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Abstract. We study classic streaming and sparse recovery problems
using deterministic linear sketches, including `1/`1 and `∞/`1 sparse re-
covery problems, norm estimation, and approximate inner product. We
focus on devising a fixed matrix A ∈ Rm×n and a deterministic recov-
ery/estimation procedure which work for all possible input vectors simul-
taneously. We contribute several improved bounds for these problems.
– A proof that `∞/`1 sparse recovery and inner product estimation

are equivalent, and that incoherent matrices can be used to solve
both problems. Our upper bound for the number of measurements
is m = O(ε−2 min{logn, (logn/ log(1/ε))2}). We can also obtain
fast sketching and recovery algorithms by making use of the Fast
Johnson-Lindenstrauss transform. Both our running times and num-
ber of measurements improve upon previous work. We can also ob-
tain better error guarantees than previous work in terms of a smaller
tail of the input vector.

– A new lower bound for the number of linear measurements required
to solve `1/`1 sparse recovery. We show Ω(k/ε2 +k log(n/k)/ε) mea-
surements are required to recover an x′ with ‖x − x′‖1 ≤ (1 +
ε)‖xtail(k)‖1, where xtail(k) is x projected onto all but its largest
k coordinates in magnitude.

– A tight bound of m = Θ(ε−2 log(ε2n)) on the number of measure-
ments required to solve deterministic norm estimation, i.e., to recover
‖x‖2 ± ε‖x‖1.

For all the problems we study, tight bounds are already known for the
randomized complexity from previous work, except in the case of `1/`1
sparse recovery, where a nearly tight bound is known. Our work thus
aims to study the deterministic complexities of these problems.

1 Introduction

In this work we provide new results for the point query problem as well as sev-
eral other related problems: approximate inner product, `1/`1 sparse recovery,
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and deterministic norm estimation. For many of these problems efficient ran-
domized sketching and streaming algorithms exist, and thus we are interested in
understanding the deterministic complexities of these problems.

1.1 Applications

Here we give a motivating application of the point query problem; for a formal
definition of the problem, see below. Consider k servers S1, . . . , Sk, each holding
a database D1, . . . , Dk, respectively. The servers want to compute statistics of
the union D of the k databases. For instance, the servers may want to know the
frequency of a record or attribute-pair in D. It may be too expensive for the
servers to communicate their individual databases to a centralized server, or to
compute the frequency exactly. Hence, the servers wish to communicate a short
summary or “sketch” of their databases to a centralized server, who can then
combine the sketches to answer frequency queries about D.

We model the databases as vectors xi ∈ Rn. To compute a sketch of xi, we
compute Axi for some A ∈ Rm×n. Importantly, m � n, and so Axi is much
easier to communicate than xi. The servers compute Ax1, . . . , Axk, respectively,
and transmit these to a centralized server. Since A is a linear map, the centralized
server can compute Ax for x = c1x

1 + . . . ckx
k for any real numbers c1, . . . , ck.

Notice that the ci are allowed to be both positive and negative, which is crucial
for estimating the frequency of record or attribute-pairs in the difference of
two datasets, which allows for tracking which items have experienced a sudden
growth or decline in frequency. This is useful in network anomaly detection [11,
17, 24, 32, 37], and also for transactional data [16]. It is also useful for maintaining
the set of frequent items over a changing database relation [16].

Associated with A is an output algorithm Out which given Ax, outputs a
vector x′ for which ‖x′ − x‖∞ ≤ ε‖xtail(k)‖1 for some number k, where xtail(k)
denotes the vector x with the top k entries in magnitude replaced with 0. Thus
x′ approximates x well on every coordinate. We call the pair (A,Out) a solution
to the point query problem. Given such a matrix A and an output algorithm
Out, the centralized server can obtain an approximation to the value of every
entry in x, which depending on the application, could be the frequency of an
attribute-pair. It can also, e.g., extract the maximum frequencies of x, which
are useful for obtaining the most frequent items. The centralized server obtains
an entire histogram of values of coordinates in x, which is a useful low-memory
representation of x. Notice that the communication is mk words, as opposed to
nk if the servers were to transmit x1, . . . , xn.

