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Abstract
Sketching is a prominent algorithmic tool for processing
large data. In this paper, we study the problem of sketching
matrix norms. We consider two sketching models. The first
is bilinear sketching, in which there is a distribution over
pairs of r×n matrices S and n× s matrices T such that for
any fixed n×n matrix A, from S ·A ·T one can approximate
‖A‖p up to an approximation factor α ≥ 1 with constant
probability, where ‖A‖p is a matrix norm. The second is
general linear sketching, in which there is a distribution over
linear maps L : Rn

2
→ Rk, such that for any fixed n × n

matrix A, interpreting it as a vector in Rn
2
, from L(A) one

can approximate ‖A‖p up to a factor α.
We study some of the most frequently occurring matrix

norms, which correspond to Schatten p-norms for p ∈
{0, 1, 2,∞}. The p-th Schatten norm of a rank-r matrix
A is defined to be ‖A‖p = (

∑r

i=1 σ
p
i )1/p, where σ1, . . . , σr

are the singular values of A. When p = 0, ‖A‖0 is defined to
be the rank of A. The cases p = 1, 2, and ∞ correspond to
the trace, Frobenius, and operator norms, respectively. For
bilinear sketches we show:

1. For p = ∞ any sketch must have r · s = Ω(n2/α4)
dimensions. This matches an upper bound of Andoni
and Nguyen (SODA, 2013), and implies one cannot
approximate the top right singular vector v of A by
a vector v′ with ‖v′ − v‖2 ≤ 1

2 with r · s = õ(n2).

2. For p ∈ {0, 1} and constant α, any sketch must have
r · s ≥ n1−ε dimensions, for arbitrarily small constant
ε > 0.

3. For even integers p ≥ 2, we give a sketch with r ·
s = O(n2−4/pε−2) dimensions for obtaining a (1 + ε)-
approximation. This is optimal up to logarithmic
factors, and is the first general subquadratic upper
bound for sketching the Schatten norms.

For general linear sketches our results, though not optimal,
are qualitatively similar, showing that for p = ∞, k =
Ω(n3/2/α4) and for p ∈ {0, 1}, k = Ω(

√
n). These give

separations in the sketching complexity of Schatten-p norms
with the corresponding vector p-norms, and rule out a table
lookup nearest-neighbor search for p = 1, making progress
on a question of Andoni.

1 Introduction
Sketching is an algorithmic tool for handling big data. A
linear skech is a distribution over k×n matrices S, k �
n, so that for any fixed vector v, one can approximate a
function f(v) from Sv with high probability. The goal
is to minimize the dimension k.

The sketch Sv thus provides a compression of v, and
is useful for compressed sensing and for achieving low-
communication protocols in distributed models. One
can perform complex procedures on the sketch which
would be too expensive to perform on v itself, and this
has led to the fastest known approximation algorithms
for fundamental problems in numerical linear algebra
and nearest neighbor search. Sketching is also the only
technique known for processing data in the turnstile
model of data streams [22, 38], in which there is an
underlying vector v initialized to 0n which undergoes a
long sequence of additive positive and negative updates
of the form vi ← vi + ∆ to its coordinates vi. Given
an update of the form vi ← vi + ∆, resulting in a new
vector v′ = v + ∆ · ei, we can add S(∆ · ei) to Sv to
obtain Lv′ (here ei is the i-th standard unit vector).

A well-studied problem in the sketching litera-
ture is approximating the frequency moments Fp(v),
which is equivalent to estimating the p-norms ‖v‖p =
(
∑n
i=1 |vi|p)1/p, for p ∈ [0,∞]. This problem was in-

troduced by Alon, Matias, and Szegedy [1], and many
insights in information complexity [6, 9] and sketching
[1, 3, 7, 24] were made on the path to obtaining optimal
bounds. In addition to being of theoretical interest, the
problems have several applications. The value ‖v‖0, by
continuity, is equal to the support size of x, also known
as the number of distinct elements [16, 17]. The norm
‖v‖1 is the Manhattan norm, which is a robust measure
of distance and is proportional to the variation distance
between distributions [19, 21, 28]. The Euclidean dis-
tance ‖v‖2 is important in linear algebra problems [44],
and corresponds to the self-join size in databases [1].



Often one wishes to find or approximate the largest co-
ordinates of x, known as the heavy hitters [10, 13], and
‖v‖∞ is defined, by continuity, to equal maxi |vi|.

In this paper, we are interested in the analogous
problem of sketching matrix norms. We study some
of the most frequently occurring matrix norms, which
correspond to Schatten p-norms for p ∈ {0, 1, 2,∞}.
The p-th Schatten norm of an n × n rank-r matrix A
is defined to be ‖A‖p = (

∑r
i=1 σ

p
i )1/p, where σ1, . . . , σr

are the singular values of A. When p = 0, ‖A‖0 is
defined to be the rank of A. The cases p = 1, 2, and ∞
correspond to the trace norm, the Frobenius norm, and
the operator norm, respectively. These problems have
found applications in several areas; we refer the reader
to [11] for graph applications for p = 0, to differential
privacy [20, 33] and non-convex optimization [8, 15] for
p = 1, and to the survey on numerical linear algebra for
p ∈ {2,∞} [35].

