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ABSTRACT
For any real number p > 0, we nearly completely character-
ize the space complexity of estimating ||A||h = >"" , oF for

n X n matrices A in which each row and each column has
O(1) non-zero entries and whose entries are presented one
at a time in a data stream model. Here the o; are the singu-
lar values of A, and when p > 1, ||A||} is the p-th power of
the Schatten p-norm. We show that when p is not an even
integer, to obtain a (1 + €)-approximation to || A||} with con-
stant probability, any 1-pass algorithm requires n'~9(¢) bits
of space, where g(¢) — 0 as ¢ — 0 and € > 0 is a constant
independent of n. However, when p is an even integer, we
give an upper bound of nt=2/P poly(e~!logn) bits of space,
which holds even in the turnstile data stream model. The
latter is optimal up to poly(e ' logn) factors.

Our results considerably strengthen lower bounds in pre-
vious work for arbitrary (not necessarily sparse) matrices
A: the previous best lower bound was Q(logn) for p €
(0,1), Q(n'?=Y/2/logn) for p € [1,2) and Q(n'~??) for
p € (2,00). We note for p € (2, 00), while our lower bound
for even integers is the same, for other p in this range our
lower bound is n!™¢ (6>, which is considerably stronger than
the previous n'~%? for small enough constant ¢ > 0. We
obtain similar near-linear lower bounds for Ky-Fan norms,
eigenvalue shrinkers, and M-estimators, many of which could
have been solvable in logarithmic space prior to our work.
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1. INTRODUCTION

In the data stream model, there is an underlying vec-
tor x € Z" which undergoes a sequence of additive up-
dates to its coordinates. Each update has the form (i,9) €
[n] x {—m,—m +1,...,m} (where [n] denotes {1,...,n}),
and indicates that x; < z; + §. The algorithm maintains
a small summary of x while processing the stream. At the
end of the stream it should succeed in approximating a pre-
specified function of x with constant probability. The goal
is often to minimize the space complexity of the algorithm
while processing the stream. We make the standard simpli-
fying assumption that n,m, and the length of the stream
are polynomially related.

A large body of work has focused on characterizing which
functions f it is possible to approximate f(z) = >, f(z:)
using a polylogarithmic (in n) amount of space. The first
class of functions studied were the ¢, norms f(z;) = |z;|?,
dating back to work of Alon, Matias, and Szegedy [1]. For
p < 2 it is possible to obtain any constant factor approx-
imation using ©(1) bits of space [30, 37], while for p > 2
the bound is ©(n'~%/?) [17, 7, 32, 2, 23, 44, 12, 24], where
f=7r- poly(log(f)). Braverman and Ostrovsky later de-
veloped a zero-one law for monotonically non-decreasing f
for which f(0) = 0, showing that if f has at most quadratic
growth and does not have large “local jumps”, then a con-
stant factor approximation to f(x) can be computed in O(1)
space [13]. Moreover, if either condition is violated, then
there is no polylogarithmic space algorithm. This was ex-
tended by Braverman and Chestnut to periodic and to de-
creasing f [9, 10]. Characterizations were also given in the
related sliding window model [14]. Recently, Bravermen et
al. gave conditions nearly characterizing all f computable in
a constant number of passes using n°) space [11].

Despite a nearly complete understanding of which func-
tions f one can approximate Y ., f(z;) for a vector  us-
ing small space in a stream, little is known about estimat-
ing functions of an n X n matriz A presented in a stream.
Here, an underlying n x n matrix A undergoes a sequence
of additive updates to its entries. Each update has the form
(4,7,9) € [n] x [n] x {—m, —m+1,...,m} and indicates that
A;j < Ai; + 9. Every matrix A can be expressed in its
singular value decomposition as A = UXVT, where U and
V' are orthogonal n x n matrices, and ¥ is a non-negative



diagonal matrix with diagonal entries o1 > o2 > -+ > on,
which are the singular values of A. We are interested in func-
tions which do not depend on the bases U and V, but rather
only on the spectrum (singular values) of A. These functions
have the same value under any (orthogonal) change of basis.
The analogue of the functions studied for vectors are func-
tions of the form 7" | f(o:). Here, too, we can take f(o;) =
o?, in which case >, f(o:) is the p-th power of Schatten
p-norm ||A[|5 of A. When p = 0, interpreting 0° as 0 this
is the rank of A, which has been studied in the data stream
[19, 15] and property testing models [39, 43]. When p = 1,
this is the nuclear or trace norm', with applications to dif-
ferential privacy [29, 40] and non-convex optimization [16,
21]. When p = 2 this is the Frobenius norm, while for
large p, this sum approaches the p-th power of the operator
norm sup,.|,,=1 |[Az[[2. Such norms are useful in geome-
try and linear algebra, see, e.g., [53]. The Schatten p-norms
also arise in the context of estimating p-th moments of a
multivariate Gaussian matrix in which the components are
independent but not of the same variance, see, e.g., [38].
The Schatten p-norms have been studied in the sketching
model [41], and upper bounds there imply upper bounds for
streaming. Fractional Schatten-p norms of Laplacians were
studied by Zhou [57] and Bozkurt et al. [8]. We refer the
reader to [50] for applications of the case p = 1/2, which is
the Laplacian-energy-like (LEL) invariant of a graph.
There are a number of other functions Y .-, f(0:) of im-
portance, for example, functions motivated from regularized
low rank approximation, where one computes the optimal
etgenvalue shrinkers for different loss functions, such as the
Frobenius, operator, and nuclear norm losses [27]. For exam-

ple, for Frobenius norm loss, f(z) = /(22 — a — 1)2 — 4«

for x > 14 v/, and f(x) = 0 otherwise, for a given param-
eter a.

Other applications include low rank approximation with
respect to functions on the singular values that are not
norms, such as Huber or Tukey loss functions, which could
find more robust low dimensional subspaces as solutions; we

discuss these functions more in Section 7.

Our Contributions.

The aim of this work is to obtain the first sufficient criteria
in the streaming model for functions of a matrix spectrum.
Prior to our work we did not even know the complexity of
most of the problems we study even in the insertion-only
data stream model in which each coordinate is updated at
most once in the stream, and even when A is promised to
be sparse, i.e., it has only O(1) non-zero entries per row and
column. Sparse matrices have only a constant factor more
entries than diagonal matrices, and the space complexity of
diagonal matrices is well-understood since it corresponds to
that for vectors. As a main application, we considerably
strengthen the known results for approximating Schatten
p-norms. We stress that the difficulty with functions of a
matrix spectrum is that updates to the matrix entries often
affect the singular values in subtle ways.

The main qualitative message of this work is that for ap-
proximating Schatten p-norms up to a sufficiently small con-
stant factor, for any positive real number p which is not an
even integer, almost n bits of space is necessary. Moreover,

!The trace norm is not to be confused with the trace. These
two quantities only coincide if A is positive semidefinite.

this holds even for matrices with O(1) non-zero entries per
row and column, and consequently is tight for such matrices.
It also holds even in the insertion-only model. Furthermore,
for even integers p, we present an algorithm achieving an
arbitrarily small constant factor approximation for any ma-
triz with O(1) non-zero entries per row and column which
achieves O(n'~%/'P) bits of space. Also, Qn*~/?) bits of
space is necessary for even integers p, even with O(1) non-
zero entries per row and column and even if all entries are
absolute constants independent of n. Thus, for p-norms,
there is a substantial difference in the complexity in the vec-
tor and matriz cases: in the vector case the complezity is
logarithmic for p < 2 and grows as n*~2/? for p > 2, while
in the matrix case the complezity is always almost n bits un-
less p is an even integer! Furthermore, for each even integer
p the complexity is (:)(nl_Q/p), just as in the vector case.
Note that our results show a “singularity” at p = 2 + o(1),
which are the only values of p for which O(logn) bits of space
is possible.

We now state our improvements over prior work more pre-
cisely. Henceforth in this section, the approximation param-
eter € is a constant (independent of n), and g(e) — 0 as
€ — 0. The number of non-zero entries of A is denoted by
nnz(A).

THEOREM 1. (Lower Bound for Schatten p-Norms) Let
p € [0,00) \ 2Z. Any randomized data stream algorithm
which outputs, with constant error probability, a (1 + €)-
approximation to the Schatten p-norm of an n X n matriz A
requires Q(n =9 bits of space. This holds even if nnz(A) =
O(n).

