Sketching and Streaming Matrix Norms

David Woodruff
IBM Almaden

Based on joint works with Yi Li and Huy Nguyen

Turnstile Streaming Model

- Underlying n -dimensional vector x initialized to 0^{n}
- Long stream of updates $\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{x}_{\mathrm{i}}+\Delta_{\mathrm{i}}$ for Δ_{i} in $\{-1,1\}$
- At end of the stream, x is promised to be in the set $\{-M,-M+1, \ldots, M-1, M\}^{n}$ for some bound $\mathrm{M} \leq \operatorname{poly}(\mathrm{n})$
- Output an approximation to $\mathrm{f}(\mathrm{x})$ whp
- Goal: use as little space (in bits) as possible

Example Problem: Norms

- Suppose you want $|x|_{p}^{p}=\Sigma_{i=1}{ }^{n}\left|x_{i}\right|^{p}$
- Want Z for which (1- $\varepsilon)|x|_{p}^{p} \leq Z \leq(1+\varepsilon)|x|_{p}{ }^{p}$
- $\mathrm{p}=1$ is Manhattan norm
- Distances between distributions, network monitoring
- $p=2$ is (squared) Euclidean norm
- Geometry, linear algebra
- $p=\infty$ is max norm: $|x|_{p}=\max _{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}\right|$
- denial of service attacks, etc.

Space Complexity of Norms

- For $1 \leq \mathrm{p} \leq 2$ and constant approximation, can get $\log \mathrm{n}$ space
- For $\mathrm{p}>2$, the space is $\widetilde{\Theta}\left(n^{1-\frac{2}{p}}\right)$
- Lower bound: k-party disjointness
- k vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \in\{0,1\}^{\mathrm{n}}$ which have disjoint supports or uniquely intersect
- $\mathrm{x}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ presented in the stream in the following order: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$
- $x=(0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0)$, or
- $x=(0,1,0,0,1,0, k, 0,0,1,1,1,0,1,0,0)$
- Set $\mathrm{k}=2 \mathrm{n}^{1 / \mathrm{p}}$. Disjointness $\Omega\left(\frac{\mathrm{n}}{\mathrm{k}}\right)$ communication bound gives $\Omega\left(\frac{\mathrm{n}}{\mathrm{k}^{2}}\right)$ stream memory bound

Matrix Norms

- We understand vector norms very well
- Recent interest in estimating matrix norms
- Stream of updates to an $\mathrm{n} \times \mathrm{n}$ matrix A
- A initialized to $0^{\mathrm{nx}}{ }^{\mathrm{n}}$, see updates $\mathrm{A}_{\mathrm{i}, \mathrm{j}} \leftarrow \mathrm{A}_{\mathrm{i}, \mathrm{j}}+\Delta_{\mathrm{i}, \mathrm{j}}$ for $\Delta_{\mathrm{i}, \mathrm{j}}$ in $\{-1,1\}$
- Entries of A bounded in absolute value by poly(n)
- Every matrix $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ in its singular value decomposition, where U, V have orthonormal columns and Σ is a non-negative diagonal matrix
- Schatten p-norm $|\mathrm{A}|_{\mathrm{p}}^{\mathrm{p}}=\sum_{\mathrm{i}} \sigma_{\mathrm{i}}^{\mathrm{p}}$ where $\sigma_{\mathrm{i}}=\Sigma_{\mathrm{i}, \mathrm{i}}$

Matrix Norms

- Schatten p-norm $|\mathrm{A}|_{\mathrm{p}}^{\mathrm{p}}=\sum_{\mathrm{i}} \sigma_{\mathrm{i}}{ }^{\mathrm{p}}$ where $\sigma_{\mathrm{i}}=\Sigma_{\mathrm{i}, \mathrm{i}}$
- $p=0$ is the rank
- $p=1$ is the trace norm $\sum_{i} \sigma_{i}$
- $p=2$ is the Frobenius norm $\sum_{i, j} A_{i, j}^{2}$
- $p=\infty$ is the operator norm $\sup _{x} \frac{|A x|_{2}}{|x|_{2}}$
- What is the complexity of approximating $|\mathrm{A}|_{\mathrm{p}}^{\mathrm{p}}=\sum_{\mathrm{i}}{\sigma_{\mathrm{i}}}^{\mathrm{p}}$ up to a constant factor?
- For one value of p, this is easy...
- $p=2$ norm can be estimated in log n bits of space
- What about other values of p ?

