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ABSTRACT

The /;-distance, also known as the Manhattan or taxicab
distance, between two vectors x,y in R™ is > | |z — vl
Approximating this distance is a fundamental primitive on
massive databases, with applications to clustering, near-
est neighbor search, network monitoring, regression, sam-
pling, and support vector machines. We give the first 1-pass
streaming algorithm for this problem in the turnstile model
with O*(e7?) space and O*(1) update time. The O* nota-
tion hides polylogarithmic factors in €, n, and the precision
required to store vector entries. All previous algorithms ei-
ther required Q(e™%) space or Q(¢7?) update time and/or
could not work in the turnstile model (i.e., support an arbi-
trary number of updates to each coordinate). Our bounds
are optimal up to O*(1) factors.

Categories and Subject Descriptors: F.2.0 [Analysis
of Algorithms and Problem Complexity]: General; H.2.8
[Database Management|: Database applications

General Terms: Algorithms, Theory

Keywords: streaming, sketching, clustering, data mining

1. INTRODUCTION

Recent years have witnessed an explosive growth in the
amount of available data. Data stream algorithms have be-
come a quintessential tool for analyzing such data. These al-
gorithms have found diverse applications, such as large scale
data processing and data warehousing [4, 5, 12, 15, 16, 18,
19, 22, 29, 30|, machine learning [40], network monitoring
[11, 13, 14, 23, 37, 50], and sensor networks and compressed
sensing [6, 28].

A key ingredient in all these applications is a distance
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measure between data. In nearest neighbor applications, a
database of points is compared to a query point to find the
nearest match [40]. In clustering, classification, and kernels,
e.g., those used for support vector machines (SVM), given a
matrix of points, all pairwise distances between the points
are computed [40]. In network traffic analysis and denial of
service detection, global flow statistics computed using Net-
Flow software are compared at different times via a distance
metric [9, 23]. Seemingly unrelated applications, such as the
ability to sample an item in a tabular database proportional
to its weight, i.e., to sample from the forward distribution
[20], or to sample from the output of a SQL Join [8], require
a distance estimation primitive for proper functionality [43].

One of the most robust measures of distance is the /¢;-
distance, also known as the Manhattan or taxicab distance.
The main reason is that it is less sensitive to outliers. Given
vectors z,y € R", the ¢1-distance is defined as ||z — y||1 def
> 1 lzs — yi|. This measure, which also equals twice the
total variation distance, is often used in statistical applica-
tions for comparing empirical distributions, for which it is
more meaningful and natural than Euclidean distance, see,
e.g., [32]. It also has a natural interpretation for comparing
multisets, whereas Euclidean distance does not. Other ap-
plications of ¢; include clustering [24, 36], regression [10, 38,
49, 51] (and with applications to time sequences [21, 38]),
Internet-traffic monitoring [23], and similarity search [2].
As stated in [1], in the context of certain nearest-neighbor
search problems, “the Manhattan distance metric is consis-
tently more preferable than the Euclidean distance metric
for high dimensional data mining applications”. It may also
support faster indexing for similarity search [57]; in that pa-
per the authors claim their scheme is “up to 10 times faster”
when using the ¢;-distance in multimodal search than when
using Euclidean distance.

Another application is to estimating cascaded norms of a
tabular database, i.e. we first compute the ¢, norm on a
list of attributes of a record, then sum these values up over
records. This problem is known as ¢1({p) estimation. As
discussed in [34], an example application is in the processing
of financial data. In a stock market, changes in stock prices
are recorded continuously using a quantity 7.z known as
logarithmic return on investment. To compute the average
historical volatility of the stock market from the data, we
segment the data by stock, compute the variance of the 71og
values for each stock, and then average these over all stocks.
This corresponds to an ¢1({2) computation (normalized by
a constant). As a subroutine for computing ¢ (¢2), the best
known algorithms use a routine for ¢;-estimation [34].



Paper Space Update Time Model

23] O*(c=2) O*(e?) < 2 updates per coordinate
31,35,39] O*(e2) O*(?) unrestricted updates

40 O*(c~2) 0O*(1) restricted inputs

26 O*(e~3) 0O*(1) unrestricted updates

44 O*(c~2) 0O*(1) < 2 updates per coordinate
this work O*(e?) 0*(1) unrestricted updates

Figure 1: Chronological comparison of our contri-
bution to previous works on /;-estimation in data
streams.

Despite its many features, understanding the computa-
tional properties of the ¢;1-distance has proven to be quite
challenging. In many of the applications above, solutions
with Euclidean distance were discovered years before those
using the ¢;-distance. This is true of linear regression (the
singular value decomposition (SVD) versus the later [10]),
norm estimation in a data stream ([3] versus the later [31]),
private two-party distance approximation ([33] versus the
later [42, 56]), and subspace approximation (the SVD versus
the later [24]). This difference also occurs in computational
geometry, for which clustering a set of points based on min-
imizing the average squared distance to the center (the 1-
means problem) can be solved by a simple formula, whereas
minimizing the average distance to the center (the 1-median
problem) has no closed form (though solutions exist based
on Weiszfeld’s algorithm [54] or semidefinite programming
[45]). The 1-median is desired because of its robustness [41].

In this paper we study the problem of estimating the ¢;-
distance in the most general turnstile model of data stream-
ing. Formally, given a total of m updates (positive or neg-
ative) to an n-dimensional vector x, we maintain a succinct
summary, or sketch, of what we have seen so that at any
point in time we can output an estimate E(z) so that with
high probability, (1 — ¢)||z]1 < E(z) < (1 + &)||z||1, where
e > 0 is a tunable approximation parameter. Here, an up-
date has the form (4, v), meaning that the value v should be
added to coordinate i. We assume that v is an integer (this
is without loss of generality by scaling), and that |v| < M,
where M is a parameter. We stress that the updates may be
interleaved and presented in an arbitrary order. Of interest
is the amount of memory to store the sketch, the amount
of time to process a coordinate update, and the amount of
time to output an estimate upon request. The problem of
{1-sketching has generated excitement in the theory commu-
nity; see the first open question in the 2006 II'TK Workshop
on Algorithms for Data Streams [47].