We obtain similar lower bounds for estimating the Ky-Fan k-
norm, which is defined to be the sum of the k largest singular
values, and has applications to clustering and low rank ap-
proximation [55, 22]. Interestingly, these norms do not have
the form > 7" | f(o:) but rather have the form Zle fos),
yet our framework is robust enough to handle them. In the
latter case, we have the following general result for strictly
monotone f:

THEOREM 2. Let o € (0,1/2) and f be strictly monotone
with f(0) = 0. There exists a constant € > 0 such that for all
sufficiently large n and k < an, any data stream algorithm
which outputs a (1 + €)-approzimation to S+, f(ai(A)) of
an nxn matriz A requires Q(n*+T®1/ M) gpace. This holds

even if nnz(A) = O(n).

We summarize prior work on Schatten p-norms and Ky-Fan
k-norms and its relation to our results in Table 1. The pre-
vious bounds for Ky-Fan norms come from planting a hard
instances of the set disjointness communication problem on
the diagonal of a diagonal matrix (where each item is copied
k times) [35, 47], or from a Schatten 1-lower bound on k x k
matrices padded with zeros [3].

The best previous lower bound for estimating the Schatten
p-norm up to an arbitrarily small constant factor for p > 2
was Q(n'~2/P), which is the same for vector p-norms. In
[41], an algorithm for even integers p > 2 was given, and
it works in the data stream model using O(n?~*/?) bits of
space. See also [4] for finding large eigenvalues, which can
be viewed as an additive approximation to the case p = oco.

For p € [1,2), the lower bound was Q(w) [3]. Their

logn
approach is based on non-embeddability, and the best lower



Space complexity in bits
Previous lower bounds | Our lower bounds
p € (2,00) N 27Z 1=2/p (28, 33

Schatten | P € (2,00)\ 2Z 1=2/7 128, 33 n!=9)
T/p—1/2 “ale

p-norm p€llL,2) % 3] n!=9()
p € (0,1) logn [37] nt=90e)

p=0 n'=9 [15)
Ky-Fan k-norm max{ %, folgi} [7, 3] n*=9 (any k)

Table 1: A summary of existing and new lower bounds for (1+¢)-approximating Schatten p-norms and Ky-Fan k-norms,
where ¢ is an arbitrarily small constant. The Q-notation is suppressed. The function g(¢) — 0 as ¢ — 0 and could depend
on the parameters p or k and be different in different rows. We show that the lower bound n'~2/? is tight up to log
factors by providing a new upper bound for even integers p and sparse matrices. For even integers we also present a
new proof of an n'~2/? lower bound in which all entries of the matrix are bounded by O(1).

bound obtainable via this approach is Q(nl/pflm), since the
identity map is an embedding of the Schatten p-norm into
the Schatten-2 norm with n'/?P~%/2 distortion, and the latter
can be sketched with O(logn) bits; further it is unknown if
the lower bound of [3] holds for sparse matrices [48]. For p €
(0,1), which is not a norm but still a well-defined quantity,
the prior bound is only Q(logn), which follows from lower
bounds for p-norms of vectors. For p = 0, an Q(n'~9())
lower bound was shown for (1 + ¢)-approximation [15]. We
note that lower bounds for Schatten-p norms in the sketching
model, as given in [41], do not apply to the streaming model,
even given work which characterizes “turnstile” streaming
algorithms as linear sketches® [42].

One feature of previous work is that it rules out constant
factor approximation for a large constant factor, whereas our
work focuses on small constant factor approximation. For
vector norms, the asymptotic complexity in the two cases
is the same [37, 12] or the same up to a logarithmic factor
[23, 44]. Given the many motivations and extensive work on
obtaining (1 + n)-approximation for vector norms for arbi-
trarily small 7 [31, 52, 20, 25, 46, 37, 36, 23, 54, 44], we do
not view this as a significant shortcoming. Nevertheless, this
is an interesting open question, which could exhibit another
difference between matrix and vector norms.

Although Theorem 1 makes significant progress on Schat-
ten p-norms, and is nearly optimal for sparse matrices (i.e.,
matrices with O(1) non-zero entries per row and column),
for dense matrices our bounds are off by a quadratic factor.
That is, for p not an even integer, we achieve a lower bound
which is almost n bits of space, while the upper bound is a
trivial O(n?) words of space used to store the matrix. When
p is an even integer, é(nlfz/p) is an upper and lower bound
for sparse matrices, while for dense matrices the best up-
per bound is O(n?~*/?) given in [41]. Thus, in both cases
the upper bound is the square of the current lower bound.
Resolving this gap is an intriguing open question.

The Schatten p-norms capture a wide range of possibili-
ties of growths of more general functions, and we are able
to obtain lower bound for a general class of functions by
considering their growth near 0 (by scaling down our hard

2In short, in the sketching model one has a matrix S and
one distinguishes S - X from S -Y where X,Y are vectors
(or vectorized matrices) with X ~ u1 and Y ~ uo for distri-
butions g1 and p2. One argues if S has too few rows, then
S - X and S - Y have small statistical distance, but such a
statement is not true if we first discretize X and Y.

instance) or their growth for large inputs (by scaling up our
hard instance). If in either case the function “behaves” like
a Schatten p-norm (up to low order terms), then we can ap-
ply our lower bounds for Schatten p-norms to obtain lower
bounds for the function.

Technical Overview.

Lower Bound. The starting point of our work is [15], which
showed an Q(n'~9(9)) lower bound for estimating the rank of
A up to a (14 €)-factor by using the fact that the rank of the
Tutte matrix equals twice the size of the maximum matching
of the corresponding graph, and there are lower bounds for
estimating the maximum matching size in a stream [51].

This suggests that lower bounds for approximating match-
ing size could be used more generally for establishing lower
bounds for estimating Schatten p-norms. We abandon the
use of the Tutte matrix, as an analysis of its singular values
turns out to be quite involved. Instead, we devise simpler
families of hard matrices which are related to hard graphs for
estimating matching sizes. Our matrices are block diagonal
in which each block has constant size (depending on ¢). For
functions f(z) = |z|? for p > 0 not an even integer, we show
a constant-factor multiplicative gap in the value of >, f(04)
in the case where the input matrix is (1) block diagonal in
which each block is the concatenation of an all-1s matrix
and a diagonal matrix with an even number of 1s versus (2)
block diagonal in which each block is the concatenation of
an all-1s matrix and a diagonal matrix with an odd number
of ones. We call these Case 1 and Case 2. We also refer to
the 1s on a diagonal matrix inside a block as tentacles.

The analysis proceeds by looking at a block in which the
number of tentacles follows a binomial distribution. We
show that the expected value of 3. f(o;) restricted to a
block given that the number of tentacles is even, differs by
a constant factor from the expected value of 3. f(0:) re-
stricted to a block given that the number of tentacles is
odd. Using the hard distributions for matching [6, 26, 51],
we can group the blocks into independent groups of four ma-
trices and then apply a Chernoff bound across the groups to
conclude that with high probability, . f(o;) of the entire
matrix in Case 1 differs by a (1 + €)-factor from . f(0:) of
the entire matrix in Case 2. This is formalized in Theorem
3.