In nearest neighbor search (NNS), one technique of-
ten used is to first replace each of the input objects
(points, images, matrices, etc.) with a small sketch,
then build a lookup table for all possible sketches to
support fast query time. In his talks at the Barriers
in Computational Complexity II workshop and Math-
ematical Foundations of Computer Science conference,
Alexandr Andoni states that a goal would be to design
a NNS data structure for the Schatten norms, e.g., the
trace or Schatten 1-norm (slide 31 of [2]). If a sketch
for a norm has small size, then building a table lookup
is feasible.

Sketching Model. We give the first formal study
of the sketching complexity of the Schatten-p norms.
A first question is what does it mean to have a linear
sketch of a matrix, instead of a vector as is typically
studied. We consider two sketching models.

The first model we consider is bilinear sketching, in
which there is a distribution over pairs of r×n matrices
S and n × s matrices T such that for any fixed n × n
matrix A, from S · A · T one can approximate ‖A‖p
up to an approximation factor α ≥ 1 with constant
probability, where ‖A‖p is a matrix norm. The goal
is to minimize r ·s. This model has been used in several
streaming papers for sketching matrices [4, 14, 23], and
as far as we are aware, all known sketches in numerical
linear algebra applications have this form. It also has
the advantage that SAT can be computed quickly if S
and T have fast matrix multiplication algorithms.

The second model is more general, which we dub
general linear sketching, and interprets the n×n matrix
A as a vector in Rn2 . The goal is then to design a
distribution over linear maps L : Rn2 → Rk, such that
for any fixed n×n matrix A, interpreting it as a vector
in Rn2 , from L(A) one can approximate ‖A‖p up to

a factor α with constant probability. The goal is to
minimize k.

Previous Results. Somewhat surprisingly the
only known o(n2) upper bound for either model is
for p = 2, in which case one can achieve a bilinear
sketch with r · s = O(1) [23]. Moreover, the only
lower bounds known were those for estimating the p-
norm of a vector v, obtained for p > 2 by setting
A = diag(v) and are of the form k = Ω(n1−2/p logn)
[5, 34, 40]. We note that the bit complexity lower
bounds of [6, 9, 43] do not apply, since a single linear
sketch (1, 1/M, 1/M2, 1/M3, . . . , 1/Mn−1)T v is enough
to recover v if its entries are bounded byM . The sketch-
ing model thus gives a meaningful measure of complex-
ity in the real RAM model.

Thus, it was not even known if a sketching dimen-
sion of r · s = O(1) was sufficient for bilinear sketches
to obtain a constant-factor approximation to the rank
or Schatten 1-norm, or if k = Ω(n2) was required for
general linear sketches.

Our Results. We summarize our results for the
two sketching models in Table 1. We note that, prior
to our work, for all p /∈ {2,∞}, all upper bounds in
the table were a trivial O(n2) while all lower bounds for
p ≤ 2 were a trivial Ω(1), while for p > 2 they were a
weaker Ω(n1−2/p logn).

For the bilinear sketching model, we have the
following results. For the spectral norm, p = ∞, we
prove an Ω(n2/α4) bound for achieving a factor α-
approximation with constant probability, matching an
upper bound achievable by an algorithm of [4]. This
generalizes to Schatten-p norms for p > 2, for which we
prove an Ω(n2−4/p) lower bound, and give a matching
O(n2−4/p) upper bound for even integers p. For odd
integers p we are only able to achieve this upper bound
if we additionally assume that A is positive semi-definite
(PSD). For the rank, p = 0, we prove an Ω(n2) lower
bound, showing that no non-trivial sketching is possible.
Finally for p = 1, we prove an n1−ε lower bound for
arbitrarily small constant ε > 0. Note that our bounds
are optimal in several cases, e.g., for p = ∞, for even
integers p > 2, and for p = 0.

For the general sketching model, we show the fol-
lowing. For the spectral norm, our bound is Ω(n3/2/α3),
which although is a bit weaker than the bilinear case,
is super-linear in n. It implies, for example, that any
general sketching algorithm for approximating the top
right (or left) singular vector v of A by a vector v′ with
‖v − v′‖2 ≤ 1

2 requires k = Ω(n3/2). Indeed, other-
wise, with a sketch of O(n) dimensions one could store
gA, for a random Gaussian vector g, and together with
v′ obtain a constant approximation to ‖A‖∞, which
our lower bound rules out. This bound naturally gen-



Bilinear sketches General Sketches
Schatten p-norm Lower Bound Upper Bound Lower Bound Upper Bound

p =∞ Ω(n2/α4) O(n2/α4) [4] Ω(n3/2/α3) O(n2/α4) [4]
p > 2 Ω(n2−4/p) O(n2−4/p) even p Ω(n(3/2)(1−2/p)) O(n2−4/p) even p
p = 0 Ω(n2) O(n2) Ω(

√
n) O(n2)

p = 1 n1−ε for any ε > 0 O(n2) Ω(
√
n) O(n2)

Table 1: Our results for approximating the Schatten-p norm up to a constant factor (except for the p =∞ case)
with constant probability in both the bilinear sketching and general sketching models. For the bilinear case, we
look at the minimal r · s value, while for general linear sketches we look at the minimal value of k. For p = ∞,
α ≥ 1 is the desired approximation factor.

eralizes to an Ω(n(3/2)(1−2/p)) bound for p > 2. For
p ∈ {0, 1} our bound is now a weaker Ω(

√
n). However,

it is the first super-constant lower bound for rank and
Schatten-1 norm, which in particular rules out a naïve
table lookup solution to the NNS problem, addressing
a question of Andoni.