Our correctness guarantees hold for all input vectors simultaneously using one
fixed (A,Out) pair, and thus it is stronger and should be contrasted with the
guarantee that the algorithm succeeds given Ax with high probability for some
fixed input x. For example, for the point query problem, the latter guarantee is
achieved by the CountMin sketch [15] or CountSketch [13]. One of the reasons
the randomized guarantee is less useful is because of adaptive queries. That is,
suppose the centralized server computes x′ and transmits information about x′

to S1, . . . , Sk. Since x′ could depend on A, if the servers were to then use the



same matrix A to compute sketches Ay1, . . . , Ayk for databases y1, . . . , yk which
depend on x′, then A need not succeed, since it is not guaranteed to be correct
with high probability for inputs yi which depend on A.

1.2 Notation and Problem Definitions

Throughout this work [n] denotes {1, . . . , n}. For q a prime power, Fq denotes
the finite field of size q. For x ∈ Rn and S ⊆ [n], xS denotes the vector with
(xS)i = xi for i ∈ S, and (xS)i = 0 for i /∈ S. The notation x−i is shorthand for
x[n]\{i}. For a matrix A ∈ Rm×n and integer i ∈ [n], Ai denotes the ith column of
A. For matrices A and vectors x, AT and xT denote their transposes. For x ∈ Rn
and integer k ≤ n, we let head(x, k) ⊆ [n] denote the set of k largest coordinates
in x in absolute value, and tail(x, k) = [n]\head(x, k). We often use xhead(k) to
denote xhead(x,k), and similarly for the tail. For real numbers a, b, ε ≥ 0, we use
the notation a = (1± ε)b to convey that a ∈ [(1− ε)b, (1 + ε)b]. A collection of
vectors {C1, . . . , Cn} ∈ [q]t is called a code with alphabet size q and block length
t, and we define ∆(Ci, Cj) = |{k : (Ci)k 6= (Cj)k}|. The relative distance of the
code is maxi6=j ∆(Ci, Cj)/t.

We now define the problems that we study in this work, which all involve
some error parameter 0 < ε < 1/2. We want to design a fixed A ∈ Rm×n and
deterministic algorithm Out for each problem satisfying the following.

Problem 1: In the `∞/`1 recovery problem, also called the point query prob-
lem, ∀x ∈ Rn, x′ = Out(Ax) satisfies ‖x − x′‖∞ ≤ ε‖x‖1. The pair (A,Out)
furthermore satisfies the k-tail guarantee if actually ‖x− x′‖∞ ≤ ε‖xtail(k)‖1.

Problem 2: In the inner product problem, ∀x, y ∈ Rn, α = Out(Ax,Ay) satisfies
|α− 〈x, y〉 | ≤ ε‖x‖1‖y‖1.

Problem 3: In the `1/`1 recovery problem with the k-tail guarantee, ∀x ∈ Rn,
x′ = Out(Ax) satisfies ‖x− x′‖1 ≤ (1 + ε)‖xtail(k)‖1.

Problem 4: In the `2 norm estimation problem, ∀x ∈ Rn, α = Out(Ax) satisfies
|‖x‖2 − α| ≤ ε‖x‖1.

We note that for the first, second, and fourth problems above, our errors are
additive and not relative. This is because relative error is impossible to achieve
with a sublinear number of measurements. If A is a fixed matrix with m < n,
then it has some non-trivial kernel. Since for all the problems above an Out
procedure would have to output 0 when Ax = 0 to achieve bounded relative
approximation, such a procedure would fail on any input vector in the kernel
which is not the 0 vector.

For Problem 2 one could also ask to achieve additive error ε‖x‖p‖y‖p for
p > 1. For y = ei for a standard unit vector ei, this would mean approximating
xi up to additive error ε‖x‖p. This is not possible unless m = Ω(n2−2/p) for
1 < p ≤ 2 and m = Ω(n) for p ≥ 2 [21]. For Problem 3, it is known that the
analogous guarantee of returning x′ for which ‖x − x′‖2 ≤ ε‖xtail(k)‖2 is not
possible unless m = Ω(n) [14].