The number k of tentacles is subject to a binomial dis-
tribution supported on even or odd numbers in Case 1 or 2



respectively. Proving a “gap” in expectation for a random
even value of k£ in a block versus a random odd value of &k
in a block is intractable if the expressions for the singular
values are sufficiently complicated. For example, the sin-
gular values of the adjacency matrix of the instance in [15]
for p = 0 involve roots of a cubic equation, which poses a
great obstacle. Instead our hard instance has the advan-
tage that the singular values r(k) are the square roots of
the roots of a quadratic equation, which are more tractable.
The function value f(r(k)), viewed as a function of the num-
ber of tentacles k, can be expanded into a power series
f(r(k)) = > 22, csk®, and the difference in expectation in
the even and odd cases subject to a binomial distribution is

PGl (jj)f&(k)) =Y e > (=) (’,j) K
k=0 5=0 k=0
— ch(_nmm!{;}
= (—1)"m! Z cs{;}

where {jl} is the Stirling number of the second kind and
{T‘Z} = 0 for s < m, and where the second equality is a com-
binatorial identity. The problem reduces to analyzing the
last series of s. For f(z) = |z|” (p > 0 not an even integer),
with our choice of hard instance which we can parameterize
by a small constant v > 0, the problem reduces to showing
that ¢s = ¢s(y) > 0 for a small v, and for all large s. How-
ever, c,(7y) is complicated and admits the form of a hyperge-
ometric polynomial, which can be transformed to a different
hypergeometric function ¢} () of simpler parameters. It has
a standard infinite series expansion cj(v) =1+ > o0 ; any™.
By analyzing the series coefficients, the infinite series can
be split into three parts: a head part, a middle part, and a
tail; each can be analyzed separately. Roughly speaking, the
head term is alternating and decreasing and thus dominated
by its first term, the tail term has geometrically decreasing
terms and is also dominated by its first term, which is much
smaller than the head, and finally the middle term is domi-
nated by the head term.

The result for f(x) = 2 generalizes to functions which
are asymptotically 2P near 0 or infinity, by first scaling the
input matrix by a small or a large constant.

A simple /n lower bound. To illustrate our ideas, here
we give a very simple proof of an Q(y/n) lower bound for
any real p # 2. Consider the three possible blocks

0 1 1 1 11
= (o) r=(o) o=
A simple computation shows the two singular values are
(1,1) for A, are ((v/5+41)/2, (v/5—1)/2) for B, and (2,0) for
C. Our reduction above from the Boolean Hidden Matching
Problem implies for Schatten p-norm estimation, we get an

Q(y/n) lower bound for c-approximation for a small enough
constant ¢ > 1, provided

;.(1p+1p)+%_2p#((\/52+1>P+<\/571)p>’

2 2
which holds for any real p # 2.

Upper Bound. We illustrate the ideas of our upper bound
with p = 4, in which case, ||A||i = D [{ai,a;))?, where a;

is the i-th row of A. Suppose for the moment that every
row a; had the same norm a = ©(1). It would then be easy
to estimate na® = Y, [(as, a:)|* = ©(n) just by looking at
the norm of a single row. Moreover, by Cauchy-Schwarz,
a = |lai]|* > |{ai,a;)|? for all j # i. Therefore in order
for 3., [{ai,a;))* to “contribute” to ||Al|4, its value must
be Q(na4), but since each summand is upper-bounded by
o, there must be Q(n) non-zero terms. It follows that if
we sample O(y/n) rows uniformly and in their entirety, by
looking at all O(n) pairs |{a;,a;)|? for sampled rows a; and
a;, we shall obtain (1) samples of the “contributing” pairs
i # j. Using that each row and column has O(1) non-zero
entries, this can be shown to be enough to obtain a good
estimate to ||A||2 and it uses O(y/nlogn) bits of space.

In the general situation where the rows of A have differing
norms, we need to sample them proportional to their squared
2-norm. Also, it is not possible to obtain the sampled rows
a; in their entirety, but we can obtain noisy approximations
to them. We achieve this by adapting known algorithms
for £2-sampling in a data stream [45, 2, 34] , and using our
conditions that each row and each column of A have O(1)
non-zero entries. Given rows a; and a;, one can verify that

4
I(ai, a)I” nai‘}éw‘\‘fﬂ
in fact, this is nothing other than importance sampling. It
turns out that also in this more general case, only O(y/n)
rows need to be sampled, and we can look at all O(n) pairs
of inner products between such rows.

7 s an unbiased estimator of ||Al|3, and
2

2. PRELIMINARIES

Notation. Let R"*? be the set of n x d real matrices.
We write X ~ D for a random variable X subject to a
probability distribution D. Denote the uniform distribution
on a set S (if it exists) by Unif(S).

We write f = g (resp. f < g) if there exists a constant
C > Osuch that f > Cg (resp. f < Cyg). Also we write f ~ g
if there exist constants C1 > C2 > 0 such that Cag < f <
C1g. For the notations hiding constants, such as Q(-), O(-),
<, 2, we may add subscripts to highlight the dependence,
for example, Q4(:), Oa(:), Sa, Za mean that the hidden
constant depends on a.

Singular values and matrix norms. Consider a matrix
A € R™"™ Then AT A is a positive semi-definite matrix.
The eigenvalues of VAT A are called the singular values of
A, denoted by o1(A) > g2(A) > --- > 0,(A) in decreasing
order. Let r = rank(A). It is clear that o,41(A) = -+ =
on(A) = 0. Define [|All, = (i (0:(A)")"? (p > 0).
For p > 1, it is a norm over R™*%, called the p-th Schatten
norm, over R"*™ for p > 1. When p = 1, it is also called
the trace norm or nuclear norm. When p = 2, it is exactly
the Frobenius norm ||A||r. Let ||A|lop denote the operator
norm of A when treating A as a linear operator from ¢35 to
¢3. It holds that limp oo [|A|lp = 01(A) = || Al op-

The Ky-Fan k-norm of A, denoted by || A s, is defined as
the sum of the largest k singular values: || Al|r, = S5, 04(A).
Note that ||A||m = ||Allop and ||A||F, = ||All1 for k& > r.

Communication Complexity. We shall use a problem
called Boolean Hidden Hypermatching, denoted by BHH,?,n7
defined in [51].

Definition 1. Inthe Boolean Hidden Hypermatching Prob-
lem BHH, ,, Alice gets a Boolean vector = € {0,1}" with



n = 2rt for some integer r and Bob gets a perfect ¢-hyper-
matching M on the n coordinates of x, i.e., each edge has
exactly ¢ coordinates, and a binary string w € {0,1}"/*. Let
Mz denote the vector of length n/t defined as (B, ;< Tny ;,

ceey ®1gigt .’L']\/[n/t’i), where {(Mj,l, NN
of M. It is promised that either Mz®w = 1™/t or Mzdw =
0"/*. The problem is to return 1 in the first case and 0 oth-
erwise.

,M;0)}/ are edges

They proved that this problem has an Q(n'~'/*) random-
ized one-way communication lower bound by proving a lower
bound for deterministic protocols with respect to the hard
distribution in which z and M are independent and respec-
tively uniformly distributed, and w = Mz with probability
1/2 and w = Mz (bitwise negation of Mx) with probabil-
ity 1/2. In [15], Bury and Schwiegelshohn defined a version
without w and with the constraint that wu (z) = n/2, for
which they also showed an Q(n'~'/*) lower bound. We shall
use this version, with a slight modification.

Definition 2. In the Boolean Hidden Hyper-matching Prob-
lem BHHY,,, Alice gets a Boolean vector € {0,1}" with
n = 4rt for some r € N and even integer ¢t and wg (z) = n/2,
Bob gets a perfect t-hypermatching M on the n coordi-
nates of z, i.e., each edge has exactly ¢ coordinates. We
denote by Mz the Boolean vector of length n/t given by

(@::1 LMy iy ®§:1 an/t,i)’ where {(ijlv cees ijt)}’gnitl
are the edges of M. It is promised that either Mz = 1"/t
or Mz = 0™*. The problem is to return 1 in the first case

and 0 otherwise.

A slightly modified (yet remaining almost identical) proof as
in [15] shows that this problem also has an Q(n*~*/*) ran-
domized one-way communication lower bound. We include
the proof here.

PROOF. We reduce BHH,,, to BHH{,,,. Let x € {0, 1}"
with n = 2rt for some r, M be a perfect t-hypermatching
on the n coordinates of z and = € {0,1}*/*. Define &’ =
(xT :ET)T to be the concatenation of z and Z (bitwise nega-
tion of x).

Let {z1,...,2¢:} € M be the I-th hyperedge of M. We
include two hyperedges in M’ as follows. When w; = 0,
include {z1,...,z:} and {Z1,T32,...,T¢} in M; when w; =
1, include {Z1,z2,...,7¢} and {x1,Z2...,Z¢} in M’'. The
observation is that we flip an even number of bits in the
case w; = 0 and an odd number of bits when w; = 1, and
since t is even, this does not change the parity of each set.
Therefore M'z’ = 0" if Mz + w = 0™/? and M'z’ = 1*"
if Mz +w = 1"/2. The lower bound then follows from the
lower bound for BHH; ,. [l

When t is clear from context, we shorthand BHH?YH as
BHHY.

