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Least Squares Regression

* Given n data pointsin R%: a;, a,, ..., a,
* Their corresponding values: b,, b,, ..., b,

* Goal: find x in R to minimize Z(b,— <a, x>)?

* Matrix form: Given A in R™?, b in R", find x in RY to minimize |Ax-b|,



Lp Regression
* Given Ain R™4, b in R", find x in R to minimize |Ax-b]

* p = 2: Least Squares Regression
* p = 1: Least Absolute Deviation Regression

* Focus on over-constrained case: n >>d



Algorithm for Least Squares Regression

e We knowx =Ab

e Calculating x* exactly takes O(nd?) time

» Speed up by relaxing the problem
* Allow approximation
e Allow randomized algorithms



Subspace Embedding [Sarlos’06]

e Given A in Rnxd

« Random matrix S in R™" is an Lp subspace embedding if

 with constant probability, simultaneously for all x in R¢
* |Ax| <|SAx| <k|Ax],

 Algorithm for solving Lp regression

1. Calculate a subspace embedding S for [A b]
* 2. Minimize |SAx-Sb|



L2 Subspace Embedding Based on JL Lemma
e Letr=0(d/g?)

* Sbe ar x n matrix of i.i.d. Gaussian N(0,1/r) random variables
* Net argument + Johnson-Lindenstrauss Lemma

* Oblivious embedding

* Calculating SA requires O(nd?) time



CountSketch [CW’13, MM’13, NN’13]
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* S has a random sign at a random location in each column8000-110-10
* With constant probability, | SAx|,=(1t€)|Ax|,, for all x 0-1000001

* Critical observation
* A d-dimensional subspace is different from exp(O(d)) arbitrary vectors in R

* Calculating SA requires only O(nnz(A)) time

 Lower bound

» d? dependence is tight for L2 OSE with s=1 non-zero entry per column, even
just to preserve rank [NN’13]



OSNAP [NN'13, BDN’15, Cohen’16]

* Let r = O(B dlogd/e?), s = O(loggd/¢)
* S has s random signs at random locations in each column

* Lower bound
« r=Q(B d/g?) [NN’14]
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L1 Subspace Embeddings

 Can we use similar constructions for the L1 norm?

* Ingredients of the Gaussian embedding
* JLLemma
* 2-Stability of Gaussian distribution: a,G; +a,G, + ... +a,G, = |a|,G
» Concentration bound of ¥?distribution (sum of squared Gaussians)
* Net argument for the subspace



1-Stable Distribution: Cauchy Distribution

* 1-Stability: a,C,+a,C,+...+a,C =|a|,C

* PDF: f(x) = 1/(mt(1+x2))

* Undefined mean and infinite second moment
e Tail bound: Pr[|C|2x] = 1-0(1/x)

Cauchy POF
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Our Plan

* L1-JL Lemma
 1-Stability of Cauchy distribution
e Concentration bound of sum of absolute values of Cauchy’s

* Net argument for the subspace

e |ssue: Cauchy distribution is heavy-tailed!



Dense Cauchy Embedding [SW'11]

e Let r = O(dlogd). S be an r x n matrix of i.i.d. Cauchy random variables

* With constant probability, simultaneously for all x
* Q(r)|Ax|; < |SAx]|, £ O(rd log d) | Ax]|,

* Lower bound part: Net argument + Cauchy lower tail inequality

e Cauchy lower tail inequality
* Median of absolute value of Cauchy: 1/2
* A simple Chernoff bound



Dense Cauchy Embedding: Upper Bound

* [Auerbach’30]: Any d-dimensional subspace has a basis U

* |Ui|4 = 1 for each column U; of U
* |UX|1 = |X|oo

* Step 1: Show that |SU|,=0(rd log (rd)) with constant probability
* Step 2: |SUx]|,<|SU|;[x]..<0(rd log(rd))| Ux|,



Sparse Cauchy Embedding [MM'13]

* Let r = O(d°log” d)

* S has a Cauchy at a random location in each column

* Distortion: Q(1/d%log?d)|Ax|,<|SAx|,<0(d log d) | Ax|,
* Calculating SA requires O(nnz(A)) time
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L1 Subspace Embeddings

* Question 1:
* Is Q(dlogd) distortion optimal for L1 oblivious subspace embeddings?