Our Main Contribution. We demonstrate a 1-pass al-
gorithm using e~ 2?polylog(nmM) space for £1-estimation in
data streams with polylog(nmM) update time, and report-
ing time e~ ?polylog(nmM).

Our algorithm is the first to be simultaneously optimal in
both the space and the update time up to polylog(nmM)
factors. All previous algorithms (see Section 1.1) either re-
quired at least 673polylog(an) bits of space, or at least
¢~ ? update time. As e can be arbitrarily small, our result
can provide a substantial benefit over previous work. In light
of known lower bounds, our space and time complexity are
optimal up to polylog(nmM) factors.

Notation: In the remainder of the paper, for a function
f we use the notation O*(f) to denote a function g =
O(f - polylog(nmM/e)). We similarly define © and Q.

Our improvements result in corresponding gains for the afore-
mentioned applications. Examples include the scan for near-
est neighbor search, for which to obtain sketches of size
O*(£72), we reduce the preprocessing time from O(nds™?)
to O*(nd). We also shave an €2 factor in the time for
computing all pairwise ¢;-distances, in the update time for
sampling from the forward distribution, in the time for com-
paring two collections of traffic-flow summaries, and in the
time for estimating cascaded norms.

1.1 Previous Work

A full comparison of our work with previous work is given
in Figure 1. We omit the reporting time, since it is the same
as the space up to an O*(1) factor.

The first sublinear-space algorithm for estimating ¢; in
a single pass is due to Feigenbaum et al [23], who achieve
O*(e7?) space and O*(¢~?) update time. There are two
drawbacks of this work, the first being that it only works if
each coordinate is updated at most twice in the data stream.
For some applications this is unrealistic, as in many of the
examples above the underlying distribution is skewed, i.e.,
there are a few coordinates that appear many times. This
is especially true when collecting network traffic data, since
the underlying vector is indexed by source-destination pairs
(“fows”), and one expects each flow to receive multiple pack-
ets. The other drawback is the update time.

Subsequent work for sketching ¢; includes the algorithm
of Indyk [31], with followup work by Li [39] and a space-
optimal variant by Kane and the current authors [35]. As
in [23], these algorithms achieve optimal or near-optimal
space. They can additionally handle an arbitrary number
of updates to each coordinate, eliminating the first draw-
back above. The downside is that these algorithms require
Q*(¢72) time to process each stream update, which is slow
for small error parameters. Note that for some applications,
the setting of € may simply be determined by wishing to
obtain the smallest approximation error possible under the
sole constraint that the sketching algorithm fits in memory.
However, if for example a device has 23? words of memory
available, setting ¢ based on the constraint ©*(¢72) = 23
would make the streaming problem intractable due to intol-
erably slow performance with an update time of Q*(¢72).

The first approach to bypass the Q*(¢72) time barrier is
due to Li et al [40], and is based on the concept of sparse
Cauchy sketches (for detail on Cauchy sketches, see be-
low). This approach though has the drawback that it only
works if the input data satisfies certain uniformity condi-
tions, whereas the algorithms above work for worst-case in-
puts. The first algorithm to break the Q*(¢72) time barrier
for worst-case inputs while using nontrivially small space is
that of Ganguly and Cormode [26]. The authors handle an
arbitrary number of updates to each coordinate, and achieve
O™ (1) update time. This, however, comes at the cost of an
Q*(e™%) requirement on the space. We also obtain an in-
comparable result in an unpublished manuscript [44], which
although achieving O*(1) update time and O*(¢™%) space
(improving upon [23]), only works if each coordinate is up-
dated at most twice in the stream. The main question left
open in this line of work is whether one could obtain O*(1)



update time and O*(e72) space for an arbitrary number of
updates per coordinate. Such an algorithm would match
known lower bounds [35, 55] up to O*(1) factors.

We remark that the work of Ganguly and Cormode [26]
only appears to be correct under the assumption of the exis-
tence of a truly random hash function, as their use of Nisan’s
generator (Appendix B in their paper) increases their update
time by a factor of Q*(¢72). However, it appears that one
can fix their argument using additional methods [25].

1.2 Our Techniques

Given the large body of prior work on this problem, the
simplicity of our solution is quite surprising. In [26] it is
suggested that using the Cauchy sketches of Li (particu-
larly, his geometric mean estimator) would require Q*(72)
update time. The authors then used multi-level sketches,
incurring an extra Q*(¢~') factor in the space. Contrary
to the intuition given in [26], we achieve O*(1) update time
by using Cauchy sketches (and particularly, Li’s geometric
mean estimator)! However, to achieve our result we first
need to preprocess and partition the data; details follow.

The notion of a Cauchy sketch was pioneered by Indyk [31]
and refined by Li [39]. Given a vector z, the sketch is a col-
lection of counters Y; = Y7 | #;Cy 5 for j =1,...,k, where
the Cj,; are standard Cauchy random variables with prob-
ability density function u(y) = m The C;,; are gen-
erated pseudorandomly using Nisan’s pseudorandom gener-
ator (PRG) [46]. By the 1-stability of the Cauchy distri-
bution, Yj is also distributed as a standard Cauchy random
variable, scaled by ||z|l1. Li shows that there is a constant
cr > 0 so that for any k > 3, if Y3,...,Y) are independent
Cauchy sketches, then the geometric mean estimator

Estau = cr - ([Ya] - [Ya] - [Ya )/,

has an expected value E[Estam] = ||z]l1 and a variance of
Var[Estgm] = O(||z]|3/k). The space and time complex-
ity of maintaining the Y; in a data stream are O*(k), and
by linearity, can be computed in a single pass. By Cheby-
shev’s inequality, for k = ©(¢~2) one obtains a (1 + ¢)-
approximation to ||z||1 with constant probability, which can
be amplified by taking the median of independent repeti-
tions. While the space needed is O*(¢~2), unfortunately so
is the update time.