3. SCHATTEN NORMS

Let Dy i (0 < k < 'm) be an m X m diagonal matrix with
the first k diagonal elements equal to 1 and the remaining
diagonal entries 0, and let 1,, be an m dimensional vector
full of 1s. Define

(1,17 0
M 1o = (\ﬁDm,k 0),

where v > 0 is a constant (which may depend on m).

Our starting point is the following theorem. Let m > 2
and pm(k) = (7)/2™ " for 0 < k < m. Let £(m) be the
probability distribution on even integers {0,2,...,m} with
probability density function p,,(k), and O(m) be the distri-
bution on odd integers {1, 3, ..., m—1} with density function
pm (k). We say a function f on square matrices is diagonally
block-additive if f(X) = f(X1) 4+ ---+ f(Xs) for any block
diagonal matrix X with square diagonal blocks Xi,..., X;.
It is clear that f(X) = >, f(0¢(X)) is diagonally block-
additive.

THEOREM 3. Let t be an even integer and X € RYV*N,
where N is sufficiently large. Let f be a function of square
matrices that is diagonally block-additive. If there exists
m = m(t) such that

E Mpyq)— E My, 0, 1
B, fMna) = B (M) # m
then there exists a constant ¢ = ¢(t) > 0 such that any

streaming algorithm that approzimates f(X) within a factor
1 =+ ¢ with constant error probability must use Qy(N'~1/*)
bits of space.

Proor. We reduce the problem from the BHHgn prob-
lem. Let n = Nt/(2m). For the input of the problem
BHH?,,L, construct a graph G as follows. The graph contains
n vertices vi, ..., vy, together with n/t cliques of size m, to-
gether with edges connecting v;’s with the cliques according
to Alice’s input x. These latter edges are called ‘tentacles’.
In the j-th clique of size m, we fix t vertices, denoted by
Wjit,...,w;:. Whenever z; =1 for i = (j — 1)(n/t) + r, we
join v; and wy,, in the graph G.

Let M be constructed from G as follows: both the rows
and columns are indexed by nodes of G. For every pair
w,v of clique nodes in G, let M,,, = 1, where we allow
w = v. For every ‘tentacle’ (u,w), where w is a clique node,
let M(u,w) = /7. Then M is an N x N block diagonal
matrix of the following form after permuting the rows and
columns

Mg,
va‘ZQ
Mn,m,t - .. ’ (2)

va‘]n/t

where q1, ..., qn/: satisfy the constraint that g1 +¢g2 +--- +
dnse =n/2and 0 < ¢; < tforallé. It holds that f(Map,m,¢) =
> f(Mm.g;).

Alice and Bob will run the following protocol. Alice keeps
adding the matrix entries corresponding to ‘tentacles’ while
running the algorithm for estimating f(M). Then she sends
the state of the algorithm to Bob, who will continue running
the algorithm while adding the entries corresponding to the
cliques defined by the matching he owns. At the end, Bob
outputs which case the input of BHH? belongs to based
upon the final state of the algorithm.

From the reduction for BHH?,n and the hard distribution
of BHH¢,,, the hard distribution of BHHgn exhibits the
following pattern: qi,...,¢,,; can be divided into n/(2t)
groups. Each group contains two ¢;’s and has the form
(g,t — q), where ¢ is subject to distribution £(¢) or O(¢)
depending on the promise. Furthermore, the ¢’s across the
n/(2t) groups are independent. The two cases to distinguish
are that all g;’s are even (referred to as the even case) and
that all ¢;’s are odd (referred to as the odd case).



For notational simplicity, let Fy = f(Mpm,q). Suppose that
the gap in (1) is positive. Let A = Eqg(t) 2(Fy + Fi—q) and
B = Ejuow) 2(Fy + Fi—y), then A — B > 0. Summing up
(n/2t) independent groups and applying a Chernoff bound,
with high probability, f(M) > (1 — §)5- A in the even case
and f(M) < (14 0)5; A, where § is a small constant to be
determined. If we can approximate f(M) up to a (1 + ¢)-
factor, say X, then with constant probability, in the even
case we have an estimate X > (1 —¢)(1 — 0)5: A and in
the odd case X < (14 ¢)(1+ )5z A. Choose 6 = c and
choose ¢ < ﬁ. Then there will be a gap between the
estimates in the two cases. The conclusion follows from the
lower bound for the BHH? problem.

A similar argument works when (1) is negative. []

Our main theorem in this section is the following, a re-
statement of Theorem 1 advertised in the introduction.

THEOREM 4. Let p € (0,00) \ 2Z. For every even integer
t, there exists a constant ¢ = c(t) > 0 such that any algo-
rithm that approzimates || X || within a factor 1+c with con-
stant probability in the streaming model must use Qt(lel/t)
bits of space.

The theorem follows from applying Theorem 3 to f(x) =
2P and m = t and verifying that (1) is satisfied. The proof
is technical and thus postponed to Section 4.

For even integers p, we change our hard instance to

Mok = 11t — Iy + Do,

where I,, is the m x m identity matrix. We then have the
following lemma, whose proof is postponed to the end of
Section 5.

LEMMA 1. For f(z) = 2P and integer p > 2, the gap
condition (1) is satisfied if and only if t < p/2, under the
choice that m =t.

This yields an Q(nlﬂ/ P) lower bound, which agrees with
the lower bound obtained by injecting the F,, moment prob-
lem into the diagonal elements of the input matrix [28, 33],
but here we have the advantage that the entries are bounded
by a constant independent of n. In fact, for even integers
p, we show our lower bound is tight up to poly(logn) fac-
tors for matrices in which every row and column has O(1)
non-zero elements by providing an algorithm in Section 6 for
the problem. Hence our matrix construction My, ; will not
give a substantially better lower bound. Our lower bound
for even integers p also helps us in the setting of general
functions f in Section 7.

4. PROOF OF THEOREM 4

ProOF. First we find the singular values of M, . As-
sume that 1 < k < m — 1 for now.

MLl 1% + v Do i 0)

T p—
Mm,ka,k == < 0 0

Let e; denote the i-th vector of the canonical basis of R?™.
It is clear that e; —e; (¢ = 2,...,k) are the eigenvectors
with corresponding eigenvalue «, which means that M,, i
has k — 1 singular values of V- Since M, has rank k+1,
there are two more non-zero singular values, which are the
square roots of another two eigenvalues, say r1 (k) and r2(k),

of M,Ekak It follows from tr(Mg’ka,k) = m + vk
that r1(k) 4 ro(k) = m? + v and from | M, x Moy i3 =
(m+7)2k+(m?—k)m? that ri(k)+r3 (k) = m* 4+ 2vkm+~>
Hence r1(k)r2(k) = m?y — kmy. In summary, the non-zero
singular values of My,  are: /7y of multiplicity k—1, NZD)
and +/r2(k), where r12(k) are the roots of the following
quadratic equation:

2> — (m® +y)z+ (m* —km)y = 0.

The conclusion above remains formally valid for £ = 0 and
k = m. In the case of k = 0, the matrix M, o has a single
non-zero singular value m, while 71 (k) = m? and ro(k) = ~.
In the case of k£ = m, the matrix M, ,, has singular values
v/m?2 4+~ of multiplicity 1 and /¥ of multiplicity m — 1,
while 71 (k) = m? + v and ro(k) = 0. Hence the left-hand
side of (1) becomes

=Y <’,’j> (k= 072 2 ) 452 )

even k

=03 (’Z) (0 =197 + 1772 (k) + 13" (1))

odd k
1

= F(Gl + Ga),

where v? on both sides cancel and

Gi=3 (-1 (Z‘) r2k), i=1,2. (3)
k

Our goal is to show that G1 + G2 # 0 when p is not an even
integer. To simplify and to abuse notation, hereinafter in
this section, we replace p/2 with p in (3) and hence G; and
G2 are redefined to be

Gi=> (-1 (f) k), i=1,2, (4)

and our goal becomes to show that G1 + G2 # 0 for non-
integers p.
Next we choose

1
ri(k) = 3 <m2—|—’y+ VmA = 2ym? 4 42 +4’ykm) ,

1
ra(k) = 3 (m2 +4 —/mt —2ym?2 + 42 +4’ykm) .

