ruosong Wang David Woodruff Computer Science Department CMU

Least Squares Regression

- Given n data points in R^d: a₁, a₂, ..., a_n
- Their corresponding values: b₁, b₂, ..., b_n
- Goal: find x in R^d to minimize $\Sigma(b_i \langle a_i, x \rangle)^2$
- Matrix form: Given A in $R^{n\times d}$, b in R^n , find x in R^d to minimize $|Ax-b|_2$

Lp Regression

- Given A in $R^{n\times d}$, b in R^n , find x in R^d to minimize $|Ax-b|_p$
- p = 2: Least Squares Regression
- p = 1: Least Absolute Deviation Regression
- Focus on over-constrained case: n >> d

Algorithm for Least Squares Regression

- We know x* = A-b
- Calculating x* exactly takes O(nd²) time
- Speed up by relaxing the problem
 - Allow approximation
 - Allow randomized algorithms

Subspace Embedding [Sarlos'06]

- Given A in R^{n×d}
- Random matrix S in R^{r×n} is an Lp subspace embedding if
 - with constant probability, simultaneously for all x in Rd
 - $|Ax|_p \le |SAx|_p \le \kappa |Ax|_p$
- Algorithm for solving Lp regression
 - 1. Calculate a subspace embedding S for [A b]
 - 2. Minimize |SAx-Sb|_p

L2 Subspace Embedding Based on JL Lemma

• Let $r = O(d/\epsilon^2)$

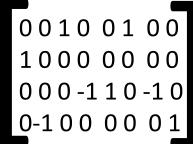
- S be a $r \times n$ matrix of i.i.d. Gaussian N(0,1/r) random variables
 - Net argument + Johnson-Lindenstrauss Lemma
- Oblivious embedding
- Calculating SA requires O(nd²) time

CountSketch [CW'13, MM'13, NN'13]

• Let r=O(d²/ ϵ ²).

Critical observation

- S has a random sign at a random location in each column
- With constant probability, $|SAx|_2 = (1 \pm \varepsilon)|Ax|_2$, for all x
- - A d-dimensional subspace is different from exp(O(d)) arbitrary vectors in Rⁿ
- Calculating SA requires only O(nnz(A)) time
- Lower bound
 - d² dependence is tight for L2 OSE with s=1 non-zero entry per column, even just to preserve rank [NN'13]



OSNAP [NN'13, BDN'15, Cohen'16]

- Let $r = O(B \text{ dlogd/}\epsilon^2)$, $s = O(\log_B d/\epsilon)$
- S has s random signs at random locations in each column
- Lower bound
 - $r = \Omega(B d/\epsilon^2) [NN'14]$

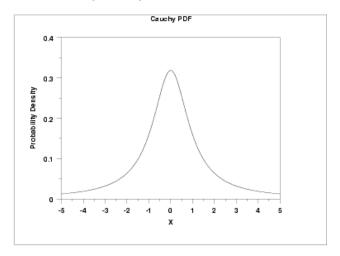
00110100 10001001 110-110-10 0-1100111

L1 Subspace Embeddings

- Can we use similar constructions for the L1 norm?
- Ingredients of the Gaussian embedding
 - JL Lemma
 - 2-Stability of Gaussian distribution: $a_1G_1 + a_2G_2 + ... + a_nG_n \simeq |a|_2G$
 - Concentration bound of χ^2 distribution (sum of squared Gaussians)
 - Net argument for the subspace

1-Stable Distribution: Cauchy Distribution

- 1-Stability: $a_1C_1+a_2C_2+...+a_nC_n \approx |a|_1C$
- PDF: $f(x) = 1/(\pi(1+x^2))$
- Undefined mean and infinite second moment
- Tail bound: $Pr[|C| \ge x] = 1 \Theta(1/x)$



Our Plan

- L1-JL Lemma
 - 1-Stability of Cauchy distribution
 - Concentration bound of sum of absolute values of Cauchy's
- Net argument for the subspace
- Issue: Cauchy distribution is heavy-tailed!

