Sublinear Time Low Rank Approximation of PSD Matrices

Cameron Musco MIT David Woodruff CMU

Low Rank Approximation

- A is an n x d matrix
 - Think of n points in R^d
- E.g., A is a customer-product matrix
 - A_{i,i} = how many times customer i purchased item j
- A is typically well-approximated by low rank matrix
 - E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
 - Easy to store, quick to multiply, data more interpretable

What is a Good Low Rank Approximation?

Singular Value Decomposition (SVD)

Any matrix $A = U\Sigma V$

- U has orthonormal columns
- Σ is diagonal with non-increasing positive entries down the diagonal
- V has orthonormal rows
- Truncated SVD rank-k approximation: $A_k = U_k \Sigma_k V_k$

$$\left(egin{array}{c} \mathbf{A} \end{array}
ight) = \left(egin{array}{c} \mathbf{U}_k \end{array}
ight) \left(egin{array}{c} \mathbf{\Sigma}_k \end{array}
ight) \left(egin{array}{c} \mathbf{V}_k \end{array}
ight) + \left(egin{array}{c} \mathbf{E} \end{array}
ight)$$

What is a Good Low Rank Approximation?

■ A_k = argmin_{rank k matrices B} |A-B|_F

•
$$|C|_F = (\Sigma_{i,j} C_{i,j}^2)^{1/2}$$

Computing A_k exactly is expensive

Approximate Low Rank Approximation

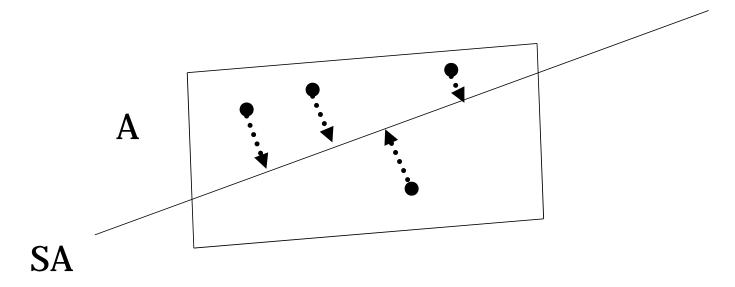
Goal: output a rank k matrix A', so that

$$|A-A'|_F \le (1+\varepsilon) |A-A_k|_F$$

 Can do this in nnz(A) + (n+d)*poly(k/ε) time w.h.p. [CW13]

Solution to Low-Rank Approximation

- Given n x d input matrix A
- Compute SA using a sketching matrix S with k/ε << n rows.
 SA takes random linear combinations of rows of A



 Project rows of A onto SA, then find best rank-k approximation to points inside of SA

What is the Matrix S?

- S can be a k/ε x n matrix of i.i.d. normal random variables
- [S06] S can be an O~(k/ε) x n Fast Johnson Lindenstrauss Matrix
- [CW13] S can be a poly(k/ε) x n CountSketch matrix

00100100 1000000 000-110-10 0-1000001

Caveat: Projecting the Points onto SA is Slow

- Current algorithm
 - Compute S*A
 - Project each of the rows onto S*A
 - Find best rank-k approximation of projected points inside of rowspace of S*A
- Bottleneck is step 2
- Approximate the projection
 - Fast algorithm for approximate regression $\min_{X} |X(SA)-A|_{F}^{2}$ $\min_{X} |X(SA)R-AR|_{F}^{2}$
 - $nnz(A) + (n + d)*poly(k/\epsilon)$ time

Structure-Preserving Low Rank Approximation

- Let A be an arbitrary n x n matrix
- Suppose we also require our rank-k approximation A' to be positive semidefinite (PSD)
 - A' is symmetric and all eigenvalues are non-negative
- Covariance matrices, kernel matrices, Laplacians are PSD
- Roundoff errors may make a PSD matrix non-PSD
 - We do not assume A is PSD but want A' to be PSD

Structure-Preserving Low Rank Approximation

- Goal: output a rank-k PSD matrix A' for which |A-A'|_F is small
- Can assume A is symmetric