1.3 Our Contributions and Related Work

We study the four problems stated above, where we have the deterministic guar-
antee that a single pair (A,Out) provides the desired guarantee for all input vec-
tors simultaneously. We first show that point query and inner product are equiv-
alent up to changing ε by a constant factor. We then show that any “incoherent
matrix” A can be used for these two problems to perform the linear measure-
ments; that is, a matrix A whose columns have unit `2 norm and such that each
pair of columns has dot product at most ε in magnitude. Such matrices can be
obtained from the Johnson-Lindenstrauss (JL) lemma [29], almost pairwise inde-
pendent sample spaces [7, 38], or error-correcting codes, and they play a promi-
nent role in compressed sensing [18, 36] and mathematical approximation theory
[25]. The connection between point query and codes was implicit in [22], though
a suboptimal code was used, and the observation that the more general class
of incoherent matrices suffices is novel. This connection allows us to show that
m = O(ε−2 min{log n, (log n/ log(1/ε))2}) measurements suffice, and where Out
and the construction of A are completely deterministic. Alon has shown that any
incoherent matrix must have m = Ω(ε−2 log n/ log(1/ε)) [6]. Meanwhile the best
known lower bound for point query is m = Ω(ε−2 + ε−1 log(εn)) [19, 20, 27], and
the previous best known upper bound was m = O(ε−2 log2 n/(log 1/ε+log log n))
[22]. If the construction of A is allowed to be Las Vegas polynomial time, then
we can use the Fast Johnson-Lindenstrauss transforms [2–4, 34] so that Ax can
be computed quickly, e.g. in O(n logm) time as long as m < n1/2−γ [3], and
with m = O(ε−2 log n). Our Out algorithm is equally fast. We also show that
for point query, if we allow the measurement matrix A to be constructed by a
polynomial Monte Carlo algorithm, then the 1/ε2-tail guarantee can be obtained
essentially “for free”, i.e. by keeping m = O(ε−2 log n). Previously the work [22]
only showed how to obtain the 1/ε-tail guarantee “for free” in this sense of not
increasing m (though the m in [22] was worse). We note that for randomized
algorithms which succeed with high probability for any given input, it suffices
to take m = O(ε−1 log n) by using the CountMin data structure [15], and this
is optimal [30] (the lower bound in [30] is stated for the so-called heavy hitters
problem, but also applies to the `∞/`1 recovery problem).

For the `1/`1 sparse recovery problem with the k-tail guarantee, we show
a lower bound of m = Ω(k log(εn/k)/ε + k/ε2). The best upper bound is
O(k log(n/k)/ε2) [28]. Our lower bound implies a separation for the complexity
of this problem in the case that one must simply pick a random (A,Out) pair
which works for some given input x with high probability (i.e. not for all x si-
multaneously), since [39] showed an m = O(k log n log3(1/ε)/

√
ε) upper bound

in this case. The first summand of our lower bound uses techniques used in [9,
39]. The second summand uses a generalization of an argument of Gluskin [27],
which was later rediscovered by Ganguly [20], which showed the lower bound
m = Ω(1/ε2) for point query.

Finally, we show how to devise an appropriate (A,Out) for `2 norm esti-
mation with m = O(ε−2 log(ε2n)), which is optimal. The construction of A is
randomized but then works for all x with high probability. The proof takes A



according to known upper bounds on Gelfand widths, and the recovery proce-
dure Out requires solving a simple convex program. As far as we are aware, this
is the first work to investigate this problem in the deterministic setting. In the
case that (A,Out) can be chosen randomly to work for any fixed x with high
probability, one can use the AMS sketch [8] with m = O(ε−2 log(1/δ)) to suc-
ceed with probability 1− δ and to obtain the better guarantee ε‖x‖2. The AMS
sketch can also be used for the inner product problem to obtain error guarantee
ε‖x‖2‖y‖2 with the same m.

Due to space constraints, many of our proofs are omitted or abbreviated.
Full proofs can be found in the full version.

2 Point Query and Inner Product Estimation

We first show that the problems of point query and inner product estimation
are equivalent up to changing the error parameter ε by a constant factor.

Theorem 1. Any solution (A,Out′) to inner product estimation with error pa-
rameter ε yields a solution (A,Out) to the point query problem with error pa-
rameter ε. Also, a solution (A,Out) for point query with error ε yields a solution
(A,Out′) to inner product with error 12ε. The time complexities of Out and Out′

are equal up to poly(n) factors.

Proof: Let (A,Out′) be a solution to the inner product problem such that
Out′(Ax,Ay) = 〈x, y〉 ± ε‖x‖1‖y‖1. Then given x ∈ Rn, to solve the point
query problem we return the vector with Out(Ax)i = Out′(Ax,Aei), and our
guarantees are immediate.

