
Optimal CUR Matrix Decompositions

Christos Boutsidis1 David P. Woodruff 2

Yahoo! Labs IBM Research
New York Almaden

Singular Value Decomposition

m × n matrix A

k < ρ = rank(A)

Low-rank matrix approximation problem:

min
X∈Rm×n,rank(X)≤k

||A − X||F

Singular Value Decomposition (SVD):

A = U · Σ · VT =
(

Uk Uρ−k
)︸ ︷︷ ︸

m×ρ

(
Σk 0
0 Σρ−k

)
︸ ︷︷ ︸

ρ×ρ

(
VT

k

VT
ρ−k

)
︸ ︷︷ ︸

ρ×n

Uk ∈ Rm×k , Σk ∈ Rk×k , and Vk ∈ Rn×k

Solution via Eckart-Young Theorem

Ak = Uk Σk VT
k = AVk VT

k . O(mn min{m,n}) time

CUR Matrix Decomposition

CUR replaces the left and right singular vectors in the SVD
with actual columns and rows from the matrix, respectively

 A

 =

 C

(U
) (

R
)

+

 E

 A

 =

 Uk

(Σk
) (

Vk
)

+

 E

Motivation

 user-by-movie

 ≈
 users

(U
) (

movies
)

A: users-by-movies ratings matrix.
C: contains the most “important” users.
R: contains the most “important” movies.

Optimization problem

Definition (The CUR Problem)

Given

A ∈ Rm×n

k < rank(A)

ε > 0

construct

C ∈ Rm×c

R ∈ Rr×n

U ∈ Rc×r

such that:
‖A − CUR‖2

F ≤ (1 + ε) · ‖A − Ak‖2
F.

with c, r , and rank(U) being as small as possible.

Prior art

Sub-optimal and randomized algorithms.

c r rank(U) ‖A − CUR‖2
F ≤ Time

1 k/ε2 k/ε k ‖A − Ak‖2
F + ε‖A‖2

F nnz(A)
2 k/ε4 k/ε2 k ‖A − Ak‖2

F + ε‖A‖2
F nnz(A)

3 (k log k)/ε2 (k log k)/ε4 (k log k)/ε2 (1 + ε)‖A − Ak‖2
F n3

4 (k log k)/ε2 (k log k)/ε2 (k log k)/ε2 (2 + ε)‖A − Ak‖2
F n3

5 k/ε k/ε2 k/ε (1 + ε)‖A − Ak‖2
F n2k/ε

References:
1 Drineas and Kannan. Symposium on Foundations of Computer Science, 2003.

2 Drineas, Kannan, and Mahoney. SIAM Journal on Computing, 2006.

3 Drineas, Mahoney, and Muthukrishnan. SIAM Journal on Matrix Analysis, 2008.

4 Drineas and Mahoney. Proceedings of the National Academy of Sciences, 2009.

5 Wang and Zhang. Journal of Machine Learning Research, 2013.

Open problems

1 Optimal CUR: Can we find relative-error CUR algorithms
selecting the optimal number of columns and rows,
together with a matrix U with optimal rank?

2 Input-sparsity-time CUR: Can we find relative-error CUR
algorithms running in input-sparsity-time (nnz(A) time)?

3 Deterministic CUR: Can we find relative-error CUR
algorithms that are deterministic and run in poly time?

Contributions

1 Optimal CUR: First optimal CUR algorithms.

2 Input-sparsity-time CUR: First CUR algorithm with
running time proportional to the non-zero entries of A.

3 Deterministic CUR: First deterministic algorithm for CUR
that runs in polynomial time.

Lower bound

Theorem

Fix appropriate matrix A ∈ Rn×n. Consider a factorization CUR,

‖A − CUR‖2F ≤ (1 + ε)‖A − Ak‖2F.

Then, for any k ≥ 1 and for any ε < 1/3:

c = Ω(k/ε),

and
r = Ω(k/ε),

and
rank(U) ≥ k/2.

