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Low Rank Approximation

Ais an n x d matrix
= Think of n points in Rd

E.g., Ais a customer-product matrix
= A;; = how many times customer i purchased item |

A is typically well-approximated by low rank matrix
= E.g., high rank because of noise

Goal: find a low rank matrix approximating A
= Easy to store, quick to multiply, data more interpretable



What is a Good Low Rank Approximation?

Sinqular Value Decomposition (SVD)

Any matrix A = U2V
= U has orthonormal columns
= 2 is diagonal with non-increasing positive entries down the diagonal
= VV has orthonormal rows

= Truncated SVD rank-k approximation: A, = U, 2, V,




What is a Good Low Rank Approximation?

= A, = argmin |A-B|-

rank kK matrices B

" |Cle = (%;; G;A)"°

= Computing A, exactly is expensive



Approximate Low Rank Approximation

= Goal: output a rank k matrix A', so that
" |A-Ale <(1+€) [A-A

= Can do this in nnz(A) + (n+d)*poly(k/e)
time w.h.p. [CW13]



Solution to Low-Rank Approximation

= Given n x d input matrix A

= Compute SA using a sketching matrix S with k/e << n rows.
SA takes random linear combinations of rows of A

SA

* Project rows of A onto SA, then find best rank-k approximation
to points inside of SA



What is the Matrix S?

» S can be a k/e x n matrix of i.i.d. normal random variables
» [S06] S can be an O~(k/¢) x n Fast Johnson Lindenstrauss Matrix

= [CW13] S can be a poly(k/e) x n CountSketch matrix

00100100 SA can be
10000000 computed in
000-110-10

nnz(A) time
0-100 00 01



Caveat: Projecting the Points onto SA is Slow

= Current algorithm
= Compute S*A
= Project each of the rows onto S™A

* Find best rank-k approximation of projected points
inside of rowspace of S*A

= Bottleneck is step 2

= Approximate the projection
» Fast algorithm for approximate regression
miny |[X(SA)-A|2 miny [X(SA)R-AR|:2

= nnz(A) + (n + d)*poly(k/e) time



Structure-Preserving Low Rank Approximation

Let A be an arbitrary n x n matrix

Suppose we also require our rank-k approximation A’ to be positive
semidefinite (PSD)

= A'is symmetric and all eigenvalues are non-negative

Covariance matrices, kernel matrices, Laplacians are PSD

Roundoff errors may make a PSD matrix non-PSD
= \WWe do not assume A is PSD but want A’ to be PSD



Structure-Preserving Low Rank Approximation

Goal: output a rank-k PSD matrix A’ for which |A-A'|¢ is small

Can assume A is symmetric
s A= ASYM | p3sym where ASY™ — AjjtAji Ajj—Aji
) i,j - 2
2 2 2
" |A- AR = [AYT - A'lg + |ATYRE

= Compute A*™ in nnz(A) time

asym __
and Aj;" =

What is the best PSD rank-k approximation Ay . to A?

= Ay, Is obtained by zeroing out all but its top k positive eigenvalues



PSD Low Rank Approximation

= [CW17]: In nnz(A) + n poly(k/ €) time, can find a PSD rank-k A’ so that
= AN | <(1+€) |A-AL L

= Previous work

= [KMTO09] Nystrom method based on uniform sampling requires
incoherence assumptions on A

= [GM13] Weaker |A-A’'[; < |A-A, |+ €|A — Ay 4|« bound, where
|. |« is the nuclear norm

= [WLZ16] Running time at least n“k/e and A’ has a larger rank k/e



How Good Are These Algorithms?

= For general matrices A, there is an nnz(A) time lower bound for
relative error approximation
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= Similar nnz(A) time lower bound holds for outputting a relative error
PSD low rank approximation to an arbitrary matrix A



What if Your Input Matrix is Itself PSD?

Let A be an arbitrary n x n PSD matrix

= Covariance matrices, kernel matrices, Laplacians are PSD
= Want to approximate them for efficiency

* |s there an nnz(A) time lower bound for low rank approximation
of PSD matrices?

= |s there an nnz(A) time lower bound for estimating the norm |A|3
of a PSD matrix?



Estimating the Norm of a PSD Matrix

|A|F—|BBT| = Yi; < Bi,B; >%, where A=BB"

" <B;,B; >?*< |B;|5- |B -| <mzi1x<B1,B >2

= |f |B;|5 = 1 for all i, then
" (1) < Bj,Bj >*< 1foralliand]j
" (2) if Ziij < Bi' B] >22 Ezi < Bi! Bi >2 then Ziij < Bi) B] >22 €en

* Uniformly sampling n - poly(—) terms < B;, B; >2 for i # j suffices for
estimating };.; < B;, Bj >?
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When [B;|, # 1 for alli, sample an entry with probability p;; = IB:|? - |B]-|2 /|B|&

(1) < By, B; >*< 1forall i)

(2)2 < B;,B; >*>en
1#]
Conditions imply uniformly
sampling n - poly (%) entries works

Let X = < B;, Bj >%/p;; if entry i,jis sampled

2
E[X] = Xi;pij < Bi, B; >*/pj; = Xi; < Bj, B >* = |BTB|F = |Al§

Var[X] = ¥;pij < B;,Bj >* /pij <n - |Alg



Sublinear Time Low Rank Approximation of PSD Matrices

e Our Result: Given an n x n PSD matrix A, inn - k? - poly(%) time we can
output a (factorization of a) rank-k matrix A’ for which w.h.p.