Now let (A,Out) be a solution to the point query problem. Given x, y ∈ Rn,
let x′ = Out(Ax), y′ = Out(Ay). Our estimate for 〈x, y〉 is Out′(Ax,Ay) =〈
x′head(1/ε), y

′
head(1/ε)

〉
. Correctness is proven in the full version.

Since the two problems are equivalent up to changing ε by a constant factor,
we focus on point query. We first have the following lemma, stating that any
incoherent matrix A has a correct associated Out procedure (namely, multipli-
cation by AT ). An incoherent matrix, is an m×n matrix A for which all columns
Ai of A have unit `2 norm, and for all i 6= j we have | 〈Ai, Aj〉 | ≤ ε.

Lemma 1. Any incoherent matrix A with error parameter ε has an associated
poly(mn)-time deterministic recovery procedure Out for which (A,Out) is a so-
lution to the point query problem. In fact, for any x ∈ Rn, given Ax and i ∈ [n],
the output x′i satisfies |x′i − xi| ≤ ε‖x−i‖1.

It is known that any incoherent matrix has m = Ω((log n)/(ε2 log 1/ε)) [6],
and the JL lemma implies such matrices with m = O((log n)/ε2) [29]. For ex-
ample, there exist matrices in {−1/

√
m, 1/

√
m}m×n satisfying this property [1],

which can also be found in poly(n) time [41] (we note that [41] gives running
time exponential in precision, but the proof holds if the precision is taken to



be O(log(n/ε)). It is also known that incoherent matrices can be obtained from
almost pairwise independent sample spaces [7, 38] or error-correcting codes, and
thus these tools can also be used to solve the point query problem. The connec-
tion to codes was already implicit in [22], though the code used in that work
is suboptimal, as we will show soon. Below we elaborate on what bounds these
tools provide for incoherent matrices, and thus the point query problem.

Incoherent matrices from JL: The upside of the connection to the JL lemma is
that we can obtain incoherent matrices A such that Ax can be computed quickly,
via the Fast Johnson-Lindenstrauss Transform introduced by Ailon and Chazelle
[2] or related subsequent works. The JL lemma states the following.

Theorem 2 (JL lemma). For any x1, . . . , xN ∈ Rn and any 0 < ε < 1/2,
there exists A ∈ Rm×n with m = O(ε−2 logN) such that for all i, j ∈ [N ] we
have ‖Axi −Axj‖2 = (1± ε)‖xi − xj‖2.

Consider the matrix A obtained from the JL lemma when the set of vectors is
{0, e1, . . . , en} ∈ Rn. Then columns Ai of A have `2 norm 1±ε, and furthermore
for i 6= j we have | 〈Ai, Aj〉 | = (‖Ai−Aj‖22−‖A‖2i −‖A‖2j )/2 = ((1± ε)22− (1±
ε)−(1±ε))/2 ≤ 2ε+ε2/2. By scaling each column to have `2 norm exactly 1, we
still preserve that dot products between pairs of columns are O(ε) in magnitude.

Incoherent matrices from almost pairwise independence: An ε-almost pairwise
independent sample space a set S ⊆ {−1, 1}n satisfying the following. For any
i 6= j ∈ [n], the `1 distance between the uniform distribution over {−1, 1}2 and
the distribution of xi, xj when x is drawn uniformly at random from S is at most

ε. A matrix whose rows are the elements of S, divided by a scale factor of
√
S,

is incoherent. Details are in the full version, but we do not delve deeper since
this approach does not improve upon the bounds via JL matrices.

Incoherent matrices from codes: Finally we explain the connection between inco-
herent matrices and codes. A connection to balanced binary codes was made in
[6], and to arbitrary codes over larger alphabets without detail in a remark in [5].
Though not novel, we elaborate on this latter connection for the sake of complete-
ness. Let C = {C1, . . . , Cn} be a code with alphabet size q, block length t, and
relative distance 1−ε. The fact that such a code gives rise to a matrix A ∈ Rm×n
for point query with error parameter ε was implicit in [22], but we make it ex-
plicit here. We let m = qt and conceptually partition the rows of A arbitrarily
into t sets each of size q. For the column Ai, let (Ai)j,k denote the entry of Ai
in the kth coordinate of the jth block. We set (Ai)j,k = 1/