Our starting point is the following idea. Suppose we ran-
domly partition the coordinates into ©(¢~?) buckets. In
each bucket we maintain Li’s estimator but only with pa-
rameter k£ = 3. Given an update to a coordinate i, it lands
in a unique bucket, and the contents of this bucket can be
updated in O*(1) time. Using ©(e~?) buckets, the space is
also O*(¢72). One is then faced with the following tempta-
tion: letting G; be the estimate returned by Li’s procedure
in bucket i for k = 3, output G = ;.":1 G;. From the
properties of the G;, this is correct in expectation.

The main wrinkle is that Var[G] can be as large as Q(||z||3)
which is not good enough. To see that this can happen, sup-
pose x contains only a single non-zero coordinate 1 = 1. In
the bucket containing x1, the value G of Li’s estimator is the
geometric mean of 3 standard Cauchy random variables. By
the above, Var[G] = ©(|lz|[i/k) = ©(|z|]}).

Note though in the above example, 1 contributed a large
fraction of the ¢; mass of z (in fact, all of it). Our main idea
then is the following. A ¢-heavy hitter of the vector x is a
coordinate i for which |z;| > ¢-||z||1. Algorithms for finding

heavy hitters, also known as iceberg queries, have been ex-
tensively studied in the database community [4, 5, 7, 17, 22,
29, 30], and we can use such algorithms in our algorithm. Set
¢ = €2. We remove every ¢-heavy hitter from z, estimate
the contribution of these heavy coordinates separately, then
use the bucketing above on the remaining coordinates. We
show that this reduces Var[G] to O(||2tai|3), where 2 is
the vector obtained from z by removing the heavy hitters.
A calculation shows that O(||zwanl|3) = O(e||z||37), which
is good enough to argue that ||xtair]|1 can be estimated to
within an additive ¢||z||s with constant probability. This
idea can be implemented in a single pass.

The main remaining hurdle is estimating ||Zhead||1, the
contribution to ||z||1 from the heavy hitters. Using current
techniques, we could, say, use the CountMin sketch [17] to
estimate the value of each e2-heavy hitter up to an addi-
tive €®||z|l1. Summing the estimates gives ||ZThead||1 up to
an additive ¢||z||1. This, however, requires Q*(¢7°) space,
which we cannot afford. We instead design a new subrou-
tine, Filter, which estimates the sum of the absolute values
of the heavy hitters, i.e., the value ||Zhead||1, up to an ad-
ditive e||x||:, without guaranteeing an accurate frequency
estimate to any individual heavy hitter. This relaxed guar-
antee is sufficient for correctness of our overall algorithm,
and is implementable in O*(¢72) space.

Other technical complications arise due to the fact that
the partitioning is not truly random, nor is the random-
ness used by Li’s estimator. We use a family of functions of
Pagh and Pagh [48] that is close to an O(e~?)-wise indepen-
dent family, but doesn’t suffer the O(¢72) evaluation time
required of functions in such families (e.g., O(e?)-degree
polynomial evaluation). These functions can be evaluated
in constant time. The caveat is that the correctness anal-
ysis needs more attention. Also, naively implementing Li’s
algorithm requires 2(n) space to store the Cauchy random
variables assigned to coordinates (recall each coordinate can
be updated multiple times in an arbitrary order). The ran-
domness can be reduced using Nisan’s PRG, but previous
applications of such a PRG resulted in time proportional
to the space of the algorithm, which here would be Q*(¢72).
We show that for our algorithm, Nisan’s PRG can be applied
in a way that only adds O*(1) to the update time.

At a high level, our algorithm is inspired by works of
Charikar et al [7] and Thorup and Zhang [52], who give im-
plementations of the AMS sketch [3] for £2-estimation with
fast update time. Similarly to our algorithm, they hashed
each index to a bucket then performed an unbiased ¢3 esti-
mator in the bucket, but unlike in our algorithm, they did
not have to handle heavy hitters separately.

2. PRELIMINARIES

Our algorithm operates in the following model. A vec-
tor x of length n is initialized to 0, and it is updated in a
stream of m updates from the set [n] x {—M,...,M}. An
update (7,v) corresponds to the change x; « z; + v. In this
work, we are interested in computing a (1+¢)-approximation
to ||zll1 = Y_i_, |@i| for some given parameter e > 0. All
space bounds in this paper are in bits, and all logarithms are
base 2, unless explicitly stated otherwise. Running times are
measured as the number of standard machine word opera-
tions (integer arithmetic, bitwise operations, and bitshifts).
We differentiate between update time, which is the time to
process a stream update, and reporting time, which is the



time required to output an answer. Each machine word is
assumed to be Q(log(nmM/e)) bits so that we can index
each vector and do arithmetic on vector entries and the in-
put approximation parameter in constant time.

Throughout this document, for integer z we use [z] to
denote the set {1,...,z}. For reals A, B, we use A+ B to
denote some value in the interval [A — B, A+ B]. Whenever
we discuss a frequency x;, we are referring to that frequency
at the stream’s end. We also assume ||z||1 # 0 without loss
of generality (note ||z||1 = 0 iff ||z||2 = 0, and the latter
can be detected with arbitrarily large constant probability
in O(log(nmM)) space and O(1) update and reporting time
by, say, the AMS sketch [3]), and that & < gg for some fixed
constant €g.

3. ¢ STREAMING ALGORITHM

In this section we describe and analyze our algorithm for
(1 + e)-approximating ||z|l1. As discussed in Section 1.2,
the algorithm works by estimating the contribution to ¢
from the heavy hitters and non heavy hitters separately,
then summing these estimates.

A “@-heavy hitter” is an index ¢ such that that |z;| >
ollz|li. We use a known heavy hitter algorithm for the
turnstile model of streaming (the model we are currently
operating in) to identify the e-heavy hitters. Given this
information, we use a subroutine Filter (described in Sec-
tion 3.1) to estimate the contribution of these heavy hitters
to £1 up to an additive error of ¢||z||1. This takes care of the
contribution from heavy hitters.