A=Al < (1+¢€)|A—Axlf
* The number of entriesreadisn - k - poly(%)

* Lower Bound: Any algorithm requires reading Q(n - k - %) entries



Starting Point: Connection to Adaptive Sampling

Adaptively sample a column proportional to its distance to the span of
columns chosen so far [DVO6ﬁ):

e Ce0
¢ Fori=1,2, .., 20YW
e 2
* Sample a column A; with probability lAi_PCAilzz
|A-PcA|g
*C«<CU {Al}
* End

* There is a k-dimensional subspace V inside the span of C so that
|A = PyAlE < (1 +€)|A — Agl}



Connection to Adaptive Sampling

e Computing the sampling probabilities and finding PyA only requires
knowing inner products between columns of Aand C

poly(k)

— < n? inner products

* Algorithm needs n -

e Since Ais PSD, A = BTB, and given A, all inner products between columns
(or rows) of B have been precomputed!

* Run adaptive sampling algorithm using A to output PyB:
B — PyBI§ < (1 +€)IB — Byl

* But PyA can be an arbitrarily bad low rank approximation to A...



Projection Cost-Preserving Sketches

Instead, sample a set C of columns of A which not only contains a good rank-k
approximation, but is a Projection Cost-Preserving Sketch (PCP):

[CEMMP15] There is a diagonal rescaling matrix S so that for all k-dimensional projection
matrices P: [SC(I — P)|2 = (1 + ¢)|A(I — P)|3

If P approximately minimizes the LHS, then P approximately minimizes the RHS

Find a PCP C of poly (IE() columns of A and output its top k left singular vectors

If C can be found by reading n - k - poly (E) entries of A, we are done



Building a PCP

* How should we sample the columns C?

e [LMP13,KLM+14,AM15] Ridge leverage scores:

|A — Axlf
K I dj

1;(A) = a; (AAT +

* Give a “smooth” rank-k version of standard leverage scores

* They are the standard leverage scores of [A; (JA — Aylg/VK) -



Ridge Leverage Scores

[CMM16] Let B € (0,1). Suppose T; = Bt; for alli, and p; = Sampleaset Coft =

%
e N
O((klogk)/(Be?)) columns of A with replacement, where the i-th column of C is —5

(tpj)?

with probability p;. With high probability,
€ €
(1 —e)CcCT —ElA—AkIIZ: I AAT < (1 +e)CCT+E|A—Ak|12: -1
* Multiplicative/additive generalization of a subspace embedding

* Proof uses stable rank version of matrix Bernstein bound



Ridge Leverage Scores

~

[CMM16] Let B € (0,1). Suppose T; = ft; foralli, and p; = ;if . Sample a set C of
i T A

t = 0((klogk)/(Be?)) columns of A, where the i-th column of C equals T with
(tpj)?

probability p;. With high probability, Cis a PCP:
For all k-dimensional projection matrices P, |C(I — P)|2 = (1 + €)|A(I — P)|?
* Proof uses the multiplicative/additive generalization of a subspace embedding

e But how do we quickly get approximations T; to the ridge leverage scores?

_— 2 -
* Recall T;(A) = a; (AAT + %I) a;



Ridge Leverage Scores

* Unclear how to obtain good approximations to the t;(A)

e Instead, since A = BBT, A is the “kernel matrix” of a linear kernel, use [MM16] which
shows how to approximate the t;(B) up to a ©(1) factor with n - k kernel evaluations.
Each evaluation corresponds to a single entry of A

* We show for all i, T;(A) < % T;(B)

e Sampling (nk)'5poly (E) columns of A according to the t;(B) gives a PCP C for A!

e But we still need to sample at least n”> columns of A...



Reduction to a Small Square Submatrix
n \/TL
Vn

n A ‘”C ‘\/nR

e Cisannx (nk)'5poly(§) reweighted column submatrix of A

* We show, using that Cis a PCP of A, that its rank-k standard row leverage scores

n\"

5
are within a factor of (k) of the ridge leverage scores of B

* Implies sampling a reweighted subset R of (nk)>poly (%) rows of Cis a PCP for C!



Processing the Small Matrix R

* Since R is small, can use sketching techniques to find its approximate
top k right singular vectors

* Since Ris a PCP for C, can use sampling techniques based on its top k
right singular vectors give approximate top k left singular vectors of C

* Since Cis a PCP for A, its top k left singular vectors span a good low rank
approximation to A

* Overall time is O(nk)poly (%)



Conclusions

* First sublinear time algorithm for relative error low rank approximation of
PSD matrices, bypassing an nnz(A) lower bound for general matrices

» Tight ©(nk) bounds for constant €

» Spectral norm error impossible in sublinear time, but carll(find a rank-k A" with
JA—A'|5< (1 +€e)|A—Agl5 + E |JA— Agléinn- poly () time

* Can output a PSD rank-k matrix A" inn - poly(lz() time

* Open questions: (1) tighter dependence on €, (2) other families of matrices?