Matrix Norm Results

- Thoughts? Conjectures?
- An important special case: suppose A is sparse, i.e., has $O(1)$ non-zero entries per row and per column
- There is an $\widetilde{\mathrm{O}}(\mathrm{n})$ upper bound for every $0 \leq \mathrm{p} \leq \infty$
- Anything better for $\mathrm{p} \neq 2$?

Bit lower bound for Schatten norms

	Previous lower bounds	Lower bounds in [LW16]
$p \in(2, \infty) \cap 2 \mathbb{Z}$	$n^{1-2 / p}$	$? ?$
$p \in(2, \infty) \backslash 2 \mathbb{Z}$	$n^{1-2 / p}$	$n^{1-g(\epsilon)}$
$p \in[1,2)$	$n^{1 / p-1 / 2 / \log n[A K P 15]}$	$n^{1-g(\epsilon)}$
$p \in(0,1)$	$\log n[\mathrm{KNP} 10]$	$n^{1-g(\epsilon)}$
$p=0$	$n^{1-g(\epsilon)}[\mathrm{BS} 15]$	

- $g(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$
- The near-linear lower bound is tight for sparse matrices (each row and column contains $O(1)$ non-zero entries)

What about even integers p? [LW16]

- Show an $\widetilde{\mathrm{O}}\left(\mathrm{n}^{1-\frac{2}{\mathrm{p}}}\right)$ upper bound for every even integer p
- Matches the lower bound for vectors
- The even integer p-norms are the only norms with non-trivial space!

Upper Bound Intuition for $\mathrm{p}=4$

- $|\mathrm{A}|_{4}^{4}=\left|A A^{T}\right|_{\mathrm{F}}^{2}=\sum_{\mathrm{i}, \mathrm{j}}<\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{j}}>^{2}$, where A_{i} are the rows of A
$\cdot<A_{i}, A_{j}>^{2} \leq\left|A_{i}\right|_{2}^{2} \cdot\left|A_{j}\right|_{2}^{2} \leq \max _{\mathrm{i}, \mathrm{j}}<A_{i}, A_{i}>^{2}$
- If $\left|A_{i}\right|_{2}^{2}=1$ for all i, then
(1) $<A_{i}, A_{j}>^{2} \leq 1$ for all i and j
(2) if $\left.\sum_{i \neq j}<A_{i}, A_{j}>^{2} \geq \epsilon \sum_{i}<A_{i}, A_{i}\right\rangle^{2} \geq \epsilon n$
- Implies uniformly sampling $\widetilde{\mathrm{O}}(\mathrm{n})$ terms $<\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{j}}>^{2}$ for $\mathrm{i} \neq \mathrm{j}$ suffices for estimating $\sum_{i \neq j}<A_{i}, A_{j}>^{2}$

$$
\begin{aligned}
& \text { (1) }<A_{i}, A_{j}>^{2} \leq 1 \text { for all } i, j \\
& \text { (2) } \sum_{i \neq j}<A_{i}, A_{j}>^{2} \geq \text { en }
\end{aligned}
$$

These conditions imply uniformly sampling $\widetilde{0}(n)$ entries works

- To sample $\widetilde{O}(n)$ entries, we sample $\widetilde{O}(\sqrt{ } \mathrm{n})$ rows in their entirety (can approximately do this in a stream)
- Can store all sampled rows using $\widetilde{\mathrm{O}}(\sqrt{ } \mathrm{n})$ space given $\mathrm{O}(1)$ non-zero entries per row
- Estimate (2) using all pairwise inner products in the sampled rows (some slight dependence issues)
- When $\left|A_{i}\right|_{2} \neq 1$ for all i, instead sample rows proportional to $\left|A_{i}\right|_{2}^{2}$

Beyond $p=4$

- For even integers p, let $q=p / 2$. Then,
- $|A|_{p}^{p}=\sum_{1 \leq i_{1}, i_{2}, \ldots, i_{q} \leq n} \Pi_{j=1, \ldots, q}<A_{i_{j}}, A_{i_{j}+1}>$, where $i_{q+1}=i_{1}$
- Sample $\widetilde{\mathrm{O}}\left(\mathrm{n}^{1-\frac{2}{\mathrm{p}}}\right)$ rows in their entirety proportional to their squared norm
- Approximate above sum by summing over all q-tuples from your sample
- For non-even integers p and $p=0$, no such expression for $|A|_{p}^{p}$ exists!

