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Singular Value Decomposition

B m x nmatrix A
B k < p =rank(A)
m Low-rank matrix approximation problem:

min [|A = X]||r
Xermxn rank(X)<k

m Singular Value Decomposition (SVD):
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m U, e R™K ¥, € Rk and V, € R™<K

Solution via Eckart-Young Theorem

Ax = UkSiVy = AVi VL. O(mnmin{m, n}) time



CUR Matrix Decomposition

CUR replaces the left and right singular vectors in the SVD
with actual columns and rows from the matrix, respectively



Motivation

user-by-movie ~| users [(U)(  movies )

m A: users-by-movies ratings matrix.
m C: contains the most “important” users.
m R: contains the most “important” movies.



Optimization problem

Definition (The CUR Problem)
Given

m AcR™"

B Kk < rank(A)

me>0
construct

m C e R™x¢

m ReR™"

m UeR

such that:
|A—CURJE < (1+¢)-[|A— Al

with ¢, r, and rank(U) being as small as possible.



Prior art

Sub-optimal and randomized algorithms.
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Open problems

Optimal CUR: Can we find relative-error CUR algorithms
selecting the optimal number of columns and rows,
together with a matrix U with optimal rank?

Input-sparsity-time CUR: Can we find relative-error CUR
algorithms running in input-sparsity-time (nnz(A) time)?

Deterministic CUR: Can we find relative-error CUR
algorithms that are deterministic and run in poly time?



Contributions

Optimal CUR: First optimal CUR algorithms.

Input-sparsity-time CUR: First CUR algorithm with
running time proportional to the non-zero entries of A.

Deterministic CUR: First deterministic algorithm for CUR
that runs in polynomial time.



Lower bound

Theorem

Fix appropriate matrix A € R"*". Consider a factorization CUR,
IA = CURJE < (1 +¢)||A - AxlE.
Then, forany k > 1 and for any e < 1/3:
c=Q(k/e),

and
r =Q(k/e),

and
rank(U) > k/2.

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]



Input-sparsity-time CUR

Theorem
There exists a randomized algorithm to construct a CUR with

c = 0O(k/e)
and

r=0(k/e)
and

rank (U) = k

such that, with constant probability of success,
IA = CURJE < (1+¢)||A — AxlE.

Running time: O (nnz (A)logn+ (m+ n) - poly (logn, k,1/¢)).



Deterministic CUR

Theorem

There exists a deterministic algorithm to construct a CUR with

c = 0O(k/e)
and

r=0(k/e)
and

rank (U) = k
such that

IA = CURIE < (1 +)llA — A7

Running time: O(mn3k /).



A proto-algorithm (step 1)

Construct C with O(k/¢) columns:
Compute/approx the top k singular vectors of A: Z; € Rk,

IA = AZ ZT|F < (1 +¢) |A — A2

Sample O(k log k) columns from Z] (equivalently from A)
with leverage scores (Euclidean norms of columns of Z1T).

Down-sample those columns to ¢y = O(k) columns with
Batson/Srivastava/Spielman (BSS) sampling (C1 € R™*¢),

(2 )-( 2 )-(7)

n O(k log k) O(k)

IA - C1CJA|IZ < O(1)|IA — AZ: Z{ I3
Adaptively sample c; = O(k/<) columns of A:
IA—C- DI < [IA — AxlZ + (k/c2) A — C1C+ A2

D is a rank k matrix



Step 2

Construct R with O(k/¢) rows:
Find Z, € R™¥ in the span of C such that:

IA = ZoZZA|Z < (1+¢) - [|A - Acl.

How to do this efficiently?
B Instead of projecting columns of A onto C, we project the
columns of AW, where W is a random subspace embedding
B Find best rank-k approximation of the columns of AW in C

Sample O(k log k) rows with leverage scores (from Z5).

Down-sample those rows to ry = O(k) rows with
Batson/Spielman/Srivastava (BSS) sampling. (R1 € R"*")

IA = ARJRy[F < O(1)|IA - Z:Z; A|If
Sample . = O(k/<) rows with adaptive sampling++

rank(ZZ3A)
r

|A-ZoZJARTRI < A~ Z,ZJ A2+ |A-AR Ry



Input-sparsity-time CUR

Everything should run in nnz(A)log n+ poly(k,1/¢) time.

Existing tools:
m Input-sparsity-time SVD [Clarkson, W, STOC 2013].

m Leverage-scores sampling [Drineas et al, SIMAX 2008].

m Input-sparsity-time algorithm to find the “best” rank k approx
to a matrix in a given subspace [Kannan et al, COLT 2014].
New tools:
m Input-sparsity-time version of the BSS sampling method of
[Boutsidis et al, 2011].

m Input-sparsity-time version of adaptive sampling method
[Desphande et al, 2006, Wang and Zhang, 2013].

m Input-sparsity-time construction of U.



Deterministic CUR

Everything should run in polynomial time and be deterministic.

Existing tools:
m Standard SVD algorithm.

m Standard method to find the “best” rank k approximation to
a matrix in a given subspace.

m Batson/Spielman/Srivastava (BSS) sampling as in
[Boutsidis et all, FOCS 2011].

New tools:

m Derandomization of the adaptive sampling of [Desphande
et al, RANDOM 2006] and [Wang and Zhang, JMLR 2013].



Conclusions

- Optimal, (1 + ¢)-error CUR with O(k/<) columns/rows.
- Input-sparsity-time algorithm.
- Deterministic polynomial-time algorithm.

- Extended abstract appeared in STOC 2014.
- Full version on ArXiv, June 2014.