We claim that they admit the following power series expan-
sion in k (proof deferred to Section 4.2),

(k) = Ak, rE(k) = Bk,
s>0 s>0
where for s > 2,
s—1
(=1)° " y*m? e ifs—1 s—i—1,_ 2i
As = —~FF—F5— -1 Fpsi
Zo( ) i p,s,i7 m

Sl(m2 _ 7)2571

1=

—1)3~Pm?® s-1 . —1 ) .
Bs — ( ) yrm Z(_l)z <3 ' >Fp,s,ivlm2(511)7

1=0



and
Froi= ][ @ H — 25+ ).
j:O ':

We analyse A, first. It is easy to see that |Fs ;| < (2s)° for
s > 2p, and hence

P ;512( )IF

s, 2p—s s—1
(QS)SmQ(S_I) (1 + #)

s—i—1__ 24

|As] < m

¥'m

= Vams(2)m? )

1
< 2P 2e ~ < demry ) ’
T V2rsmP(m? =) \(m? —v)?
whence it follows immediately that > A.k® is absolutely
convergent. We can apply term after term the identity

> <’,”f> k(-1 = {;}<—1Wmu (7)

k=0

where {fn} is the Stirling number of the second kind, and
obtain that (since m is even)

Gi=> {;}m!AS,

s>m

which, using the fact that {;}m! < m?, can be bounded as

m—1
Gil < D0 A < em™ ()

s>m

for some absolute constants c1,c2 > 0.

Bounding G2 is more difficult, because B, contains an
alternating sum. However, we are able to prove the following
critical lemma, whose proof is postponed to Section 4.1.

LEMMA 2. For any fized non-integer p > 0, one can choose
Yo and m such that Bs have the same sign for all s > m and
all 0 < v < 7.

Since )., Bsm?® is a convergent series with positive terms,
we can apply (7) to >, Bsk® term after term, giving the gap
contribution from r2(k) as

Ga=) {;}m!BS,

s>m

Let am,; be the summand in B,,, that is,

-1 ) L
i = <s . )Fs,i’yzmz(s i 1)'
A

Since p is not an integer, am,; 7 0 for all i. Then
ami _m—i—1 p—2m+i vy
ami-1  i+1

p—m-+i m?2’
If we choose m such that m?/y > ([p] — 1)/(p — [p]) when
p > 1or m?/y 2 1/(p — [p]) when p < 1, it holds that
|rm,i| < 1/3 for all ¢ and thus the sum is dominated by

am,0. 1t follows that

yPm™
s!(m2 _ ,7)2m—1

GQZBWZ

lam,ol

2 (0 [p))*lol! T

~ (m — [p] —1)P~
It follows from Lemma 2 that the above is also a lower bound
for G2. Therefore G1 is negligible compared with G2 and
G1 + G2 # 0. This ends the proof of Theorem 4. [

4.1 Proof of Lemma 2

The difficulty is due to the fact that the sum in By is an
alternating sum. However, we notice that the sum in Bj is
a hypergeometric polynomial with respect to /m?. This is
our starting point.

[Pl ]

PROOF OF LEMMA 2. Let x = v/m? and write B; as

B. — (,1)5*1'7””73572 551(,1)“1 s—1 F. .z
T sl(m? — )21 & i o
(8)

45

s 5— 7. -1 7
B = )7 g S ()

Observe that the sum can be written using a hypergeometric
function and the series above becomes

1 T +p)
—o T T+ p-»)
oF1(1—s,14+p—2s;1+p—s;7),

S _ (_1\SAP
Bam” = (=1)"y s!(1

where I'(z) is the gamma function and 2 Fi(a, b; ¢; ) the hy-
pergeometric function with 2 upper parameters and 1 lower
parameter, defined as

2F1(a, b'cm)
g (a+n-1)-b(b+1)---(bt+tn-1)a"

cle+1)---(c+n—-1) n!’
Invoking Euler’s Transformation (see, e.g., [5, p78])

2Fi(a,bi;x) = (1—2) " Fi(¢c—a,c— b;c;z)

gives

o Fy(1—s, 14-p—2s; 1+p—s; ) = (1—x)** o Fy (p, s; p—s+1; ).
9)

Therefore

p
Bsm?® (1 +p) )zFl(p,s;p—s—i—l;a;). (10)

= (=) =T

(=1) stT(14+p—s
Since I'(1 + p — s) has alternating signs with respect to s,
it suffices to show that oFi(p,s;p — s + 1;2) > 0 for all
x € [0,2*] and all s > s*, where both z* and s* depend only
on p.

Now, we write 2 F1(p, s;p — s+ 1;2) =Y bn, where
b B+ ptn-D) st D) (s4n-1)
! (1+p—s)2+p—5)--(n+p—s)n! '

It is clear that b, has the same sign for all n > s — [p], and
has alternating signs for n < s — [p]. Consider

bn :(p—l—n—l)(s—i—n—l)x
bn—1 (p—s+n)n
One can verify that when n > 2s and z < 1/10, |bn/bn-1| <

3z < 1/3 and thus |Zn225 bn| < %\b23|. Also, when s >
3p is large enough, z < 1/10 and n < s/2. It holds that




|brn/bn—1| < 1 and thus {|b,|} is decreasing when n < s/2.

(In fact, {|bn|} is decreasing up to n = {725+ O(1).) Recall

that {b,} has alternating signs for n < s/2, and it follows

that
0< > ba<bo

2<n<s/2

Next we bound Zs/z<n<23
When n* < s — [p],

> n
s/2<n<2s

3

5 lbn-|

3.plp+1)---
2 n*!
3
2

by. Letn™ = argmax, /o n<2s |bn

IN

(p+n*) (5 - Lp} - ’I’L*)! (5+n* — 1)!xn*
(s=1[p] = D! s!

IN

IN

. (S+’I’L*71) o
Ss(n )p%x
(s—[g])]—nl*)

P45 '.IIS/Q

IN

—S5- €8

2
<a’

)

provided that z is small enough (independent of s) and s is
big enough. When n* > s — [p],

> b

s/2<n<2s
gs\bn*|

8 plp+1)--
2 n*!

IN

(s+n"—=1)! n*

(p+n") -
DI(n*—s+[p]—1)!s!

(s—[p]—

“\p s+n*—1 n*
§§5 (n) (s—[p],n*—s-i—[p}—Ls)x

S5 e(2s)P - 3% g (P

IN

IA

provided that z is small enough (independent of s) and s
is big enough. Similarly we can bound, under the same
assumption on z and s as above, that |b25| < z3. Therefore
|2 s/ bl < Kz? for some K and sufficiently large s and
small x, all of which depend only on p.

It follows that

2Fi(p,sip— s+ 1;x)

21—8_ —r= > b= | D> b

2<n<s/2 n>s/2
>1-—2 4 by — Ko
s—p—1
>1- PS4 - plp+ Ds(s+1) 2® — Ka®
s—p—1 20s—p—1)(s—p—2)
>0

for sufficiently large s and small z (independent of s).
The proof of Lemma 2 is now complete. []

4.2 Proof of Power Series Expansion

PrOOF OF CLAIM. We first verify the series expansion of
r1(k). It is a standard result that for |z| < 1/4,

14++v1—4 > 1—v1—14 >
. 2 le—z(/‘n—w”, 5 x:ZC”—lxn’
n=1

where C,, = n%rl (™) is the n-th Catalan number. Let z =

—vkm/(m?* —v)?, we have

V1—dx

1++1—4 1-—
(k) = m2 T =
=m? - (m2 ) Z Cr_12"
n=1
( n nkn
=m _ZC" 1 \en—1 — )2t

Applying the generalized binomial theorem,

T1 (k)p
TL Tbkn n v
,-Y)Qn 1

_ 2P b Py, i 2= c

v ()< (S

= m2p+z p _ i 2(p %) Z H7 1 Cn]—l k’ym)EJ j
- i m2_’)/2zjnj7i

ni,...,n;>1

_ m2p+ii <I;> m2e- z) k:’YmQS_Q Z H Co, 1,

ni,...,n;>1 j=1
nitotng=s

where we replace > ;1 with s. It is a known result using
the Lagrange inversion formula that (see, e.g., [49, p128])

2s —1—1
S e
s—1

ni,...,n;>1 j=1

nytedng=s
Hence (replacing ¢ with ¢ 4+ 1 in the expression above)
s—1
A. = (_1)s+1’ysm2p Z(_l)i p
s (m2 _ 7)23—1 P i+1

i+l <2S —1— 2) ] ms—2(i+1)(m2 —) an

s s—1

To see that (11) agrees with (5), it suffices to show that
s—1
i S — 1 s—i— i—s
Z(*l) < i )Fp,s,i’Y b =
s—1
i p i+1(25—i—2 s— 2(2+1)
! -1 — .