We maintain, in parallel, R = ©(1/¢?) “buckets” B;, which
then allow us to estimate the contribution from non heavy
hitters. Each index in [n] is hashed to exactly one bucket
i € [R]. The ith bucket keeps track of the dot product of z,
restricted to those indices hashed to i, with three random
Cauchy vectors, then applies a known unbiased estimator
of ¢1 due to Li [39] (the “geometric mean estimator”) to es-
timate the ¢1 norm of x restricted to indices hashed to i.
We then sum up (some scaling of) the estimates from the
buckets not containing any e?-heavy hitters. The value of
the summed estimates turns out to be approximately cor-
rect in expectation. Then, using that the summed estimates
only come from buckets without heavy hitters, we are able
to show that the variance is also fairly small, which then
allows us to show that our estimation of the contribution
from the non heavy hitters is correct up to e||z||1 with large
probability.

We first describe Filter, in Section 3.1, then give the final
algorithm in Section 3.2.

3.1 The Filter data structure: estimating the con-

tribution from heavy hitters

In this section, we assume we know a subset L C [n] of
indices i so that (1) for all ¢ for which |z;| > €2||z||1, i € L,
and (2) for all i € L, |x;| > (¢2/2)||z||1. Note this implies
|L| < 2/e?. Furthermore, we suppose we know sign(z;) for
each ¢ € L. Throughout this section, we let xnhecaq denote the
vector & projected onto coordinates in L, so that )., |xi| =
||Zhead||1- The culmination of this section is Theorem 3,
which shows that we can obtain an estimate ® = ||Zneadl/1 =
¢||lz||1 in small space with large probability, via a subroutine
we dub Filter.

We now proceed to give the details. We require the fol-
lowing uniform hash family construction given in [48].

THEOREM 1 (PAGH AND PAGH [48, THEOREM 1.1]). Let
S CU = [u] be a set of z > 1 elements, and let V = [v],
with 1 < v < u. Suppose the machine word size is Q(log(u)).
For any constant ¢ > 0 there is a word RAM algorithm that,
using time log(z)1og®® (v) and O(log(z) + loglog(w)) bits
of space, selects a family H of functions from U to V' (inde-
pendent of S) such that:

1. With probability 1 — O(1/2°), H is z-wise independent
when restricted to S.

2. Any h € H can be represented by a RAM data structure
using O(zlog(v)) bits of space, and h can be evaluated
in constant time after an initialization step taking O(z)
time.

We define the BasicFilter data structure as follows. Choose
a random sign vector o € {—1,1}" from a 4-wise indepen-
dent family. Put r = ’727/62]. We choose a hash function
h : [n] — [r] at random from a family H constructed ran-
domly as in Theorem 1 with u = n,v = z = r,c = 1. Note
|L| +1 < z. We also initialize r counters bi,...,b. to 0.
Given an update of the form (i,v), add o (i) - v to bp().

We define the Filter data structure as follows. Initialize
s = [logs(1/€)] + 3 independent copies of the BasicFilter
data structure. Given an update (i,v), perform the update
described above to each of the copies of BasicFilter. We think
of this data structure as an s x r matrix of counters D j,
i € [s] and j € [r]. We let 0" denote the sign vector ¢ in the
i-th independent instantiation of BasicFilter, and similarly
define h' and H'. Notice that the space complexity of Filter
is O(e™2log(1/¢) log(mM) +1log(1/¢) loglogn). The update
time is O(log(1/¢)).

For each w € L for which h'(w) = j, say a count D, ; is
good for w if for ally € L\{w}, h'(y) # j. Since h' is | L|-wise
independent when restricted to L with probability at least
1 —1/r, we have that Pr[D; ; is good for w] > (1 — 1/r) -
(1 —=(|L| —1)/r) > 2/3, where the second inequality holds
for ¢ < 1. It follows that since Filter is the concatenation of
s independent copies of BasicFilter,

Pr[Vw € L, Ji € [s] for which D, i, is good for w]

217\L|~(3is)>%. (1)

Let € be the event of Eq. (1).

We define the following estimator ® of ||Zheaa|l1 given the
data in the Filter structure, together with the list L. We also
assume & holds, else our estimator is not well-defined. For
each w € L, let i(w) be the smallest i for which D ,i(,, is

good for w, and let j(w) = '™ (w). Our estimator is then
® =" sign(ww) - o (W) - Digw) jw)-
weL

Note our Filter data structure is quite similar to the CountS-
ketch structure of [7], but with universal hashing replaced by
uniform hashing, and with a different estimation procedure.

LEMMA 2. E[® | £] = ||Zhead|l1 and Var[® | £] < 2¢2||z||3/9.

PrOOF. By linearity of expectation,

E[@ | €] =) Efsign(zw) - 0" (w) - D) sw) | €]

weL



Fix a w € L, and for notational convenience let i = i(w)
and j = j(w). For each y € [n], set I'(y) = 1 if h'(y) = j,
and set I'(y) = 0 otherwise. Then

E,: ji[sign(zy) o' (w) - Dy | €]
=Y E,ipilsign(ze)e, T (y)o’ (y)o' (w) | €].

Y

Consider any fixing of h' subject to the occurrence of &,
and notice that ¢* is independent of h*. Since o' is 4-wise
independent, it follows that

E i [sign(a:w)ai (w)D; ; | hi}
=E,i pi [sign(xw)xwl“(w)oi(w)ai(w)] =|zw|, (2)

and hence

E[®| &= [euw| = l|lzneadl-

welL
We now bound Var[® | £] = E[®? | £] — E*[® | £], or
equivalently,
Var[® | £] = —||zhead ]
+ 3 Blsien(ay)sign(,)o" ™ ()0 1)
w,yeL

X Di(w),j(w) Di(y),iw) | €]
_HggheadH? + Z E[Diz(w),j(w) | €]

weL

+ Z E[Sign(mw)Sign(xy)gi(w> (w)ai(y) (v)
w#yEL

X Di(w),j(w) Di(y),iw) | €]

We first bound Z“)GL [Dl(w) jw) | €] Fixaw € L, and for
notational convenience, put ¢ = i(w) and j = j(w). Then,

ZEwywyT T )e' (v)o' (v) | €]

Yy’

=Y Elz, T(y)| €]
= in -Pr[h

where the second equality follows from the fact that o* is
4-wise independent and independent of £. Note Pr[h’(y) =
j | & =0forany y € (L\ {w}), and Pr[h’(w) =j | E] =1
by definition.