•
$$A = A^{sym} + A^{asym}$$
, where $A^{sym}_{i,j} = \frac{A_{i,j} + A_{j,i}}{2}$ and $A^{asym}_{i,j} = \frac{A_{i,j} - A_{j,i}}{2}$

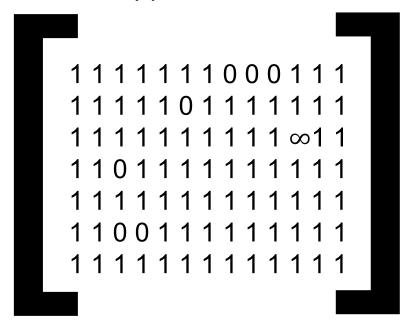
- $|A A'|^2_F = |A^{\text{sym}} A'|_F^2 + |A^{\text{asym}}|_F^2$
- Compute A^{sym} in nnz(A) time
- What is the best PSD rank-k approximation A_{k,+} to A?
- A_{k,+} is obtained by zeroing out all but its top k positive eigenvalues

PSD Low Rank Approximation

- [CW17]: In nnz(A) + n poly(k/ ε) time, can find a PSD rank-k A' so that $|A-A'|_F \le (1+ε) |A-A_{k,+}|_F$
- Previous work
 - [KMT09] Nystrom method based on uniform sampling requires incoherence assumptions on A
 - [GM13] Weaker $|A-A'|_F \le |A-A_{k,+}|_F + \epsilon |A-A_{k,+}|_*$ bound, where $|.|_*$ is the nuclear norm
 - [WLZ16] Running time at least n^2k/ϵ and A' has a larger rank k/ϵ

How Good Are These Algorithms?

 For general matrices A, there is an nnz(A) time lower bound for relative error approximation



Lower bounds hold even to estimate $|A|_F^2$ up to relative error

Similar nnz(A) time lower bound holds for outputting a relative error
 PSD low rank approximation to an arbitrary matrix A

What if Your Input Matrix is Itself PSD?

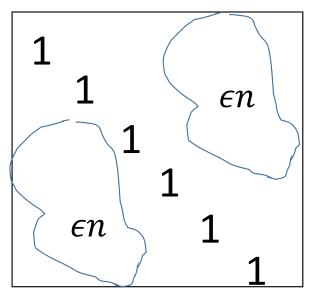
- Let A be an arbitrary n x n PSD matrix
- Covariance matrices, kernel matrices, Laplacians are PSD
 - Want to approximate them for efficiency
- Is there an nnz(A) time lower bound for low rank approximation of PSD matrices?
- Is there an nnz(A) time lower bound for estimating the norm |A|²_F of a PSD matrix?

Estimating the Norm of a PSD Matrix

$$\blacksquare$$
 $|A|_F^2 = \left|BB^T\right|_F^2 = \sum_{i,j} < B_i, B_j >^2$, where $A = BB^T$

$$- < B_i, B_j >^2 \le |B_i|_2^2 \cdot |B_j|_2^2 \le \max_{i,j} < B_i, B_i >^2$$

- If $|B_i|_2^2 = 1$ for all i, then
 - (1) < B_i, B_j >² \le 1 for all i and j
 - (2) if $\sum_{i \neq j} \langle B_i, B_j \rangle^2 \ge \epsilon \sum_i \langle B_i, B_i \rangle^2$ then $\sum_{i \neq j} \langle B_i, B_j \rangle^2 \ge \epsilon n$
- Uniformly sampling $n \cdot poly(\frac{1}{\epsilon})$ terms $< B_i, B_j >^2$ for $i \neq j$ suffices for estimating $\sum_{i \neq j} < B_i, B_j >^2$



$$(1) < B_i, B_i >^2 \le 1$$
 for all i,j

$$(2)\sum_{i\neq j} < B_i, B_j >^2 \geq \varepsilon n$$

Conditions imply uniformly sampling $n \cdot poly(\frac{1}{\epsilon})$ entries works

- When $|B_i|_2 \neq 1$ for all i, sample an entry with probability $p_{i,j} = |B_i|^2 \cdot |B_j|^2 / |B|_F^4$
- Let $X = \langle B_i, B_j \rangle^2/p_{i,j}$ if entry i,j is sampled