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]

Input-sparsity-time CUR

Theorem

There exists a randomized algorithm to construct a CUR with

c = O(k/ε)

and
r = O(k/ε)

and
rank (U) = k

such that, with constant probability of success,

‖A − CUR‖2F ≤ (1 + ε)‖A − Ak‖2F.

Running time: O (nnz (A) log n + (m + n) · poly (log n, k ,1/ε)) .

Deterministic CUR

Theorem

There exists a deterministic algorithm to construct a CUR with

c = O(k/ε)

and
r = O(k/ε)

and
rank (U) = k

such that
‖A − CUR‖2F ≤ (1 + ε)‖A − Ak‖2F.

Running time: O(mn3k/ε).

A proto-algorithm (step 1)

1 Construct C with O(k/ε) columns:
1 Compute/approx the top k singular vectors of A: Z1 ∈ Rn×k .

‖A − AZ1ZT
1‖2

F ≤ (1 + ε) ‖A − Ak‖2
F

2 Sample O(k log k) columns from ZT
1 (equivalently from A)

with leverage scores (Euclidean norms of columns of ZT
1).

Down-sample those columns to c1 = O(k) columns with
Batson/Srivastava/Spielman (BSS) sampling (C1 ∈ Rm×c1).(

ZT
1

)
︸ ︷︷ ︸

n

−→
(

Ẑ
T
1

)
︸ ︷︷ ︸

O(k log k)

−→
(

Z̃
T
1

)
︸ ︷︷ ︸

O(k)

‖A − C1C†1A‖2
F ≤ O(1)‖A − AZ1ZT

1‖2
F

3 Adaptively sample c2 = O(k/ε) columns of A:

‖A − C · D‖2
F ≤ ‖A − Ak‖2

F + (k/c2)‖A − C1C1
†A‖2

F

D is a rank k matrix

Step 2

2 Construct R with O(k/ε) rows:
1 Find Z2 ∈ Rm×k in the span of C such that:

‖A − Z2ZT
2 A‖2

F ≤ (1 + ε) · ‖A − Ak‖2
F.

2 How to do this efficiently?
Instead of projecting columns of A onto C, we project the
columns of AW, where W is a random subspace embedding
Find best rank-k approximation of the columns of AW in C

3 Sample O(k log k) rows with leverage scores (from Z2).

Down-sample those rows to r1 = O(k) rows with
Batson/Spielman/Srivastava (BSS) sampling. (R1 ∈ Rr1×n)

‖A − AR†1R1‖2
F ≤ O(1)‖A − Z2ZT

2 A‖2
F

4 Sample r2 = O(k/ε) rows with adaptive sampling++

‖A−Z2ZT
2 AR†R‖2

F ≤ ‖A−Z2ZT
2 A‖2

F+
rank(Z2ZT

2 A)

r2
‖A−AR1

†R1‖2
F

Input-sparsity-time CUR

Everything should run in nnz(A) log n + poly(k ,1/ε) time.

1 Existing tools:
Input-sparsity-time SVD [Clarkson, W, STOC 2013].

Leverage-scores sampling [Drineas et al, SIMAX 2008].

Input-sparsity-time algorithm to find the “best” rank k approx
to a matrix in a given subspace [Kannan et al, COLT 2014].

2 New tools:
Input-sparsity-time version of the BSS sampling method of
[Boutsidis et al, 2011].

Input-sparsity-time version of adaptive sampling method
[Desphande et al, 2006, Wang and Zhang, 2013].

Input-sparsity-time construction of U.

Deterministic CUR

Everything should run in polynomial time and be deterministic.

1 Existing tools:
Standard SVD algorithm.

Standard method to find the “best” rank k approximation to
a matrix in a given subspace.

Batson/Spielman/Srivastava (BSS) sampling as in
[Boutsidis et all, FOCS 2011].

2 New tools:
Derandomization of the adaptive sampling of [Desphande
et al, RANDOM 2006] and [Wang and Zhang, JMLR 2013].

Conclusions

- Optimal, (1 + ε)-error CUR with O(k/ε) columns/rows.
- Input-sparsity-time algorithm.
- Deterministic polynomial-time algorithm.

- Extended abstract appeared in STOC 2014.
- Full version on ArXiv, June 2014.

