Optimal CUR Matrix Decompositions

Christos Boutsidis! David P. Woodruff 2

Yahoo! Labs IBM Research
New York Almaden

Singular Value Decomposition

B m x nmatrix A
B k < p =rank(A)
m Low-rank matrix approximation problem:

min [|A = X]||r
Xermxn rank(X)<k

m Singular Value Decomposition (SVD):

T Y« O V)
A=U-x V' = (U Up_k)(o Zp_k><ka)
,/%/_/

mxp
pXp oxn

m U, e R™K ¥, € Rk and V, € R™<K

Solution via Eckart-Young Theorem

Ax = UkSiVy = AVi VL. O(mnmin{m, n}) time

CUR Matrix Decomposition

CUR replaces the left and right singular vectors in the SVD
with actual columns and rows from the matrix, respectively

Motivation

user-by-movie ~| users [(U)(movies)

m A: users-by-movies ratings matrix.
m C: contains the most “important” users.
m R: contains the most “important” movies.

Optimization problem

Definition (The CUR Problem)
Given

m AcR™"

B Kk < rank(A)

me>0
construct

m C e R™x¢

m ReR™"

m UeR

such that:
|A—CURJE < (1+¢)-[|A— Al

with ¢, r, and rank(U) being as small as possible.

Prior art

Sub-optimal and randomized algorithms.

c r rank(U) [|A— CUR||l2: < Time
T [kj2 kJe K A — Ak||F+s||AHF nnz(A)
2 | kj* e K A Ak||F+s||AHF nnz(A)
3 | (klogk)/e? | (klogk)/e* | (klogk)/e? | (1+¢€)]|A — Axll? n
4 | (klogk)/e? | (klogk)/e® | (klogk)/e® | (2+¢)l|A — Akll2 n’
5 | kje kje? kje T+ A —AdZ | Pkj=
References:

Drineas and Kannan. Symposium on Foundations of Computer Science, 2003.
Drineas, Kannan, and Mahoney. SIAM Journal on Computing, 2006.

Drineas, Mahoney, and Muthukrishnan. SIAM Journal on Matrix Analysis, 2008.
Drineas and Mahoney. Proceedings of the National Academy of Sciences, 2009.
Wang and Zhang. Journal of Machine Learning Research, 2013.

Open problems

Optimal CUR: Can we find relative-error CUR algorithms
selecting the optimal number of columns and rows,
together with a matrix U with optimal rank?

Input-sparsity-time CUR: Can we find relative-error CUR
algorithms running in input-sparsity-time (nnz(A) time)?

Deterministic CUR: Can we find relative-error CUR
algorithms that are deterministic and run in poly time?

Contributions

Optimal CUR: First optimal CUR algorithms.

Input-sparsity-time CUR: First CUR algorithm with
running time proportional to the non-zero entries of A.

Deterministic CUR: First deterministic algorithm for CUR
that runs in polynomial time.

Lower bound

Theorem

Fix appropriate matrix A € R"*". Consider a factorization CUR,
IA = CURJE < (1 +¢)||A - AxlE.
Then, forany k > 1 and for any e < 1/3:
c=Q(k/e),

and
r =Q(k/e),

and
rank(U) > k/2.

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]

Input-sparsity-time CUR

Theorem
There exists a randomized algorithm to construct a CUR with

c = 0O(k/e)
and

r=0(k/e)
and

rank (U) = k

such that, with constant probability of success,
IA = CURJE < (1+¢)||A — AxlE.

Running time: O (nnz (A)logn+ (m+ n) - poly (logn, k,1/¢)).

Deterministic CUR

Theorem

There exists a deterministic algorithm to construct a CUR with

c = 0O(k/e)
and

r=0(k/e)
and

rank (U) = k
such that

IA = CURIE < (1 +)llA — A7

Running time: O(mn3k /).

A proto-algorithm (step 1)

Construct C with O(k/¢) columns:
Compute/approx the top k singular vectors of A: Z; € Rk,

IA = AZ ZT|F < (1 +¢) |A — A2

Sample O(k log k) columns from Z] (equivalently from A)
with leverage scores (Euclidean norms of columns of Z1T).

Down-sample those columns to ¢y = O(k) columns with
Batson/Srivastava/Spielman (BSS) sampling (C1 € R™*¢),

(2)-(2)-(7)

n O(k log k) O(k)

IA - C1CJA|IZ < O(1)|IA — AZ: Z{ I3
Adaptively sample c; = O(k/<) columns of A:
IA—C- DI < [IA — AxlZ + (k/c2) A — C1C+ A2

D is a rank k matrix

Step 2

Construct R with O(k/¢) rows:
Find Z, € R™¥ in the span of C such that:

IA = ZoZZA|Z < (1+¢) - [|A - Acl.

How to do this efficiently?
B Instead of projecting columns of A onto C, we project the
columns of AW, where W is a random subspace embedding
B Find best rank-k approximation of the columns of AW in C

Sample O(k log k) rows with leverage scores (from Z5).

Down-sample those rows to ry = O(k) rows with
Batson/Spielman/Srivastava (BSS) sampling. (R1 € R"*")

IA = ARJRy[F < O(1)|IA - Z:Z; A|If
Sample . = O(k/<) rows with adaptive sampling++

rank(ZZ3A)
r

|A-ZoZJARTRI < A~ Z,ZJ A2+ |A-AR Ry

Input-sparsity-time CUR

Everything should run in nnz(A)log n+ poly(k,1/¢) time.

Existing tools:
m Input-sparsity-time SVD [Clarkson, W, STOC 2013].

m Leverage-scores sampling [Drineas et al, SIMAX 2008].

m Input-sparsity-time algorithm to find the “best” rank k approx
to a matrix in a given subspace [Kannan et al, COLT 2014].
New tools:
m Input-sparsity-time version of the BSS sampling method of
[Boutsidis et al, 2011].

m Input-sparsity-time version of adaptive sampling method
[Desphande et al, 2006, Wang and Zhang, 2013].

m Input-sparsity-time construction of U.

Deterministic CUR

Everything should run in polynomial time and be deterministic.

Existing tools:
m Standard SVD algorithm.

m Standard method to find the “best” rank k approximation to
a matrix in a given subspace.

m Batson/Spielman/Srivastava (BSS) sampling as in
[Boutsidis et all, FOCS 2011].

New tools:

m Derandomization of the adaptive sampling of [Desphande
et al, RANDOM 2006] and [Wang and Zhang, JMLR 2013].

Conclusions

- Optimal, (1 + ¢)-error CUR with O(k/<) columns/rows.
- Input-sparsity-time algorithm.
- Deterministic polynomial-time algorithm.

- Extended abstract appeared in STOC 2014.
- Full version on ArXiv, June 2014.