Now consider a coordinate y ¢ L. For S C [n] let F% be
the event that " is |S|-wise independent when restricted to
S. By Bayes’ rule,

E[D}, | & =

y) =7 €&l

Pr(€ | fiu{y}] -Pr[fiu{y}]

Pr[Fiiqyy | €] =

Prié]
- (Pr[é‘] —Pr[¢ | ﬁfzu{y}] : Pr[ﬂfiu{y}])
N Pr[€]
Pr(e] - 7
- Pr[g]
10
=1y,

Conditioned on F7 {y}> the value h(y) is uniformly random
even given the images of all members in L under h*. Thus,

Pr(hi(y) = j | €] < 10/(9r) + 1/r < 3/r. Since the bucket
is good for w, the total contribution of such y to E[D7; | €]
is at most 3 - ||Ttain||3/r, where taq is the vector  with the
coordinates in L removed. Then ||xtai1|\§ is maximized when
there are €2 coordinates each of magnitude €?||z||1. In this
case |[zuaillf = .

Hence,

E[D}; | €] < ay + 3% ||z|[i/r < a7y + € |17/9.

As |L| < 2¢72) it follows that

Z E[D(w) jw) | €] < 28%|12]|7/9 + Z .

weL weL

Finally, we turn to bounding

Z E[sign(z.,)sign(z,)o" ™ (w)e' ™ (y)

w#YyEeL

X Di(w),j(w) Diy),iw) | €]-

Fix distinct w,y € L. Note that (i(w),j(w)) # (i(y),j(y))
conditioned on £ occurring.
Suppose first that i(w) # i(y). Then

Efsign(z.)sign(z,)o" " (w)o"" (y) Diw),jw) Dicy.iw) | €]
= E[sign(zw)o Z(w)Dz‘(m i(w) | €]
x Efsign(zy)0" Y Di(y) ) | €]

= [zw] - |zy]

since it holds for any fixed h*(*), h*¥) | where the final equal-
ity follows from Eq. (2).

Now suppose that i(w) = i(y). Let i = i(w) = i(y) for
notational convenience. Define the indicator random vari-
able T%(z) = 1 if h*(z) = j(w), and similarly let T¥(z) =
1 if h'(z) = j(y). Then we can expand the expression
E[Sign(mw)sign(my)al(m(w)ol(y)(y)Di(w)’j(w)Di(y)’j(y) | £] us-
ing the definition of Dj(w), jw) and Dj(y),j(y) as

Z E[sign(z,, )sign(zy )z, T (2)1Y ()0 (2)0' ()

x o' (w)a'(y) | €]-
We fix z and 2’ and analyze a summand of the form
E[sign(zy )sign(zy)z.2. T (2)1Y(2)
x o' (2)a' ()" (w)o' (y) | €].
Consider any fixing of h' subject to the occurrence of &,
and recall that o' is independent of h*. Since o' is 4-wise
independent and a sign vector, it follows that this summand
vanishes unless {z,2'} = {w,y}. Moreover, since I'*(y) =
T'Y(w) = 0, while I'(w) = I'Y(y) = 1, we must have z = w
and 2z’ = y. In this case,
E[sign(zy )sign(xy)z.2. T (2)TY(2)
x o' (2)0' (z)o" (w)o' (y) | B'] =

Hence, the total contribution of all distinct w,y € L to
Var([® | €] is at most 30, 1 [Tw| - |2y]-



Combining our bounds, it follows that

Var[® | €] < —||zhea T + 2¢712][/9

+ Y an Y |zl

wel wH#YEL

2
~l|zheaa |l + 2¢*[l]I3/9 + (Z IIw>

weL

= —|[@neaall + 26%|[2][1/9 + [|Zneaa T
= 27|z |1 /9.
This completes the proof of the lemma. []

By Chebyshev’s inequality, Lemma 2 implies

Var[® | £]
2|3

252||:U||§ 2

= 9e?flzflf 97

Pr[|® — ||Theaa|1] > €llz]]1 | £]

and thus,

7 9 7
— . < > =) = .
Pr{(® Hthd||1|_s||x||l>m_<9) (10) n

We summarize our findings with the following theorem.

THEOREM 3. Suppose we have a set L C [n] of indices j
so that (1) for all j for which |x;| > €2||z|}1, j € L, and (2)
for all j € L, |x;] > (£2/2)||z||1. Further, suppose we know
sign(zx;) for all j € L.

Then, there is a l-pass algorithm, Filter, which outputs
an estimate ® for which with probability at least 7/10, |® —
|Zheadll1] < €||z||1. The space complezxity of the algorithm
is O(e™?log(1/e) log(mM) +log(1/€) loglogn). The update
time is O(log(1/¢)), and the reporting time is O(s~2log(1/¢)).

3.2 The final algorithm

We now analyze our final algorithm for (1+¢)-approximating
||||1, which was outlined in the beginning of Section 3. The
full details of the algorithm are in Figure 2.

Before giving our algorithm and analysis, we define the ¢;
heavy hitters problem.

DEFINITION 4. Let 0 <y < ¢ and § > 0 be given. In the
U1 heavy hitters problem, with probability at least 1 — 6 we
must output a list L C [n] such that

1. For all i with |z;| > ¢||z|]1, i € L.
2. For alli € L, |z;| > (¢ —y)|lz|1-

8. For each © € L, an estimate &; is provided such that
|Zi — @i| <vllz|1-

Note that for v < ¢/2, the last two items above 1mply we
can determine sign(x;) for i € L. For a generic algorithm
solving the {1 heavy hitters problem, we use HHUpdate(¢),
HHReport(¢), and HHSpace(¢) to denote update time, re-
porting time, and space, respectively, with parameter ¢ and

v =¢/2, § =1/20.

There exist a couple of solutions to the ¢; heavy hitters
problem in the turnstile model. The work of [17] gives
an algorithm with HHSpace(¢) = O(¢~ " log(mM)log(n)),

HHUpdate(¢) = O(log(n)), and with HHReport(¢) = O(nlog(n)),

and [27] gives an algorithm with

HHSpace(¢) = O(¢™ " log(¢n) log log(¢n) log(1/9) log(mM)),

and with HHUpdate(¢) = O(log(¢n) loglog(n)log(1/¢)), and
HHReport(¢) = O(¢~ " log(¢n) log log(¢n) log(1/6)).