* Can we achieve (1+¢) distortion for L17?
* This is possible for non-oblivious subspace embeddings (E.g., Lewis weights [CP’15])

* Question 2:

e Can we have sparse L1 oblivious subspace embeddings with r = O(d log d) and
O(d log d) distortion?

* Can we have tradeoff between sparsity and number of rows?



Lower bound for Lp OSE

* For1<p <2, any Lp OSE with r rows has distortion

1
& <(1/d)1/p log2/Pr + (r/n)l/p‘1/2>

* When r = n, the identity matrix is an OSE with no distortion
* As p -> 2, we have OSE with (1+¢€) distortion

*Forp=1
* When r = poly(d), n >>r, the lower bound will be Q(d/log?d)
* Dense Cauchy Embedding is optimal up to an O(log3d) factor



The Proof

* Yao’s minimax principle
* Construct a distribution over nxd matrices A
e Show that for any S in R™", the lower bound holds



Construction of the Distribution

d / log(n/d) vectors in each block
A single full Gaussian vector in the last column



Why does this work?

* An L1 OSE satisfies: (1 /k)|Ax]|;<[SAx|<|Ax],

* Implication of Block i
* Each vector in Block i has L1-norm ©(n/d 2-) with good probability

* If there are more than O(2'polylog(n)) columns in S with L1-norm Q(n/d 27),
with good probability, some vector in Block i will find it

* The condition |SAx|, < |Ax|,will be violated

* The histogram of L1-norm of columns looks like a Cauchy!



Implication of the Construction

Light Part
Each column has L1-norm O(1)




Implication of the full Gaussian vector

* The last column in A is a full Gaussian vector
e L1-norm = O(n) with good probability.

* For a full Gaussian vector g,
* |Sg|,=0O(n polylog(n) / d) by the histogram
 Distortion = Q(d / polylog(n))



Lower Bound

* \We have the lower bound:

1
& <(1/d)1/p log2/Pr + (r/n)l/p‘1/2>

* This implies
* One cannot use L1 OSE with poly(d) rows to get (1+€) distortion.

* It is essential to use non-oblivious subspace embeddings to get (1+¢) distortion
e E.g., Lewis weight sampling



Lower Bound

* The log?Pr factor seems possible to improve

e Can we get a lower bound of

Q ! )?
(1/d) /P +(r/n)1/P=1/2

 Theorem: One can construct an L1 OSE with exp(exp(O(d))) rows and
O(1) distortion.

* Technique: Standard net argument + better Cauchy tail bounds



L1 Subspace Embeddings

* Question 1:
* Is Q(dlogd) distortion optimal for L1 oblivious subspace embeddings?
* Can we achieve (1+¢) distortion for L17?

* Question 2:

e Can we have sparse L1 oblivious subspace embeddings with r = O(d log d) and
O(d log d) distortion?

e Can we have a tradeoff between sparsity and number of rows (like in
OSNAP)?



New Sparse L1 OSE

Distortion = O(d log d)




New Sparse L1 OSE

e Use CountSketch as the L2 OSE
* O(d?) rows, sparsity =2

* Use OSNAP as the L2 OSE
* O(B dlogd) rows, sparsity = O(loggd)



The Proof

* The upper bound is similar to previous results
* Auerbach basis + Cauchy upper tail bound

* Let y=Ax. W.l.o.g. we assume |y|,=1.
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» Sparse Cauchy embedding will be sufficient to prove the lower bound

e Otherwise,
* ISyl =[Syl,=0(1)|y],=Q(1)|y],/d



Conclusion

* Nearly optimal distortion lower bound for L1 OSE
* Nearly optimal sparse L1 OSE



Open Questions

* Isis possible to construct an L1 OSE
» with O(d?) rows, sparsity = 1 and O(d log d) distortion?
e with O(d log d) rows and sparsity = O(1) and O(d log d) distortion?
 with 290 rows and O(1) distortion, or prove a stronger lower bound?

* Tight bounds for Lp OSEsfor 1 <p <2