√
t if (Ci)j = k, and

(Ai)j,k = 0 otherwise. Each column has exactly t non-zero entries of value 1/
√
t,

and thus has `2 norm 1. Furthermore, for i 6= j, 〈Ai, Aj〉 = (t−∆(Ci, Cj))/t ≤ ε.
The work [22] instantiated the above with the following Chinese remainder

code [35, 42, 44], which yielded m = O(ε−2 log2 n/(log 1/ε + log log n)). We ob-
serve here that this bound is never optimal. A random code with q = 2/ε and
t = O(ε−1 log n) has the desired properties by applying the Chernoff bound on a



pair of codewords, then a union bound over codewords (alternatively, such a code
is promised by the Gilbert-Varshamov (GV) bound). If ε is sufficiently small, a
Reed-Solomon code performs even better. That is, we take a finite field Fq for
q = Θ(ε−1 log n/(log log n+ log(1/ε))) and q = t, and each Ci corresponds to a
distinct degree-d polynomial pi over Fq for d = Θ(log n/(log log n + log(1/ε)))
(note there are at least qd > n such polynomials). We set (Ci)j = pi(j). The rel-
ative distance is as desired since pi−pj has at most d roots over Fq and thus can
be 0 at most d ≤ εt times. This yields qt = O(ε−2(log n/(log log n+ log(1/ε))2),

which surpasses the GV bound for ε < 2−Ω(
√
logn), and is always better than

the Chinese remainder code. We note that this construction of a binary matrix
based on Reed-Solomon codes is identical to one used by Kautz and Singleton
in the different context of group testing [33].

Time m Details Explicit?

O((n logn)/ε2) O(ε−2 logn) A ∈ {−1/
√
m, 1/

√
m}m×n [1, 41] yes

O((n logn)/ε) O(ε−2 logn) sparse JL [31], GV code no

O(nd log2 d log log d/ε) O(d2/ε2) Reed-Solomon code yes

Oγ(n logm+m2+γ) O(ε−2 logn) FFT-based JL [3] no

O(n logn) O(ε−2 log5 n) FFT-based JL [4, 34] no

Fig. 1. Implications for point query from JL matrices and codes. Time indicates
the running time to compute Ax given x. In the case of Reed-Solomon, d =
O(logn/(log logn+ log(1/ε))). We say the construction is “explicit” if A can be com-
puted in deterministic time poly(n); otherwise we only provide a polynomial time Las
Vegas algorithm to construct A.

In Figure 1 we elaborate on what known constructions of codes and JL ma-
trices provide for us in terms of point query. In the case of running time for the
Reed-Solomon construction, we use that degree-d polynomials can be evaluated
on d + 1 points in a total of O(d log2 d log log d) field operations over Fq [43,
Ch. 10]. In the case of [3], the constant γ > 0 can be chosen arbitrarily, and
the constant in the big-Oh depends on 1/γ. We note that except in the case
of Reed-Solomon codes, the construction of A is randomized (though once A
is generated, incoherence can be verified in polynomial time, thus providing a
poly(n)-time Las Vegas algorithm).

Note that Lemma 1 did not just give us error ε‖x‖1, but actually gave us
|xi − x′i| ≤ ε‖x−i‖1, which is stronger. We now show that an even stronger
guarantee is possible. We will show that in fact it is possible to obtain ‖x−x′‖∞ ≤
ε‖xtail(1/ε2)‖1 while increasing m by only an additive O(ε−2 log(ε2n)), which is
less than our original m except potentially in the Reed-Solomon construction.
The idea is to, in parallel, recover a good approximation of xhead(1/ε2) with error
proportional to ‖xtail(1/ε2)‖1 via compressed sensing, then to subtract from Ax
before running our recovery procedure. We now give details.

We in parallel run a k-sparse recovery algorithm which has the following
guarantee: there is a pair (B,Out′) such that for any x ∈ Rn, we have that



x′ = Out′(Bx) ∈ Rn satisfies ‖x′ − x‖2 ≤ O(1/
√
k)‖xtail(k)‖1. Such a matrix

B can be taken to have the restricted isometry property of order k (k-RIP), i.e.
that it preserves the `2 norm up to a small multiplicative constant factor for
all k-sparse vectors in Rn.3 It is known [26] that any such x′ also satisfies the
guarantee that ‖x′head(k) − x‖1 ≤ O(1)‖xtail(k)‖1, where x′head(k) is the vector

which agrees with x′ on the top k coordinates in magnitude and is 0 on the
remaining coordinates. Moreover, it is also known [10] that if B satisfies the JL
lemma for a particular set of N = (en/k)O(k) points in Rn, then B will be k-RIP.
The associated output procedure Out′ takes Bx and outputs argminz|Bx=Bz‖z‖1
by solving a linear program [12]. All the JL matrices in Figure 1 provide this
guarantee with O(k log(en/k)) rows, except for the last row which satisfies k-RIP
with O(k log(en/k) log2 k log(k log n)) rows [40].