Also, the following theorem follows from Lemma 2.2 of
[39] (with & = 3 in their notation). In Theorem 5 (and
in Figure 2), the Cauchy distribution is a continuous prob-
ability distribution defined by its density function up(z) =
(7(1 4+ 2%))"". One can generate a Cauchy random vari-
able X by setting X = tan(wU/2) for U a random variable
uniform in [0,1]. Of course, to actually implement our al-
gorithm (or that of Theorem 5) one can only afford to store
these random variables to some finite precision; this is dis-
cussed in Remark 9.

THEOREM 5. For an integer n > 0, let Ai[j],..., An[j]
be 3n independent Cauchy random variables for j = 1,2,3.
Let x € R™ be arbitrary. Then gwen C; = >0 Ailj] - @
for 3 =1,2,3, the estimator

Estam = EStGM(Cl, Cs, Cg) =

8v3 .
A AR

satisfies the following two properties:

1. E[Estam] = ||z
2. Var[Estam] = 2 - ||z]]3.

We show in Theorem 6 that our algorithm outputs (1 +
O(g))|lz||1 with probability at least 3/5. Note this error term
can be made € by running the algorithm with &’ being € times
a sufficiently small constant. Also, the success probability
can be boosted to 1—4§ by running O(log(1/4)) instantiations
of the algorithm in parallel and returning the median output
across all instantiations.

THEOREM 6. The algorithm of Figure 2 outputs (1+0(¢))||z||1

with probability at least 3/5.

PROOF. Throughout this proof we use A to denote the 3n-
tuple (Ai[1],...,Ax[1],..., A1[3],..., Ax[3]), and for S C
[n] we let Fs be the event that the hash family H we ran-
domly select in Step 3 via Theorem 1 is |S|-wise independent
when restricted to S. For an event £, we let 1¢ denote the
indicator random variable for £. We also use Theaq to denote
x projected onto the coordinates in L, and xt.i1 to denote
the remaining coordinates. Note ||z||1 = ||Zheaa|l1 + ||Ztail]|1-

We first prove the following lemma. The proof requires
some care since h is not always a uniform hash function on
small sets, but is only so on any particular (small) set with
large probability.

LEMMA 7. Conditioned on the randomness of HH of Fig-
ure 2,

Easn

‘% > Zl(j)] = (1£0(e))||zsain]|1-

jerl



. Initialize 3R = 3 - (4/¢2) counters By[j], ...,
. Pick a random hash function h : [n] —

UL W N =

. Update(i,v):
6. Estimator:

Let Li(j) =
Output ¢ + % jer L1()-

. Run an instantiation F of Filter, and HH of an £1 heavy hitters algorithm with ¢ = €2, v = ¢/2,§ = 1/20.
Brlj] to 0 for j = 1,2, 3.

[R] as in Theorem 1 with z = R and ¢ = 2.

. Select independent Cauchy random variables A1[j], ...
Feed update (i,v) to both F and HH.
Br(iylil < Byl + Aslj] - v for j =1,2,3.

Let L be the list output by HH, and let I = [R]\h(L).

Let @ be the output of F, using the list L from the previous step.
Estam(Bj[1], B;[2], B;[3]) as in Theorem 5.

,Anlj] for j =1,2,3.

Figure 2: Final algorithm for /;-estimation. Step 4 is derandomized in Section 4.

PRrOOF. For p=1— Pr[FL],

L A

JjeI
—E,4 STLG) (fL - PrF.]
III =
+Ey4 ZL1 ‘_‘fL - Pr[—Fi]
\II ~
=1-pEar | ZLl ‘fL
\II =
+p-Ea \II L )‘ﬂ%”
JjeI
= (1-p)Ean m SOLG) | F| £ (o Bzl
Jjel

®3)

by Theorem 1 and Theorem 5. We now compute the above
expectation conditioned on I. Let £ be the event I = I’
for an arbitrary I’. Then,

R
= 7 2 B [2:6) | Fu.en]
jer’
R
~ Tt b 7
jer i¢L
R
:m-ZZII\z Pry [h(i) =j | Fr,€r]
jel’ i¢L
R Pr, [( ):j)/\51/|]-'L]
- . i - 4
7 2 2l PriEy | 72) @

Now we note

Pry, [(h(i) = j) A€ | Fi]
=Pry, [(h(i) = §) ANEr | Frogy, Fi] - PrlFrogy | Fil
+Pry [(h(0) = j) A €1 | ~Frogay, Fr] - Pr=Frop | Frl
=Pry, [h(i) =j | Frouy, Fr] - Pra [Er | Fu, Frogy, h(i) =
X Pr[Frupy | Fi
+ Pr[_‘FLU{i} | Fo] - Pr[&; | fL,ﬂfLU{i}]
x Pr[h(i) = j | = Frugy, Fr, Er]
Now note a couple things. First, if Fry(;; occurs, then

&1+ is independent of the event h(i) = j. Also, if Fr occurs,
then & is independent of Fruy;3. Thus, the above equals

Pr;, [h(l) =7 ‘ ]:Lu{i}] - Pry, [51/ | FL] . Pr[]:Lu{i} | fL]
+ PI‘[ﬁfLU{} | fL] . Pl‘[gj/ ‘ fL}
x Pr[h(i) = j | ~Frugy, Fr.€r]

Note Pr[~FLugy | Fr] < Pr2Frog]/Pr(Fr] = pi/(1-p)
for p; = 1— Pr[fLU{ ). Also, Pr[Frugy | Fr] 2> Pr{Frugy]
since Pr[Fruq] is a Welghted average of Pr[Frugy | FL]
and Pr[Fpru;y | ~FL], and the latter is 0. Thus, for some

pi €10, pi] Eq. (4) is
o,
eSS lele (5 12)
JEI i¢L
R
= ||zainf — o |z)i & (w) .
i¢L L=p

By our setting of ¢ = 2 when picking the hash family of
Theorem 1 in Step 3, we have p, o}, o/ = O(e®) for all i,
and thus p;/(1 — p) - R = O(e), implying the above is (1 +
O())||ztan|l1- Plugging this in Eq. (3) then shows that the
desired expectation is (1 £ O(g))||@tan|[r. O

R- ||$ta11||1

7]

We now bound the expected variance of (R/[I[)->_,; Li(5).

