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Talk Outline

1. What is low rank approximation?

2. How do we solve it offline?

3. How do we solve it in a distributed setting?
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Low rank approximation 

 A is an n x d matrix

 Think of n points in Rd 

 E.g., A is a customer-product matrix

 Ai,j = how many times customer i purchased item j

 A is typically well-approximated by low rank matrix

 E.g., high rank because of noise

 Goal: find a low rank matrix approximating A

 Easy to store, data more interpretable
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What is a good low rank approximation? 

Singular Value Decomposition (SVD)
Any matrix A = U ¢ Σ ¢ V

 U has orthonormal columns

 Σ is diagonal with non-increasing positive 

entries down the diagonal

 V has orthonormal rows

 Rank-k approximation: Ak = Uk ¢ Σk ¢ Vk

Ak = argminrank k matrices B |A-B|F

(|C|F = (Σi,j Ci,j
2)1/2 )

Computing Ak exactly is 

expensive 

The rows of Vk are 

the top k principal 

components
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Low rank approximation 

 Goal: output a rank k matrix A’, so that

|A-A’|F · (1+ε) |A-Ak|F

 Can do this in nnz(A) + (n+d)*poly(k/ε) time [S,CW]

 nnz(A) is number of non-zero entries of A
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Solution to low-rank approximation [S]

 Given n x d input matrix A

 Compute S*A using a random matrix S with k/ε << n 

rows. S*A takes random linear combinations of rows of A

SA

A

 Project rows of A onto SA, then find best rank-k 

approximation to points inside of SA. 
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What is the matrix S?

 S can be a k/ε x n matrix of i.i.d. normal random 

variables

 [S] S can be a k/ε x n Fast Johnson Lindenstrauss 

Matrix
 Uses Fast Fourier Transform

 [CW] S can be a poly(k/ε) x n CountSketch matrix

[

[

0 0 1 0  0 1  0 0 

1 0 0 0  0 0  0 0

0 0 0 -1 1 0 -1 0

0-1 0 0  0 0  0 1

S ¢ A can be 

computed in 

nnz(A) time
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Caveat: projecting the points onto SA is slow 

 Current algorithm: 

1. Compute S*A 

2. Project each of the rows onto S*A

3. Find best rank-k approximation of projected points 

inside of rowspace of S*A 

 Bottleneck is step 2 

 [CW] Approximate the projection

 Fast algorithm for approximate regression 

minrank-k X |X(SA)-A|F
2

 nnz(A) + (n+d)*poly(k/ε) time

minrank-k X |X(SA)R-AR|F
2
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Distributed low rank approximation 

 We have fast algorithms, but can they be made to work 

in a distributed setting?

 Matrix A distributed among s servers

 For t = 1, …, s, we get a customer-product matrix from 

the t-th shop stored in server t. Server t’s matrix = At

 Customer-product matrix A = A1 + A2 + … + As

 Model is called the arbitrary partition model

 More general than the row-partition model in which each 

customer shops in only one shop
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The Communication Model

…

Server 1

Coordinator

• Each player talks only to a Coordinator via 2-way communication

• Can simulate arbitrary point-to-point communication up to factor of 2

(and an additive O(log s) factor per message)

Server 2 Server s
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Communication cost of low rank approximation 

 Input: n x d matrix A stored on s servers

 Server t has n x d matrix At

 A = A1 + A2 + … + As

 Assume entries of At are O(log(nd))-bit integers

 Output: Each server outputs the same k-dimensional space W

 C = A1PW + A2PW + …+ AsPW, where PW is the projector onto W

 |A-C|F · (1+ε)|A-Ak|F

 Application: k-means clustering

 Resources: Minimize total communication and computation. 

Also want O(1) rounds and input sparsity time
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Work on Distributed Low Rank Approximation

 [FSS]: First protocol for the row-partition model.