•
$$E[X] = \sum_{i,j} p_{i,j} < B_i, B_j >^2 / p_{i,j} = \sum_{i,j} < B_i, B_j >^2 = |B^T B|_F^2 = |A|_F^2$$

■
$$Var[X] = \sum_{i,j} p_{i,j} < B_i, B_j >^4 / p_{i,j}^2 \le n \cdot |A|_F^4$$

Sublinear Time Low Rank Approximation of PSD Matrices

• Our Result: Given an n x n PSD matrix A, in $n \cdot k^2 \cdot poly(\frac{1}{\epsilon})$ time we can output a (factorization of a) rank-k matrix A' for which w.h.p.

$$|A - A'|_F \le (1 + \epsilon)|A - A_k|_F$$

- The number of entries read is $n \cdot k \cdot poly(\frac{1}{\epsilon})$
- Lower Bound: Any algorithm requires reading $\Omega(\mathbf{n} \cdot \mathbf{k} \cdot \frac{1}{\epsilon})$ entries

Starting Point: Connection to Adaptive Sampling

Adaptively sample a column proportional to its distance to the span of columns chosen so far [DV06]:

- C $\leftarrow \emptyset$ For i = 1, 2, ..., $\frac{\text{poly(k)}}{\epsilon}$
- Sample a column A_i with probability $\frac{|A_i P_C A_i|_2^2}{|A P_C A_i|_2^2}$
- $C \leftarrow C \cup \{A_i\}$
- End
- There is a k-dimensional subspace V inside the span of C so that

$$|A - P_V A|_F^2 \le (1 + \epsilon)|A - A_k|_F^2$$

Connection to Adaptive Sampling

- \bullet Computing the sampling probabilities and finding P_VA only requires knowing inner products between columns of A and C
- Algorithm needs $n \cdot \frac{poly(k)}{\varepsilon} \ll n^2$ inner products
- Since A is PSD, $A = B^TB$, and given A, all inner products between columns (or rows) of B have been precomputed!
- Run adaptive sampling algorithm using A to output P_VB :

$$|B - P_V B|_F^2 \le (1 + \epsilon)|B - B_k|_F^2$$

• But P_VA can be an arbitrarily bad low rank approximation to A...

Projection Cost-Preserving Sketches

• Instead, sample a set C of columns of A which not only contains a good rank-k approximation, but is a *Projection Cost-Preserving Sketch (PCP)*:

[CEMMP15] There is a diagonal rescaling matrix S so that for all k-dimensional projection matrices P: $|SC(I - P)|_F^2 = (1 \pm \epsilon)|A(I - P)|_F^2$

- If P approximately minimizes the LHS, then P approximately minimizes the RHS
- Find a PCP C of $\operatorname{poly}\left(\frac{k}{\epsilon}\right)$ columns of A and output its top k left singular vectors
- If C can be found by reading $n \cdot k \cdot \operatorname{poly}\left(\frac{1}{\epsilon}\right)$ entries of A, we are done

Building a PCP

- How should we sample the columns C?
- [LMP13,KLM+14,AM15] Ridge leverage scores:

$$\tau_{i}(A) = a_{i}^{T} \left(AA^{T} + \frac{|A - A_{k}|_{F}^{2}}{k} I \right)^{-} a_{i}$$

- Give a "smooth" rank-k version of standard leverage scores
- They are the standard leverage scores of [A; $(|A A_k|_F/\sqrt{k}) \cdot I$]

Ridge Leverage Scores

[CMM16] Let $\beta \in (0,1)$. Suppose $\widetilde{\tau_i} \geq \beta \tau_i$ for all i, and $p_i = \frac{\widetilde{\tau_i}}{\sum_j \widetilde{\tau_j}}$. Sample a set C of $t = O((k \log k)/(\beta \varepsilon^2))$ columns of A with replacement, where the i-th column of C is $\frac{A_j}{(tp_j)^{\frac{1}{2}}}$ with probability p_j . With high probability,

$$(1 - \epsilon)CC^{T} - \frac{\epsilon}{k}|A - A_{k}|_{F}^{2} \cdot I \leq AA^{T} \leq (1 + \epsilon)CC^{T} + \frac{\epsilon}{k}|A - A_{k}|_{F}^{2} \cdot I$$