Lower bound for $p=0$ [BS15]

- Hidden Boolean Hypermatching Problem ([VY11], [BS15])
- Alice has a boolean vector $x \in\{0,1\}^{n}$ such that $w_{H}(x)=n / 2$
- Bob has a perfect t-hypermatching M of n / t edges, each edge has t nodes
- Determine whether $M x:=\left(\oplus_{i=1}^{t} x_{M_{1, i}}, \ldots, \oplus_{i=1}^{t} x_{M_{n / t, i}}\right)$ is $\mathbf{1}$ or 0
- $\Omega\left(n^{1-1 / t}\right)$ bits for one-way communication

- $2 n$ nodes
- Create a t-clique for each hyperedge in Bob's input
- Add 'tentacles' according to Alice's input x
- Determine whether all cliques have an even or odd number of tentacles
- Maximum matching size different by a constant factor in the cases
- If clique size is t, then with r tentacles, block matching size is $r+\left\lfloor\frac{t-r}{2}\right\rfloor$
- Matching size is $3 n / 4$ if r are all even, Matching size is $3 n / 4-n /(2 t)$ if r are all odd

Connection with Matrices

- Consider the Tutte matrix A of the graph
- $A_{i, j}=0$ if $\{i, j\}$ is not an edge
- $A_{i, j}=y_{i, j}$ if $\{i, j\}$ is an edge and $i<j$
- $A_{i, j}=-y_{i, j}$ if $\{i, j\}$ is an edge and $j<i$
- $\operatorname{rank}(\mathrm{A})$, under random assignment to the $\mathrm{y}_{\mathrm{i}, \mathrm{j}}$, is twice the maximum matching size, with high probability
- $\Omega\left(n^{1-\frac{1}{t}}\right)$ lower bound for $\left(1+\Theta\left(\frac{1}{t}\right)\right)$-approximation

Distributional BHH Problem

- Distributional BHH [VY11]: Alice get a uniformly random x in $\{0,1\}^{\mathrm{n}}$, and Bob an independent, uniformly random perfect t-hyper-matching M on the n coordinates and a binary string w in $\{0,1\}^{n / t}$. Promise: $M x \oplus w=1^{n / t}$ or $M x \oplus w=0^{n / t}$
- Let t be even. Distributional BHH problem [BS15]:
- Replace x with new input $\mathrm{x} \leftarrow(\mathrm{x}, \mathrm{x})$
- For i-th set $S=\left\{x_{i_{1}}, \ldots, x_{i_{t}}\right\} \in M$,
- if $w_{i}=0$, include $\left\{\mathrm{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{t}}}\right\}$ and $\left\{\overline{\mathrm{x}_{\mathrm{i}_{1}}}, \ldots \overline{\mathrm{x}_{\mathrm{i}}}\right\}$ in new input M
- if $w_{i}=1$, include $\left\{\overline{\mathrm{x}_{i_{1}}}, \mathrm{x}_{\mathrm{i}_{2}}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{t}}}\right\}$ and $\left\{\mathrm{x}_{\mathrm{i}_{1}}, \overline{\mathrm{x}_{\mathrm{i}_{2}}}, \overline{\mathrm{x}_{\mathrm{i}_{3}}}, \ldots, \overline{\mathrm{x}_{\mathrm{i}_{\mathrm{t}}}}\right\}$ in the new input M
- Correctness is preserved, and $M x=1^{\mathrm{n} / \mathrm{t}}$ or $\mathrm{Mx}=0^{\mathrm{n} / \mathrm{t}}$
- In graph, can partition t-cliques into pairs: in each pair number of tentacles is q and $t-q$, for a binomially distributed odd (even) integer q if $M x=1^{n / t}$ (if $M x=0^{n / t}$)

Distributional BHH Problem

- Consider Tutte matrix A with diagonal 0 and indeterminates equal to 1
- After permuting rows and columns, A is block-diagonal
- Each block is $(2 t) \times(2 t)$ and corresponds to a clique with tentacles
- $t=4$ and the three possible blocks for an even number of tentacles:

$$
\mathrm{B}_{0}=\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\left.B_{2}=\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\left.B_{4}=\begin{array}{cccccccc}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ -1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & -1 & -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0\end{array}\right]$