Comparing the coefficients of 77, we need to show that

s—1[s—1
(-1) 1( j )Fp,s,j,sjl
s—1
if p i+l [2s—i—2\ (2
=s! -1 —_—

Note that both sides are a degree-s polynomial in p with
head coefficient (—1)*7', so it suffices to verify they have



the same roots. It is clear that 0,...,7 are roots. When
r > j, each summand on the right-hand is non-zero, and
the right-hand side can be written as, using the ratio of
successive summands,

So-2Fi(147—p,14+j—524+7—2s1),

where So # 0. Hence it suffices to show that o F1 (1+j—p, 1+
j—8;2+j—2s;1)=0whenp=2s—kfor1 <k <s—j—1.
This holds by the Chu-Vandermonde identity (see, e.g., [5,
Corollary 2.2.3]), which states, in our case, that

2Pi(l+j—pl+j—s2+7—2s1) =
1+p—2s)2+p—2s)---(-14+p—s—j)
(2+7—25)(3+75—2s)---(—s)

The proof of expansion of r1(k) is now complete. Similarly,

starting from r(k) = y(F45=2) 4 m?(11=12) ) we can
deduce as an intermediate step that
(~1)"m” S~y P
Bs = —5—5— > (1.
(m2 — 5)2s—1 v i+1
Z“Fl 2s —1—2 s_i_l(mg_ )l
s s—1 7 K

and then show it agrees with (6). The whole proof is almost
identical to that for 71 (k).

The convergence of both series for 0 < k < m follows from
the absolute convergence of series expansion of (1 + z)? for
|z| < 1. Note that ra(m) corresponds to z = —1. [

We remark that one can continue from (10) to bound that
> Bsm® S 1/mP, where the constant depends on p. Hence
G1+ G2 ~ 1/m” and thus the gap in (1) is ©(1/2™m") with
constant dependent on p only.

S. PROOFS RELATED TO EVEN p

Now we prove Lemma 1 below. Since our new My, i is
symmetric, the singular values are the absolute values of the
eigenvalues. For 0 < k <m, —e; +em (i =k+1,...,m—1)
are eigenvectors of eigenvalue —1. Hence there are m —k—1
singular values of 1. Observe that the bottom m — k + 1
rows of M, i, are linearly independent, so the rank of M,,
is m — k + 1 and there are two more non-zero eigenvalues.
Using the trace and Frobenius norm as in the case of the
old M, i, we find that the other two eigenvalues A1 (k) and
Xo(k) satisfy A1(k) + A2(k) = m — 1 and A}(k) + M\3(k) =
(m — 1) + 2k. Therefore, the singular values 71 2(k) =
IA12(k)] = 3(v/(m —1)2+ 4k + (m — 1)). Formally define
ri,2(k) for k = 0 and Kk = m. When k = 0, the singular
values are actually 71(0) and r2(m) and when k = m, the
singular values are r1(m) and r2(0). Since k =0 and k =m
happens with the same probability, this ‘swap’ of singular
values does not affect the sum. We can proceed pretending
that r1,2(k) are correct for k = 0 and k = m.

Recall that the gap is 2m#_l(Gl + G2), where G and G2
are as defined in (4) (we do not need to replace p/2 with p
here). It remains the same to show that G1 + G2 # 0 if and
only if m < [p/2].

Proor OoF LEMMA 1. Applying the binomial theorem,

i (k) + 75 (k)

= <f><m—1>i<(m—1>2+4k>”2"

1:2|(p—1)
£ ;
1 . p—t Cpei . pi
=01 <f> (m—1)’ ( 2 )(m—l)%’? K
i:2|(p—i) i=o \ 7
Therefore

Gi+Gy=(-1)"m! > (f) (m —1)°
i:2|(p—1)

y2

;i p—i 9 Poi_ p—1t
S {7 Jm—patr T L
" ] m

j=

Note that all terms are of the same sign (inte_rpreting 0 as

any sign) and the sum vanishes only when {%} = 0 for all
i, that is, when m > [£]. [

Although when p is even, we have G1 + G2 = 0, however,
we can show that G1, G2 # 0, which will be useful for some
applications in Section 7. It suffices to show the following
lemma.

LEMMA 3. When p is even, the contribution from indi-
vidual r;(k) (i = 1,2) is not zero, provided that m is large
enough.

PROOF. First we have
pin . (M =1P I (), i fi/2 4 .
ry(k) = o ;; i (=1 s ) (m— 1)2sk :

When s > p/2, the binomial coefficient (Z/f) vanishes if i is
an even integer. Plugging in (7) we obtain the gap contri-

bution
p\[i/2
7 il

(m —1)"m! s 4°
L S 3
Hence it suffices to show that > R Bs # 0, where

s 4° p\[i/2
ot 2 ()

Note that Bs has alternating signs, so it suffices to show
that |Bs41| < |Bs|. Indeed,

s s+1
{ Yo nmer 4 {=r 8m
s 45 = < < 1
{n} otz

odd @
1<i<p—1

(m-12 {°} = (m—1)2
when m is large enough, and

(:43)
()

The proof is now complete. []

< 1.

_ i
_ 2
s+1

It also follows from the proof that for the same large m, the
gap from r;(k) has the same sign for all even p up to some
po depending on m. This implies that when f is an even
polynomial, the gap contribution from r;(k) is non-zero.



6. ALGORITHM FOR EVEN p

We first recall the classic result on Count-Sketch [18].

THEOREM 5 (COUNT-SKETCH). There is a randomized
linear function M : R™ — RS with S = O(wlog(n/s)) and
a recovery algorithm A satisfying the following. For any
x € R", with probability > 1 —§, A reads Mx and outputs
Z € R™ such that ||T — z||% < ||lz/|3/w.

We also need a result on ¢2-sampling. We say z is an (c, d)-
approximator to y if (1 —c)y — 6 <z < (1+c)y + 0.

THEOREM 6 (PRECISION SAMPLING [2]). Fiz 0 < € <
1/3. There is a randomized linear function M : R™ — R,
with S = O(¢"2log®n), and an “,-sampling algorithm A”
satisfying the following. For any non-zero x € R™, there is a
distribution Dy on [n] such that D4 (i) is an (¢,1/ poly(n))-
approzimator to |z;|*/||z||3. Then A generates a pair (i,v)
such that i is drawn from Dy (using the randomness of the
function M only), and v is a (¢,0)-approzimator to |x;|?.

The basic idea is to choose w1, ..., un with u; ~ Unif(0, 1)
and hash y; = xz/\/uT using a COUNT-SKETCH structure of
size ©(wlogn) (where w = ©(e~'logn 4 ¢~2)), and recover
the heaviest y; and thus x; if y; is the unique entry satisfying
yi > C||z||3/€ for some absolute constant C, which happens
with the desired probability |z;|?/||z||3 & 1/ poly(n). The
estimate error of x; follows from COUNT-SKETCH guarantee.

Now we turn to our algorithm. Let A = (a;;) be an integer
matrix and suppose that the rows of A are a1, az,.... There
are O(1) non-zero entries in each row and each column. As-
sume p > 4. We shall use the structure for /2 sampling
on n rows while using a bigger underlying COUNT-SKETCH
structure to hash all n? elements of a matrix.

For simplicity, we present our algorithm in Algorithm 1
with the assumption that u1,. .., u, areii.d. Unif(0,1). The
randomness can be reduced using the same technique in [2]
which uses O(logn) seeds.

THEOREM 7. For sparse matrices A with O(1) non-zero
entries per row and per column, Algorithm 1 returns a value
that is a (1 + €)-approzimation to | A||b with constant prob-

1-2/p poly(1/e,logn)).