Dense Cauchy Embedding [SW'11]

- Let r = O(dlogd). S be an $r \times n$ matrix of i.i.d. Cauchy random variables
- With constant probability, simultaneously for all x
 - $\Omega(r)|Ax|_1 \le |SAx|_1 \le O(rd \log d)|Ax|_1$
- Lower bound part: Net argument + Cauchy lower tail inequality
- Cauchy lower tail inequality
 - Median of absolute value of Cauchy: 1/2
 - A simple Chernoff bound

Dense Cauchy Embedding: Upper Bound

- [Auerbach'30]: Any d-dimensional subspace has a basis U
 - $|U_i|_1 = 1$ for each column U_i of U
 - $|Ux|_1 \ge |x|_{\infty}$
- Step 1: Show that $|SU|_1 = O(rd \log (rd))$ with constant probability
- Step 2: $|SUx|_1 \le |SU|_1 |x|_{\infty} \le O(rd \log(rd)) |Ux|_1$

Sparse Cauchy Embedding [MM'13]

- Let $r = O(d^5 \log^5 d)$
- S has a Cauchy at a random location in each column
- Distortion: $\Omega(1/d^2\log^2 d)|Ax|_1 \le |SAx|_1 \le O(d \log d)|Ax|_1$
- Calculating SA requires O(nnz(A)) time

00C00C00 C0000000 000CC0C0 0C00000C

L1 Subspace Embeddings

• Question 1:

- Is $\Omega(dlogd)$ distortion optimal for L1 oblivious subspace embeddings?
- Can we achieve (1+ε) distortion for L1?
 - This is possible for non-oblivious subspace embeddings (E.g., Lewis weights [CP'15])

• Question 2:

- Can we have sparse L1 oblivious subspace embeddings with r = O(d log d) and O(d log d) distortion?
- Can we have tradeoff between sparsity and number of rows?

Lower bound for Lp OSE

• For $1 \le p < 2$, any Lp OSE with r rows has distortion

$$\Omega\left(\frac{1}{(1/d)^{1/p}\log^{2/p}r + (r/n)^{1/p-1/2}}\right)$$

- When r = n, the identity matrix is an OSE with no distortion
- As p -> 2, we have OSE with $(1+\epsilon)$ distortion
- For p = 1
 - When r = poly(d), n >> r, the lower bound will be $\Omega(d/log^2d)$
 - Dense Cauchy Embedding is optimal up to an O(log³d) factor

The Proof

- Yao's minimax principle
 - Construct a distribution over n×d matrices A
 - Show that for any S in R^{r×n}, the lower bound holds

Construction of the Distribution

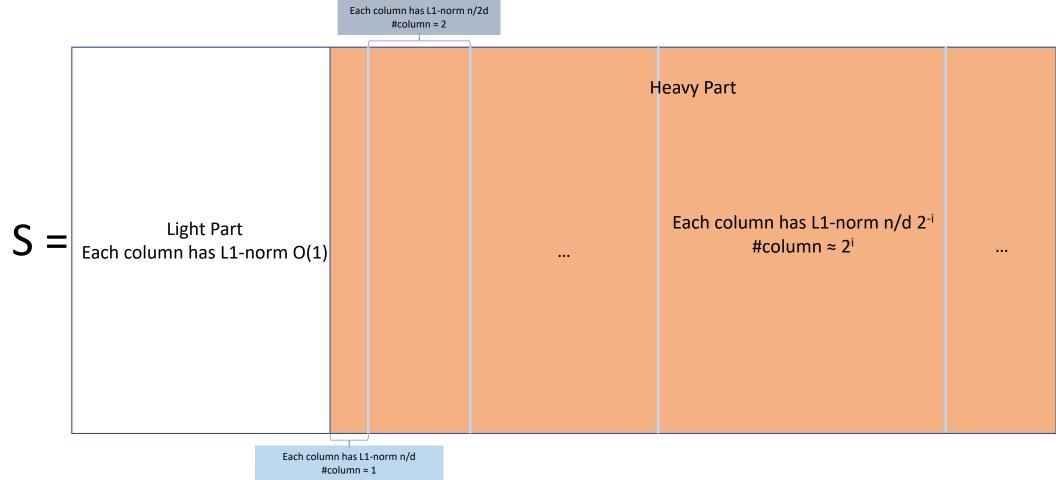
Block 1	Block 2		Block i		Block log(n/d)	
n/d-sparse Gaussian vectors	n/2d-sparse Gaussian vectors	•••	n/d 2 ⁻ⁱ -sparse Gaussian vectors	•••	1-sparse Gaussian vectors	Full Gaussian vector

d / log(n/d) vectors in each blockA single full Gaussian vector in the last column

Why does this work?