Theorem 3. Let A be an incoherent matrix A with error parameter ε, and let
B be k-RIP. Then there is an output procedure Out which for any x ∈ Rn, given
only Ax,Bx, outputs a vector x′ with ‖x′ − x‖∞ ≤ ε‖xtail(k)‖1.

Proof: Given Bx, we first run the k-sparse recovery algorithm to obtain a
vector y with ‖x − y‖1 = O(1)‖xtail(k)‖1. We then construct our output vector
x′ coordinate by coordinate. To construct x′i, we replace yi with 0, obtaining the
vector zi. Then we compute A(x−zi) and run the point query output procedure
associated with A and index i. The guarantee is that the output wi of the point
query algorithm satisfies |wii − (x− zi)i| ≤ ε‖(x− zi)−i‖1, where

‖(x− zi)−i‖1 = ‖(x− y)−i‖1 ≤ ‖x− y‖1 = O(1)‖xtail(k)‖1,

and so |(wi + zi)i − xi| = O(ε)‖xtail(k)‖1. If we define our output vector by
x′i = wii + zii and rescale ε by a constant factor, this proves the theorem.

By setting k = 1/ε2 in Theorem 3 and stacking the rows of a k-RIP and in-
coherent matrix each with O((log n)/ε2) rows, we obtain the following corollary.

Corollary 1. There is an m × n matrix A and associated output procedure
Out which for any x ∈ Rn, given Ax, outputs a vector x′ with ‖x′ − x‖∞ ≤
ε‖xtail(1/ε2)‖1. Here m = O((log n)/ε2).

It is also possible to obtain a tail-error guarantee for inner product.

Theorem 4. Suppose 1/ε2 < n/2. There is an (A,Out) with A ∈ Rm×n for
m = O(ε−2 log n) such that for any x, y ∈ Rn, Out(Ax,Ay) gives an output
which is 〈x, y〉±ε(‖x‖2‖ytail(1/ε2)‖1+‖xtail(1/ε2)‖1‖y‖2)+ε2‖xtail(1/ε2)‖1‖ytail(1/ε2)‖1.

Here we state a lower bound for the point query problem. The proof can
be found in the full version and follows from the works [20, 27] and volume
arguments as used in [9].

3 Unfortunately currently the only known constructions of k-RIP constructions with
the values of m we discuss are Monte Carlo, forcing our algorithms in this section
with the k-tail guarantee to only be Monte Carlo polynomial time when constructing
the measurement matrix.



Theorem 5. Let 0 < ε < ε0 for some universal constant ε0 < 1. Suppose 1/ε2 <
n/2, and A is an m×n matrix for which given Ax it is always possible to produce
a vector x′ such that ‖x− x′‖∞ ≤ ε‖xtail(k)‖1. Then m = Ω(k log(n/k)/ log k+
ε−2 + ε−1 log n).

3 Lower Bounds for `1/`1 recovery

Recall in the `1/`1-recovery problem, we would like to design a matrix A ∈ Rm×n
such that for any x ∈ Rn, given Ax we can recover x′ ∈ Rn such that ‖x−x′‖1 ≤
(1 + ε)‖xtail(k)‖1. We now show two lower bounds.

Theorem 6. Let 0 < ε < 1/
√

8 be arbitrary, and k be an integer. Suppose
k/ε2 < (n− 1)/2. Then any matrix A ∈ Rm×n which allows `1/`1-recovery with
the k-tail guarantee with error ε must have m ≥ min{n/2, (1/16)k/ε2}.