LEMMA 8. Conditioned on HH being correct,

Var s |:| | ZLl

JjeI

En = 0(e” - ||z]|7).-

PRrROOF. For any fixed h, R/|I| is determined, and the



Ly (j) are pairwise independent. Thus, for fixed h,

VarA|:|I| > L) (\II) Y Vara[Li(j)]

jel JjeI

First observe that since |I| > R — |L| > 2/&2, for any choice
of h we have that R/|I| < 2. Thus, up to a constant factor,
the expectation we are attempting to compute is

S LG) ] .
JEI
For notational convenience, say L1(j) = 0 if j ¢ I. Now,

S E)

jer

E; | Vara

E; | Vara =E;

i ljer - Vary [El(j)}

Jj=1

I
M=

| D78 |:1je] -Vary [Zl(j)]]

.
Il
-

M=

E. [VarA [El(j)] ’ je 1]

2
19 .
8 <Z Lngiy=; - Iwi|> ‘J € I] ,
igL

<.
Il
-

I
=

<
Il
—

which equals

(ZZ@ “Prulh(i)=j1j€el]
Jj=1i¢L
+> 0 > lwilles] - Pral(h(i) = j) A (R(i') = 4) | j € I])
J=1 i’
i,i'¢L

(5)
Now consider the quantity Pry[h(i) = 5 | j € I]. Then
Prplh(i) =7 |j €]
=Pry[h(i) =7 | Frugy,J € I - Pra[Frogy |4 € 1]
+Pruf[h(i) = j | =Frugiy.J € 1]
X Prh[—']‘—Lu{i} ‘ ] S I]
< Prp[h(i) =7 | Frugiy,J € 1] +Prh[—|.7:LU{i} | €l
1 .
= I +Prh[_‘-7:Lu{i} |jel]

Then by Bayes’ theorem, the above is at most

l n Prh[ﬁfLu{i}] < l + PI‘h[ﬁfLU{i}}
R " Pruljel] — R Prijel]|FL PrFi]
1 Prh[ﬁfLu{i}]
= R + 1\ IL|
(1 — ﬁ) - Pr[FL]
1 Prh [“./TLU“}]
< —
SR +

(1 - %) - Pr[Fy]

Note |L|/R < 1/2. Also, by choice of ¢,z in the appli-
cation of Theorem 1 in Step 3, Pr[Fr] = 1 — O(e) and
Pr[~Fu(y]) = O(1/R?). Thus overall,

Pru[h(i) =j|j € I] = O(1/R).

An essentially identical calculation, but conditioning on
Frugi,iy instead of Fruys), gives that

Pri[(h(i) = j) A (') = j) | j € I] = O(1/R?).

Combining these bounds with Eq. (5), we have that the
expected variance we are aiming to compute is

O(l[zcaitll3 + llzean [/ R).-

The second summand is O(e?||z||3). For the first summand,
conditioned on HH being correct, every |z;| for i ¢ L has
|z;| < €?||z|l1. Under this constraint, |23 is maximized
when there are exactly 1/¢? coordinates i ¢ L each with
|z;| = €®||«||1, in which case ||ztan|3 = €3||z||3. O

We now wrap up the proof of correctness of our full al-
gorithm in Figure 2 as follows. We condition on the event
Enn that HH succeeds, i.e. satisfies the three conditions of
Definition 4. Given this, we then condition on the event &
that F succeeds as defined by Theorem 3, i.e. that

P = || zneaallr = elz]1

Next we look at the quantity

X—m ZLl

Jjel

By Lemma 7, E[X], even conditioned on the randomness
used by HH to determine L, is (1 £ O(g))||xtan|l1- Also,
conditioned on Ewn, the expected value of Var[X] for a
random h is O(g?||z||?). Since Var[X] is always nonneg-
ative, Markov’s bound applies, and we have that Var[X] =
O(€?||z||3) with probability at least 19/20 (over the random-
ness in selecting h). Thus, by Chebyshev’s inequality,
Pran[|X — E[X]| > te||lz|1 | Enn) < + O(l/t ), (6)
which can be made at most 1/15 by setting ¢ a sufficiently
large constant. Call the event in Eq. (6) F. Then, as long
as Eun, &, F occur, we have that our final estimate of ||z||1
is
(I + 0@ lztanllr + lzneaalls £ O(ellzll1) = (1 £ O(e))[lzllx
as desired. Our probability of correctness is then at least

Pr(&un AEFAF] > Pr[ée AF | Enn] - Pri&nn]
= PI‘[SF ‘ gHH} . PI‘[}— | 5HH] . PI‘[EHH]

> 714019
- 10 15 20
> 3/5

REMARK 9. It is known from previous work (see [31, Claim
3]) that each A;[j] can be be maintained up to only O(log(n/¢))
bits of precision, and requires the same amount of random-
ness to generate, to preserve the probability of correctness
to within an arbitrarily small constant. Then, note that the
counters B;[j] each only consume O(log(nmM/e)) bits of
storage.

Given Remark 9, we have the following theorem.

THEOREM 10. Ignoring the space to store the A;[j], the
algorithm of Figure 2 requires space O((e~2log(nmM/e) +
loglog(n)) log(1/¢)) +HHSpace(s?). The update and report-
ing times are, respectively, O(log(1/¢))+HHUpdate(¢?), and
O(e7?log(1/¢)) + HHReport(s?).



PRrOOF. Ignoring F and HH, the update time is O(1) to
compute h, and O(1) to update the corresponding Bj;).

Also ignoring F and HH, the space required is O(e ™2 log(nmM/¢))

to store all the B;[j] (Remark 9), and O(e¢™2log(1/¢) +
log log(n)) bits to store h and randomly select the hash fam-
ily it comes from (Theorem 1). The time to compute the
final line in the estimator, given L and ignoring the time to
compute ®, is O(1/¢?).