Distribution of Singular Values

- $|\mathrm{A}|_{\mathrm{p}}^{\mathrm{p}}=\sum_{\text {blocks Bin }}|\mathrm{B}|_{\mathrm{p}}^{\mathrm{p}}$
- Suppose $\mathrm{E}_{\mathrm{q} \sim \mathrm{E}(\mathrm{t})}\left[\left|\mathrm{B}_{\mathrm{q}}\right|_{\mathrm{p}}^{\mathrm{p}}\right] \neq \mathrm{E}_{\mathrm{q} \sim \mathrm{O}(\mathrm{t})}\left[\left|\mathrm{B}_{\mathrm{q}}\right|_{\mathrm{p}}^{\mathrm{p}}\right]$
- $E(t)$ is distribution on even integers q with $\operatorname{Pr}[q=i]=\{t$ choose $i\} / 2^{t-1}$
- $\mathrm{O}(\mathrm{t})$ is distribution on odd integers q with $\operatorname{Pr}[\mathrm{q}=\mathrm{i}]=\{\mathrm{t}$ choose i$\} / 2^{\mathrm{t}-1}$
- Since blocks B are of constant size, and pairs of blocks are independent, by Hoeffding bounds $|A|_{\mathrm{p}}^{\mathrm{p}}$ differs by a constant factor if $\mathrm{Mx}=1^{\mathrm{n} / \mathrm{t}}$ or if $\mathrm{Mx}=0^{\mathrm{n} / \mathrm{t}}$
- Suffices to show $\mathrm{E}_{\mathrm{q} \sim \mathrm{E}(\mathrm{t})}\left[\left|\mathrm{B}_{\mathrm{q}}\right|_{\mathrm{p}}^{\mathrm{p}}\right] \neq \mathrm{E}_{\mathrm{q} \sim \mathrm{O}(\mathrm{t})}\left[\left|\mathrm{B}_{\mathrm{q}}\right|_{\mathrm{p}}^{\mathrm{p}}\right]$!

$\Omega(\sqrt{n})$ lower bound for $p \neq 2$

- $\Omega\left(n^{1-1 / t}\right)=\Omega(\sqrt{n}) \Rightarrow t=2$
- $\mathbb{E}\left\|M_{k}\right\|_{\rho}^{p}$ in even and odd cases:

$$
\frac{1}{2}\left\{2 \cdot 1^{p}+2\left(\left(\frac{\sqrt{5}+1}{2}\right)^{p}+\left(\frac{\sqrt{5}-1}{2}\right)^{p}\right)\right\} \neq 2 \sqrt{2}^{p}
$$

- $\Omega(\sqrt{n})$ lower bound follows.

$\mathrm{n}^{1-\mathrm{g}(\epsilon)}$ Lower Bound for p not an Even Integer

- Just need to show $\mathrm{E}_{\mathrm{q} \sim \mathrm{E}(\mathrm{t})}\left[\left|\mathrm{B}_{\mathrm{q}}\right|_{\mathrm{p}}^{\mathrm{p}}\right] \neq \mathrm{E}_{\mathrm{q} \sim \mathrm{O}(\mathrm{t})}\left[\left|\mathrm{B}_{\mathrm{q}}\right|_{\mathrm{p}}^{\mathrm{p}}\right]$
- Change the definition of blocks B_{q} to make analysis tractable
- Singular values are either 1 or roots of a quadratic equation depending on q
- Analysis uses power series expansion of the roots and hypergeometric polynomials

Conclusions and Future Directions

- Nearly tight bounds for sparse matrices for matrix norms for every p
- For dense matrices, for $\mathrm{p}=0$ there is an $\mathrm{n}^{2-\mathrm{g}(\epsilon)}$ lower bound [AKL17]
- Nothing better known for other values of p for dense matrices
- When the streaming algorithm is a linear sketch:
- Not clear if these lower bounds imply lower bounds for streams (though would be surprising if not)
- $\mathrm{n}^{2-4 / \mathrm{p}}$ bound for every $\mathrm{p} \geq 2$, tight for even integers [LNW14,LW16]
- For p not an even integer, conjecture an $\mathrm{n}^{2-\mathrm{g}(\epsilon)}$ lower bound