Proof: Without loss of generality we may assume that the rows of A are
orthonormal. This is because first we can discard rows of A until the rows re-
maining form a basis for the rowspace of A. Call this new matrix with potentially
fewer rows A′. Note that any dot products of rows of A with x that the recovery
algorithm uses can be obtained by taking linear combinations of entries of A′x.
Next, we can then find a matrix T ∈ Rm×m so that TA′ has orthonormal rows,
and given TA′x we can recover A′x in post-processing by left-multiplication
with T−1. We henceforth assume that the rows of A are orthonormal. Since
A · 0 = 0, and our recovery procedure must in particular be accurate for x = 0,
the recovery procedure must output x′ = 0 for any x ∈ ker(A). We consider

x = (I − ATA)y for y =
∑k
i=1 σieπ(i). Here π is a random permutation on

n elements, and σ1, . . . , σk are independent and uniform random variables in
{−1, 1}. Since x ∈ ker(A), which follows since AAT = I by orthonormality
of the rows of A, the recovery algorithm will output x′ = 0. Nevertheless, in
the full version we show that unless m ≥ min{n/2, (1/16)k/ε2}, we will have
‖x‖1 > (1 + ε)‖xtail(k)‖1 with positive probability so that by the probabilistic
method there exists x ∈ ker(A) for which x′ = 0 is not a valid output.

We now give another lower bound via a different approach. As in [9, 39], we
use 2-party communication complexity to prove an Ω((k/ε) log(εn/k)) bound
on the number of rows of any `1/`1 sparse recovery scheme. The main difference
from prior work is that we use deterministic communication complexity and a
different communication problem.

We show how to use a pair (A,Out) with the property that for all vectors
z, the output z′ of Out(Az) satisfies ‖z − z′‖1 ≤ (1 + ε)‖ztail(k)‖1, to construct
a correct protocol for the equality function on strings x, y ∈ {0, 1}r for r =
Θ((k/ε) log n log(εn/k)), where the communication is an O(log n) factor larger
than the number of rows of A. We then show how this implies the number of
rows of A is Ω((k/ε) log(εn/k)). Details are in the full version.

Theorem 7. Any matrix A which allows `1/`1-recovery with the k-tail guaran-
tee with error ε satisfies m = Ω((k/ε) log(εn/k)).



4 Deterministic Norm Estimation and the Gelfand Width

Theorem 8. For 1 ≤ p < q ≤ ∞, let m be the minimum number such that

there is an n − m dimensional subspace S of Rn satisfying supv∈S
‖v‖q
‖v‖p ≤ ε.

Then there is an m×n matrix A and associated output procedure Out which for
any x ∈ Rn, given Ax, outputs an estimate of ‖v‖q with additive error at most
ε‖v‖p. Moreover, any matrix A with fewer rows fails to perform this task.

Proof: Consider a matrix A whose kernel is such a subspace. For any sketch z,
we need to return a number in the range [‖x‖q − ε‖x‖p, ‖x‖q + ε‖x‖p] for any x
satisfying Ax = z. Assume for contradiction that it is not possible. Then there
exist x and y such that Ax = Ay but ‖x‖q−ε‖x‖p > ‖y‖q+ε‖y‖p. However, since
x−y is in the kernel of A, ‖x‖q−‖y‖q ≤ ‖x−y‖q ≤ ε‖x−y‖p ≤ ε(‖x‖p+‖y‖p).
Thus, we have a contradiction. This argument also shows that given the sketch
z, the output procedure can return minx:Ax=z ‖x‖q + ε‖x‖p. This is a convex
optimization problem that can be solved in polynomial time using the ellipsoid
algorithm; details are in the full version.

For the lower bound, consider a matrix A with fewer than m rows. Then in
the kernel of A, there exists v such that ‖v‖q > ε‖v‖p. Both v and the zero
vector give the same sketch (a zero vector). However, by the stated requirement,
we need to output 0 for the zero vector but some positive number for v. Thus,
no matrix A with fewer than m rows can solve the problem.

The subspace S of highest dimension of Rn satisfying supv∈S
‖v‖q
‖v‖p ≤ ε is

related to the Gelfand width, a well-studied notion in functional analysis. For
p < q, the Gelfand width of order m of `p and `q unit balls in Rn is defined as

the infimum over all subspaces A ⊆ Rn of codimension m of supv∈A
‖v‖q
‖v‖p . Using

known bounds for the Gelfand width for p = 1 and q = 2 [19, 23], we obtain the
following corollary.

Corollary 2. Assume that 1/ε2 < n/2. There is an m×n matrix A and associ-
ated output procedure Out which for any x ∈ Rn, given Ax, outputs an estimate
e such that ‖x‖2 − ε‖x‖1 ≤ e ≤ ‖x‖2 + ε‖x‖1. Here m = O(ε−2 log(ε2n)) and
this bound for m is tight.
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