- An L1 OSE satisfies: $(1/\kappa)|Ax|_1 \le |SAx|_1 \le |Ax|_1$
- Implication of Block i
 - Each vector in Block i has L1-norm Θ(n/d 2⁻ⁱ) with good probability
 - If there are more than $O(2^i \text{polylog(n)})$ columns in S with L1-norm $\Omega(n/d\ 2^{-i})$, with good probability, some vector in Block i will find it
 - The condition $|SAx|_1 \le |Ax|_1$ will be violated
- The histogram of L1-norm of columns looks like a Cauchy!

Implication of the Construction



Implication of the full Gaussian vector

- The last column in A is a full Gaussian vector
 - L1-norm = $\Theta(n)$ with good probability.
- For a full Gaussian vector g,
 - |Sg|₁ = O(n polylog(n) / d) by the histogram
 - Distortion = $\Omega(d / polylog(n))$

Lower Bound

• We have the lower bound:

$$\Omega\left(\frac{1}{(1/d)^{1/p}\log^{2/p}r + (r/n)^{1/p-1/2}}\right)$$

- This implies
 - One cannot use L1 OSE with poly(d) rows to get $(1+\epsilon)$ distortion.
 - It is essential to use non-oblivious subspace embeddings to get $(1+\epsilon)$ distortion
 - E.g., Lewis weight sampling

Lower Bound

- The log^{2/p}r factor seems possible to improve
- Can we get a lower bound of

$$\Omega\left(\frac{1}{(1/d)^{1/p} + (r/n)^{1/p-1/2}}\right)?$$

- Theorem: One can construct an L1 OSE with exp(exp(O(d))) rows and O(1) distortion.
- Technique: Standard net argument + better Cauchy tail bounds

L1 Subspace Embeddings

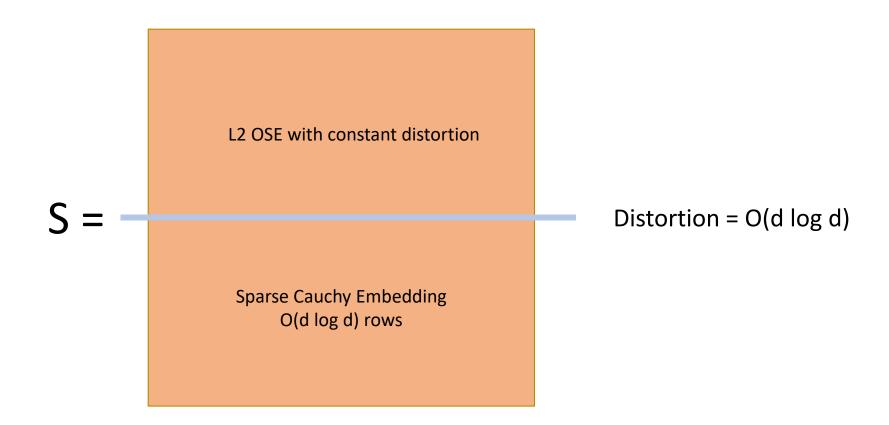
• Question 1:

- Is $\Omega(dlogd)$ distortion optimal for L1 oblivious subspace embeddings?
- Can we achieve (1+ε) distortion for L1?

• Question 2:

- Can we have sparse L1 oblivious subspace embeddings with $r = O(d \log d)$ and $O(d \log d)$ distortion?
- Can we have a tradeoff between sparsity and number of rows (like in OSNAP)?

New Sparse L1 OSE



New Sparse L1 OSE

- Use CountSketch as the L2 OSE
 - $O(d^2)$ rows, sparsity = 2
- Use OSNAP as the L2 OSE
 - O(B dlogd) rows, sparsity = $O(log_B d)$

The Proof

- The upper bound is similar to previous results
 - Auerbach basis + Cauchy upper tail bound
- Let y=Ax. W.l.o.g. we assume $|y|_1=1$.
- If $\sum_{i, |y_i| \le 1/d^2} |y_i| \ge \frac{1}{2}$
 - Sparse Cauchy embedding will be sufficient to prove the lower bound
- Otherwise,
 - $|Sy|_1 \ge |Sy|_2 \ge \Omega(1)|y|_2 \ge \Omega(1)|y|_1/d$

Conclusion

- Nearly optimal distortion lower bound for L1 OSE
- Nearly optimal sparse L1 OSE

Open Questions

- Is is possible to construct an L1 OSE
 - with O(d²) rows, sparsity = 1 and O(d log d) distortion?
 - with O(d log d) rows and sparsity = O(1) and O(d log d) distortion?
 - with 2^{O(d)} rows and O(1) distortion, or prove a stronger lower bound?
- Tight bounds for Lp OSEs for 1 < p < 2