The bounds stated above then take into account the com-
plexities of F and HH. [

4. DERANDOMIZING THE FINAL
ALGORITHM

Observe that a naive implementation of storing the entire
tuple A in Figure 2 requires Q(nlog(n/e)) bits. Considering
our goal is to have a small-space algorithm, this is clearly
not affordable.

As it turns out, using a now standard technique in stream-
ing algorithms, originally pioneered by Indyk [31], one can
avoid storing the tuple A explicitly. This is accomplished by
generating A from a short, truly random seed which is then
stretched out by a pseudorandom generator against space-
bounded computation such as Nisan’s PRG [46]. In Indyk’s
original argument, he used Nisan’s PRG to show that his
entire algorithm was fooled by using the PRG to stretch a
short seed of length O(e™2 log(n/e) log(nmM/e)) to gener-
ate ©(n/e?) Cauchy random variables. However, for fooling
his algorithm, this derandomization step used (1/¢?) time
during each stream update to generate the necessary Cauchy
random variables from the seed. Given that our goal is to
have fast update time, we cannot afford this. We show that
to derandomize our algorithm, Nisan’s PRG can be applied
in such a way that the time to apply the PRG to the seed
to retrieve any A;[7] is small. We now give the details.

First, recall the definition of a finite state machine (FSM).
An FSM M is parametrized by a tuple (Tinit,S,,n). The
FSM M is always in some “state”, which is just a string x €
{0, 1}5, and it starts in the state Tinit. The parameter I is a
function mapping {0,1}°x{0,1}" — {0,1}°. We also abuse
notation and for « € ({0,1}")" for r a positive integer, we
use I'(T, z) to denote I'(...(T(T(T,x1),x2),...),zr). Note
that given a distribution D over ({0,1}")", there is an im-
plied distribution M (D) over {0, 1}* obtained as I'(Tinit, D).

DEFINITION 11. Lett be a positive integer. For D, D’ two
distributions on {0,1}", we define the total variation dis-
tance A(D,D’) by

A(D,D') = max |Prx_p[X € T]—Pry_p/[Y €T].
TC{0,1}*

THEOREM 12  (NISAN [46]). Let U’ denote the uniform
distribution on {0,1}". For any positive integers r,n, and for
some S = O(n), there exists a function Guisan : {0,1}° —
({0,1}™)" with s = O(Slog(r)) such that for any FSM M =
(T‘inity S, Fy n),

A(M((U")T)’ M(Gnisan(US))) S 273.
Furthermore, for any x € {0,1}° and i € [r], computing the

n-bit block Grisan () requires O(S log(r)) space and O(log(r))
arithmetic operations on O(S)-bit words.
Before finally describing how Theorem 12 fits into a de-

randomization of Figure 2, we state the following standard
lemma (see for example [53, Lemma 5.3]).

LEMMA 13. If Xq,...
are independent, then

, Xm are independent and Y1, ..., Ym

A(X1 X X X, Yo X oo X Vi) < A(XG, Vi),
=1

Now, the derandomization of Figure 2 is as follows. Con-
dition on all the randomness in Figure 2 except for A. Recall
we have R = O(1/¢?) “buckets” B,. Each bucket contains
three counters, which is a sum of at most n Cauchy random
variables, each weighted by at most mM. Given the preci-
sion required to store A (Remark 9), the three counters in B,
in total consume S’ = O(log(nmM /e)) bits of space. Con-
sider the FSM M,, which has 27 states for S = S + log(n),
representing the state of the three counters together with an
index icur € [n] that starts at 0. Define ¢ as the number of
uniform random bits required to generate each A;[j], so that
t = O(log(nmM/e)) by Remark 9. Note t = ©(S). Consider
the transition function T': {0,1}** — {0,1}° defined as fol-
lows: upon being fed (A;[1], Ai[2], A;[3]) (or more precisely,
the 3¢ uniform random bits used to generate this tuple), in-
crement icur then add A;[j]- z; to each B,[j], for ¢ being the
(fcur)th index ¢ € [n] such that h(i) = u. Now, note that if
one feeds the (A;[1], A;[2], A;[3]) for which h(i) = u to M.,
sorted by i, then the state of M, corresponds exactly to the
state of bucket B, in our algorithm.

By Theorem 12, if rather than defining A by 3tr truly
random bits (for » = n) we instead define it by stretching a
seed of length s = O(Slog(n)) = O(log(nmM/e)log(n)) via
Ghisan, we have that the distribution on the state of B, at
the end of the stream changes by at most a total variation
distance of 27, Now, suppose we use R independent seeds
to generate different A vectors in each of the R buckets.
Note that since each index i € [n] is hashed to exactly one
bucket, the A;[j] across each bucket need not be consistent
to preserve the behavior of our algorithm. Then for U? being
the uniform distribution on {0, 1}, we have

A(MI(U3t)’" X - x Mr(UY",
Mi(Guisan (U")) X -+ X Mr(Gisan(U"))) < R-27°

by Lemma 13. By increasing S by a constant factor, we can
ensure R-277 is an arbitrarily small constant §. Now, note
that the product measure on the output distributions of the
M, corresponds exactly to the state of our entire algorithm
at the end of the stream. Thus, if we consider T" to be the
set of states (Bi,..., Bgr) for which our algorithm outputs
a value (1 % ¢)||z||1 (i.e., is correct), by definition of total
variation distance (Definition 11), we have that the prob-
ability of correctness of our algorithm changes by at most
an additive 6 when using Nisan’s PRG instead of uniform
randomness. Noting that storing R independent seeds just
takes Rs space, and that the time required to extract any
A;[j] from a seed requires O(log(n)) time by Theorem 12,
we have the following theorem.

THEOREM 14. Including the space and time complexities
of storing and accessing the A;[j], the algorithm of Figure 2
can be implemented with an additive O(e =2 log(nmM /<) log(n))
increase to the space, additive O(log(n)) increase to the up-
date time, and no change to the reporting time, compared
with the bounds given in Theorem 10.
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