 O(sdk/ε) real numbers of communication

 Don’t analyze bit complexity (can be large)

 SVD Running time, see also [BKLW]

 [KVW]: O(skd/ε) communication in arbitrary partition model

 [BWZ]: O(skd) + poly(sk/ε) words of communication in 

arbitrary partition model. Input sparsity time

 Matching Ω(skd) words of communication lower bound

 Variants: kernel low rank approximation [BLSWX], low rank 

approximation of an implicit matrix [WZ], sparsity [BWZ]
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Outline of Remainder of the Talk

 [FSS] protocol

 [KVW] protocol

 [BWZ] protocol
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[FSS] Row-Partition Protocol

…

P1 ∈ Rn1 x d

Coordinator

P2 ∈ Rn2 x d Ps ∈ Rns x d

 Server t sends the top k/ε principal components of Pt, scaled by the top 

k/ε singular values Σt, which is ΣtVt ∈ R
k

ε
x d

 Coordinator returns top k principal components of [Σ1V1; Σ2V2; … ; ΣsVs]

Problems: 

1. sdk/ε real numbers of communication

2. bit complexity can be large

3. running time for SVDs [BLKW]

4. doesn’t work in arbitrary partition model

This is an SVD-based protocol. Maybe 

our random matrix techniques can 

improve communication just like they 

improved computation? 

[KVW] protocol 

will handle 2, 3, 

and 4
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[KVW] Arbitrary Partition Model Protocol 

 Inspired by the sketching algorithm presented earlier

 Let S be one of the k/ε x n random matrices discussed

 S can be generated pseudorandomly from small seed

 Coordinator sends small seed for S to all servers

 Server t computes SAt and sends it to Coordinator

 Coordinator sends Σt=1
s SAt = SA to all servers

 There is a good k-dimensional subspace inside of SA. If 

we knew it, t-th server could output projection of At onto it

Problems:

 Can’t output projection of At onto SA since 

the rank is too large

 Could communicate this projection to the 

coordinator who could find a k-dimensional 

space, but communication depends on n

Fix: 

 Instead of projecting A onto SA, project 

small number of random linear 

combinations of A onto SA

 Find best k-dimensional space of 

random linear combinations inside of 

SA

 Communication of this part is 

independent of n and d
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[KVW] protocol

 Phase 1:

 Learn the row space of SA

SA

optimal k-dimensional 

space in SA

cost · (1+ε)|A-Ak|F
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[KVW] protocol

 Phase 2:

 Communicate random linear combinations of points inside SA 

 Find an approximately optimal space W inside of SA

SA

optimal space in SA

approximate 

space W in SA

cost · (1+ε)2|A-Ak|F
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[BWZ] Protocol

 Main Problem: communication is O(skd/ε) + poly(sk/ε)

 We want O(skd) + poly(sk/ε) communication!

 Idea: use projection-cost preserving sketches [CEMMP]

 Let A be an n x d matrix

 If S is a random k/ε2 x n matrix, then there is a constant 

𝑐 ≥ 0 so that for all k-dimensional projection matrices P: 

SA I − P F + c = 1 ± ϵ A I − P F
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[BWZ] Protocol

 Let S be a k/ε2 x n projection-cost preserving sketch

 Let T be a d x k/ε2 projection-cost preserving sketch

 Server t sends SAtT to Coordinator

 Coordinator sends back SAT = σt SA
tT to servers

 Each server computes k/ε2x k matrix U of top k left singular 

vectors of SAT

 Server t sends UTSAt to Coordinator

 Coordinator returns the space UTSA = σtU
TSAt to output

Intuitively, U looks like top k 

left singular vectors of SA

Thus, UTSA looks like top k 

right singular vectors of SA

Top k right singular vectors of SA 

work because S is a projection-

cost preserving sketch!
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[BWZ] Analysis

 Let W be the row span of UTSA, and P be the projection onto W

 Want to show A − AP F ≤ 1 + ϵ A − Ak F

 Since T is a projection-cost preserving sketch, 

(*)    SA − SAP F ≤ SA − UUTSA
F
≤ 1 + ϵ SA − SA k F

 Since S is a projection-cost preserving sketch, there is a scalar c > 

0, so that for all k-dimensional projection matrices P, 

SA − SAP F + c = 1 ± ϵ A − AP F

 Add c to both sides of (*) to conclude A − AP F ≤ 1 + ϵ A − Ak F
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Conclusions

 [BWZ] Optimal O(sdk) + poly(sk/ε) communication protocol for low 

rank approximation in arbitrary partition model

 Handle bit complexity by adding Tao/Vu noise

 Input sparsity time

 2 rounds, which is optimal [W]

 Optimal data stream algorithms improves [CW, L, GP] 

 Communication of other optimization problems?

 Computing the rank of an n x n matrix over the reals

 Linear Programming 

 Graph problems: Matching

 etc. 