ProoF. It is the guarantee from the underlying COUNT-
SKETCH structure of size ©(w logn) (where w = O(e* log n+
€7?)) that

ability, using space O(n

2

for all j. Since there are only O(1) non-zero entries in b;/, we
can use a constant-factor larger size w’ = O(w) for COUNT-
SKETCH such that

: [IBIZ
birj =by;+ TF

IBI%
. 12
w (12)

and thus
72 2
[6s (12 = llbir |2 £

Since each row ¢ is scaled by the same factor 1/,/u;, we can
apply the proof of Theorem 6 to the vector of row norms
{||lai||l2} and {]|b:]|2}, which remains still valid because of the
error guarantee (12) which is analogous to the 1-dimensional
case. It follows that with probability > 1 — 1/n (since there

Algorithm 1 Algorithm for even p and sparse matrices

Assume that matrix A has at most £ = O(1) non-zero
entries per row and per column.
: T+ O(n'~2/7 /)
: R+ O(logn)
w4+ O(e tlogn + e 2)
I < () is a multiset
Choose i.i.d. u1,...,un with u; ~ Unif(0,1).
: D« diag{1/\/u1,...,1/\/un}
: Maintain a sketch for estimating ||A||3 and obtain a (14
€)-approximation L as in [1]
8: In parallel, maintain 7" structures, each has R repetitions
of the Precision Sampling structure for all n? entries of
B = DA, t=1,...,T. The Precision Sampling struc-
ture uses a COUNT-SKETCH structure of size O(w logn).
9: Maintain a sketch for estimating ||B||3 and obtain an
(1 + €)-approximation L’ as in [1]
10: for t < 1 to T do
11: for r < 1 to R do
12: Use the r-th repetition of the t¢-th structure to
obtain estimates b1, ..., by, for all i’ and form rows
bi’ = (bi’17v~-abi'n)- 5
13: If there exists a unique i’ such that ||b}||3 > C'L/¢
for some appropriate absolute constant C’, return i’ and
exit the inner loop
14: end for
15: Retain only entries of b, that are at least 2L’ /\/w.
16:  ay « fugby
17: T« ITU{i"}
18: end for
19: Return Y as defined in (17)

are ©(logn) repetitions in each of the T structures), an i’ is
returned from the inner for-loop such that
y_ [lai 13 1

Pr{i' =i} =(1=x¢) A2 + poly () (13)
Next we analyse estimation error. It holds with high prob-
ability that |B||3 < wl||A||%. Since a; (and thus b;) has
O(1)-elements, the heaviest element a; ;s (resp. by ;) has
weight at least a constant fraction of ||a;||2 (resp. [|b:l]2).
It follows from the thresholding condition of the returned
||bi]|2 that we can use a constant big enough for w’ = O(w)
to obtain

a’i’j’ = \/U;’ * Z;i’j/ = (1 i G)CL,L'/j/7

Suppose that the heaviest element is b;;. Similarly, if |a;e| >
n]as;| (where n is a small constant to be determined later),
making w’ = Q(w/n), we can recover

Aie = \/Uj - Z;M = ay £ ena;; = (1 + 6)(11'@.

Note that there are O(1) non-zero entries a;¢ such that
laie] < mlaij| and each of them has at most O(ena;;) ad-
ditive error by the threshold in Step 15, the approximation
a; to a; therefore satisfies

la: — aillz < flaillz + OQ) - ¥ n?llaillz < 2¢*||ail)3

by choosing an 7 small enough. It follows that ||a;||2 isa (1+
O(e))-approximation to |lai||2, and [{(a:,a;)| = |{ai,a;)| £
O(6)llasll2la;l2-



Next we show that our estimate is desirable. First, we
observe that the additive 1/poly(n) term in (13) can be
dropped at the cost of increasing the total failure probability
by 1/ poly(n). Hence we may assume in our analysis that

Pr{i' =i} = (1+e¢) ”Z""‘L; : (14)

For notational simplicity let ¢ = p/2 and £; = ||a;||3 if i € I.
Let @y, ...,a:, be ¢ sampled rows. Define

q
~ . Lq
X(’Ll,.. H a“,alﬁl 'W,

1big e by

where it is understood that Qigyy = Qi - Let

Xy i) =TT Al
21y..-,2 = iy Qi .
@7 LA e g TBllac 13 - Tlas, 13
Then
' ; X (i | Al
|X(7,1 ...,’L)—X(zl_. <e ||az H2
o ’ H Y
= Al (15)
Also let
p(i) = Pr{row i gets sampled},
then
o1 llai; |13 9 |las, |13
. . . j=1 ij < j=1 i
pllpZZ"'p'L — NE
(ptiz) = -plia) = 4 T4
We claim that
q

1Al = Z H Qijy Qigyy )

When ¢ = p/2 is odd,
Al = (AT 4) - (AT A) A ||
= Z Z k Ji1 11,121417; ngis,i4 ’ "Aiquﬂiq 1Azq 1 Z)2

k£ t1,...,0g—1

= E E Aiy o Ajy ki Aiyis Ajr e  Alyig 1 Acgey

Bl i1yeyig_1
Jlseesdg—1

= Z<ai1 NORE H (@it s Qiyyn (s Qg yn ) <aiq—2 ) a’£><an727 ar),

odd t
1<t<q—2
which is a ‘cyclic’ form of inner products and the rightmost
sum is taken over all appearing variables (i, j: and £) in

the expression. A similar argument works when ¢ is even.
It follows that

[EX(ir, . i) — 4] <
a
Z p(il)"'p(iQ)X 7'17" H a’bzval]+1 )
i1,eeyig j=1
where i1, ...,1; are sampled according to the density func-

tion p(z). It is clear that each a; has only O(1) rows with
overlapping support, since each row and each column has
only O(1) non-zero entries. The observation is that the same
result holds for @;. This is due to our threshold in Step 15:

for an entry to be retained, it must be larger than || B|| ¢ /+/w
(the uniform additive error from COUNT-SKETCH), which is
impossible for zero entries. Therefore, each row ¢ appears in
O(1) contributing summands. Each contributing summand
is bounded by

q
2 2 2
e [T llas, 13 < ©(1) - emax{fjas, 137, ... llaz, 157}

Then
’EX(@, e yig)

127 < ellAllzg.  (16)

as desired, where the last inequality follows from the fact

of Schatten r-norms (r > 1) that || M|z > > | |Mi;|" and
choosing M = AT A and r = q. Our estimator is

- 1 L .

Y:W. > Xl yig), (17)

then |EY — [[A[|}] < €||All5. Next we bound the variance.
We will show below that the following bound holds when

{il,...,iq}ﬁ{jl,...,jq}:’f’,
E(X (i1,d2, i) X (1, 525 -, 4a)) SIANF A" (18)
Given this,

EY? - (EY)?

1 <. N .
SWZ Z E(X(le--alq)X(.]l?---a.]q))

P31 i1yeeigedlsesiq €1
{i1,-sig N {J1,--dq t ="

1 r(1—2

o I DI L T

r>1 i17~~7iq7j1,-~,jq61
{i1,ig 0 {d1,-- - dg t=r

2q—r 7‘1—7 2
DOHPTTRTR AR S AL

r>1

|1|2q

where the constant in the last < can be made arbitrar-
ily small if we choose |I| = T = Cn*~?/?/e? for C large
enough. It follows from Chebyshev’s inequality that X =
(14 O(¢))||Al|5 with constant probability.