- Multiplicative/additive generalization of a subspace embedding
- Proof uses stable rank version of matrix Bernstein bound

Ridge Leverage Scores

[CMM16] Let $\beta \in (0,1)$. Suppose $\widetilde{\tau_i} \geq \beta \tau_i$ for all i, and $p_i = \frac{\widetilde{\tau_i}}{\sum_j \widetilde{\tau_j}}$. Sample a set C of $t = O((k \log k)/(\beta \varepsilon^2))$ columns of A, where the i-th column of C equals $\frac{A_j}{(tp_j)^{\frac{1}{2}}}$ with probability p_j . With high probability, C is a PCP:

For all k-dimensional projection matrices P, $|C(I-P)|_F^2 = (1 \pm \epsilon)|A(I-P)|_F^2$

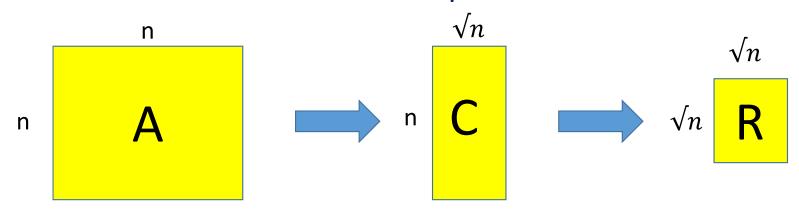
- Proof uses the multiplicative/additive generalization of a subspace embedding
- But how do we quickly get approximations $\widetilde{\tau_i}$ to the ridge leverage scores?

• Recall
$$\tau_i(A) = a_i^T \left(AA^T + \frac{|A-A_k|_F^2}{k}I\right)^- a_i$$

Ridge Leverage Scores

- Unclear how to obtain good approximations to the $\tau_i(A)$
- Instead, since $A=BB^T$, A is the "kernel matrix" of a linear kernel, use [MM16] which shows how to approximate the $\tau_i(B)$ up to a $\Theta(1)$ factor with $n \cdot k$ kernel evaluations. Each evaluation corresponds to a single entry of A
- We show for all i, $\tau_i(A) \leq \frac{\sqrt{n}}{\sqrt{k}} \, \tau_i(B)$
- Sampling $(nk)^{.5} poly \left(\frac{1}{\epsilon}\right)$ columns of A according to the $\tau_i(B)$ gives a PCP C for A!
- But we still need to sample at least n.5 columns of A...

Reduction to a Small Square Submatrix



- C is an n x (nk). 5 poly($\frac{1}{\epsilon}$) reweighted column submatrix of A
- We show, using that C is a PCP of A, that its rank-k standard row leverage scores are within a factor of $\left(\frac{n}{k}\right)^{.5}$ of the ridge leverage scores of B
- Implies sampling a reweighted subset R of $(nk)^{.5}$ poly $(\frac{1}{\epsilon})$ rows of C is a PCP for C!

Processing the Small Matrix R

- Since R is small, can use sketching techniques to find its approximate top k right singular vectors
- Since R is a PCP for C, can use sampling techniques based on its top k right singular vectors give approximate top k left singular vectors of C
- Since C is a PCP for A, its top k left singular vectors span a good low rank approximation to A
- Overall time is $\widetilde{O}(nk)$ poly $\left(\frac{1}{\epsilon}\right)$

Conclusions

- First sublinear time algorithm for relative error low rank approximation of PSD matrices, bypassing an nnz(A) lower bound for general matrices
- Tight $\widetilde{\Theta}(nk)$ bounds for constant ϵ
- Spectral norm error impossible in sublinear time, but can find a rank-k A' with $|A-A'|_2^2 \leq (1+\epsilon)|A-A_k|_2^2 + \frac{\epsilon}{k}|A-A_k|_F^2 \text{ in } n \cdot \text{poly}(\frac{k}{\epsilon}) \text{ time}$
- Can output a PSD rank-k matrix A' in $n \cdot poly(\frac{k}{\epsilon})$ time
- Open questions: (1) tighter dependence on ϵ , (2) other families of matrices?