Next we prove (18). It is similar to (15) that

‘X(il,- .. 77:q)X(j17‘ . 7jq))

=X (i1, 50g) X (G151 o)) S 5”‘4”?7 (19)

then
’]E(X(il,ig, i) X Gt g2y a)
—E(X (i1, 2, ..., 1q) X (1, J2, - - -, Ja))]
< D p(i1) -~ - p(ig)p(j1) - - - p(ja) T

..... GgyJ1s5dq p(sl)”'p(s'r)
fir, Z’I}m{h* Sdq}= {51, S}

2q—r
s > el AIF (maxlasl3) " (20)
ilv“'viqvjla'“ajq
{'L'lx-n;iq}m{jl ...»jq}:{slwwsr}

4q—2
SellAlF Zl\az\lq '

2p—2
< el ANF A



where (20) follows from column sparsity and the last in-
equality follows from the property of Schatten norms as in
(16). Now it suffices to show that

E(X (i1, 02, .. . ,ig) X (j1, J2, - -, da)) SIAIF AP, (21)
We write

E(X (1,42, ... ,iq) X (J1,J2, - -1 Jq)) = 2+ A,
where
s= ¥ H?ﬁrl\aihlcllél\ﬁgtl\% A2 1

{ic}{3e} t=1117ee 2

[{ie}n{ge}|=r

: X(i17i27' M viq)X(jlvaa e ajq))

1A 1
= H<ait s @ig 1) (Qjes Qi)

T, las 3 11

{it}. {5t}
H{ie}n{ie}=r

and
A= Z }(Hg:l p(ie)p(j)

paoos =P
Geyn e 1=

g:l ||azf‘|%||an||% ||A||27‘—4q
[Ti-y llas 113 "

: X(ila’i??' . ’7iq)X(j17j27' . ajq))v

7jq € ]
,dq}| = r. Tt follows from a

where the sum is over all choices of i1,...,14q,j1, ...
such that |{i1,...,iq} N {Jj1,.-.
similar argument as before that

DIESEESY

{ie},{de}
[{ieYn{je}|=r

2 2\ 247" 2 2p—2
AL (maxlail3) ™ S IAF A"

and

T 2q T T —ar
A< YT dlAlF (maxllai) S dlAIFIAL
{it}. {4t}
Kie3n{se}=r
establishing (21). We used the assumption of column spar-
sity for both bounds, c.f. (20). [

7. GENERAL FUNCTIONS AND APPLICA-
TIONS

The following is a direct corollary of Theorem 4.

THEOREM 8. Let f be a diagonally block-additive func-
tion. Suppose that f(x) ~ zP for x near 0 or x near infinity,
where p > 0 is not an even integer. For any even integer t,
there exists a constant ¢ = c(t) > 0 such that any streaming
algorithm that approzimates f(X) within a factor 1+ c with
constant error probability must use Qt(lel/t) bits of space.

PROOF. Suppose that f(z) ~ az? for x near 0, that is, for
any 1 > 0, there exists § = d(n) > 0 such that a(1—n) f(z) <
2 < a(l+n)f(x) for all z € [0,9).

Let ¢p be the approximation ratio parameter in Theorem 4
for Schatten p-norm. Let € be sufficiently small (it could de-
pend on ¢ and thus m) such that the singular values of e M
are at most 0(co/3), where M is the hard instance matrix
used in Theorem 4. Then a(1 — co/3)f(eM) < |[eM]]h <
a(l + co/3)f(eM). Therefore, any algorithm that approx-
imates f(eM) within a factor of (1 £ co/3) can produce a
(1 £ co)-approximation of |eM]|5. The lower bound follows
from Theorem 4.

When f(x) ~ «P for  near infinity, a similar argument
works for AM where X is sufficiently large. [

The following is a corollary of Lemma 1.

THEOREM 9. Suppose that f admits a Taylor expansion
near 0 that has infinitely many even-order terms of non-
zero coefficient. Then for any arbitrary large m, there exists
¢ = ¢(m) such that any data stream algorithm which outputs,
with constant error probability, a (1 + c)-approzimation to
| X5 requires Q(N'*~1/™) bits of space.

ProoF. If the expansion has a odd-order term with non-
zero coefficient, apply Theorem 8 with the lowest non-zero
odd-order term. Hence we may assume that all terms are
of even order. For any given m, there exists p > 2m such
that the z? term in the Taylor expansion of f has a non-zero
coefficient a,,. Let p be the lowest order of such a term, and
write

p—1
f(z) = Zaixpfl + apz? + O(z"t).
i=0

Let € > 0 be a small constant to be determined later and
consider the matrix e M, where M is our hard instance ma-
trix used in Lemma 1. Lemma 1 guarantees a gap of f(eM),
which is then a,e?G + R(e), where G is the gap for ¥ on
unscaled hard instance M and |R(e)] < KeP*' for some
constant K depending only on f(z), m and p. Choosing
€ < apG/K guarantees that the gap a,e?G + R(e) #0. [

Now we are ready to prove the lower bound for some eigen-
value shrinkers and M-estimators. The following are the
three optimal eigenvalue shrinkers from [27]:

e m(z) =2""'\/(22 —a—1)2 —4a for z > 1+ \/a and

m(xz) =0forz <1+ +/a,

o no(x) = %\/1:2 —a—1+4/(z?—a—1)? —4a for z >

1+ a and n2(z) =0 for z < 14+ /a,

o ma(2) = (an3(x)) " max {ni(z) — @ — azms(x), 0}.
where we assume that 0 - co = 0. Since 7;(z) ~ x when x is
large, the lower bound follows from Theorem 8.

Some commonly used influence functions p(x) can be found
in [56], summarized in Table 2. Several of them are asymp-
totically linear when z is large and Theorem 8 applies. Some
are covered by Theorem 9. For the last function, notice that
it is a constant on [c, +00), we can rescale our hard instance
matrix M such that the larger root r1 (k) falls in [¢, +00) and
the smaller root r2(k) in [0, c]. The larger root 71 (k) there-
fore has no contribution to the gap. The contribution from
the smaller root r2(k) is nonzero by the remark following
Lemma 3.

Finally we consider functions of the form

k
F(X) =Y f(o:(X))
i=1
and prove (a slightly rephrased) Theorem 2 in the introduc-
tion.

THEOREM 10. Let a € (0,1/2). Suppose that f is strictly
increasing. There exists No and co such that for all N >
No, k < aN and ¢ € (0,c0), any data stream algorithm
which outputs, with constant error probability, a (1 + ¢)-
approzimation to Fy(X) of X € RV*N requires
Qo (N1FOQ/ )y pits of space.



Function p(x) Apply Function p(z) Apply
(\/m —-1) Theorem 8 fi; 2 Theorem 8
(£ —In(1+4 %)) Theorem 8 %(1 — exp(—2?%/c?)) Theorem 9
{ 2/2 x < ki Theorem 8 {C: —(1—-2%/c*)?), z<g¢ Remark after
x—k/? x>k c?/e6, T >c Lemma 3
% In(1+ 2 p2 Theorem 9

Table 2: Application of Theorem 8 and Theorem 9 to some M-estimators from [56].

PRrOOF. Similarly to Theorem 3 we reduce the problem
from the BHH? problem. Let m = t be the largest integer
such that 1/(t2") > a. Then m = t = O(In(1/a)). We
analyse the largest k singular values of M as defined in (2).
Recall that qi,...,¢qn/m are divided into N/(2m) groups.
Let X1,...,XnN/(@2m) be the larger ¢;’s in each group, then
X1,...,Xn/@2m) are iid. random variables. In the even
case, they are defined on {m/2,m/2+ 2,...,m} subject to
the distribution

(2)7 3207 . m
Pr X——+ 2 . =0,2,...,—.
=5} = { (2 4+, §>0, 7 2

In the odd case, they are defined on {m/2+1,m/2+43,...,m—

1} with probability density function

mo m . m
PY{X1—2+_]}—2pm(2+j)7 _]—1,37...72 1.
With probability 1/2’"727 X; = m in the even case and
with probability m/2™ 72, X; = m/2 — 1 in the odd case. Tt
immediately follows from a Chernoff bound that with high
probability, it holds that X; = m (resp. X; = m — 1) for at
least (N/2m)-(1/2™72)(1-6) = (1—38)N/(m2™~ ') different
s in the even case (resp. odd case). Since r1(m—1) < r1(m)
and f is strictly increasing, the value Fj(X), when k <
aN < (1 — §)N/(m2™™ '), with high probability, exhibits
a gap of size at least ¢ - k for some constant ¢ between the
even and the odd cases. Since Fi(M) = ©O(k) with high
probability, the lower bound for Ky-Fan k-norm follows from
the lower bound for BHH?. O

The lower bound for Ky-Fan k-norms follows immediately.
For k < aN it follows from the preceding theorem with
f(x) = x; for k > aN, the lower bound follows from our
lower bound for the Schatten 1-norm by embedding the hard
instance of dimension alN X aN into the N x N matrix X,
padded with zeros.
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