Our Techniques for Bilinear Sketches. A stan-
dard technique in proving lower bounds is Yao’s mini-
max principle which implies if there exists a distribution
on sketches that succeeds on all n × n inputs matrices
A with large probability, then for any distribution L on
inputs A, there is a fixed pair S and T of r × n and
n × s matrices, respectively, which succeeds with large
probability over A ∼ L. Moreover, we can assume the
rows of S are orthonormal, as well as the columns of T .
This is because, given SAT , we can compute USATV ,
where U and V are arbitrary invertible r × r and s× s
matrices, respectively. Thus, it suffices to give two dis-
tributions L1 and L2 on A for which the ‖A‖p values
differ by a factor α w.h.p. in the two distributions, but
for any matrix S with orthonormal rows and T with
orthonormal columns, the induced distributions L′1 and
L′2 on SAT , when A ∼ L1 and A ∼ L2, respectively,
have low total variation distance dTV (L′1,L′2).

Since S has orthonormal rows and T has orthonor-
mal columns, then if L1 and L2 are rotationally invari-
ant distributions, then SAT is equal in distribution to
an r × s submatrix of A. This observation already suf-
fices to get an Ω(

√
n) bound on r · s for all Schatten

p-norms for a fixed constant p 6= 2, using a result of
Jiang [26] which shows that square o(

√
n)× o(

√
n) sub-

matrices of an n × n matrix of i.i.d. Gaussians and an
n× n orthonormal matrix have o(1) variation distance.
Note that both distributions are rotationally invariant
and by the Marčenko-Pastur Law have constant factor
difference in Schatten-p norm w.h.p. We slightly gener-
alize Jiang’s proof to show the variation distance is o(1)
for any r × s submatrix of these distributions provided
r · s < n1−ε for arbitrarily small ε > 0.

For our Ω(n2) bound for p = 0 and Ω(n2−4/p)

bound for p > 2, we propose the following rotationally-
invariant distributions with constant factor gap in
Schatten norm:

• For p = 0, L1 = UV T for n × n/2 i.i.d. Gaussian
U and V , while L2 = UV T + γG for the same U
and V and G an n× n i.i.d. Gaussian matrix with
variance γ ≤ 1/poly(n).

• For p > 2, L1 = G for an n × n i.i.d. Gaussian
matrix, while L2 = G + 1

n1/2−1/puv
T for the same

G and random n-dimensional Gaussian vectors u
and v.

The major difficulty is bounding dTV (L′1,L′2). For p > 2
this amounts to distinguishing g from g + h, where g
is an r × s matrix of Gaussians and h is a random
r× s matrix with (i, j)-th entry equal to uivj . The fact
that h is random makes the probability density function
of g + h intractable. Moreover, for each fixed h, the
variation distance of g and g+h is much larger than for a
random h, and the best lower bound we could obtain by
fixing h is Ω(n1−2/p) which would just match the vector
lower bound (up to a logn factor). Instead of bounding
dTV (L′1,L′2) directly, we bound the χ2-divergence of L′1
and L′2, which if o(1) implies dTV (L′1,L′2) = o(1). This
idea was previously used in the context of sketching p-
norms of vectors [5], improving the previous Ω(n1−2/p)
bound to Ω(n1−2/p logn). Surprisingly, for the Schatten
p-norm, it improves a simple Ω(n1−2/p) bound by a
quadratic factor to Ω(n2−4/p), which can similarly be
used to show an Ω(n2/α4) bound for α-approximating
the spectral norm. One caveat is that if we were to
directly compute the χ2-divergence between L′1 and L′2,
it would be infinite once r · s ≥ n1−2/p. We fix this by
conditioning L′1 and L′2 on a constant probability event,
resulting in distributions L̃′1 and L̃′2 for which the χ2-
divergence is small.

For p = 0, the problem amounts to distinguishing
an r × c submatrix Q of UV T from an r × s submatrix
of UV T + γG. Working directly with the density
function of UV T is intractable. We instead provide



an algorithmic proof to bound the variation distance.
See Theorem 3.5 for details. The proof also works for
arbitrary Q of size O(n2), implying a lower bound of
Ω(n2) to decide if an n × n matrix is of rank at most
n/2 or ε-far from rank n/2 (for constant ε), showing an
algorithm of Krauthgamer and Sasson is optimal [29].

Our Algorithm. Due to these negative results,
a natural question is whether non-trivial sketching
is possible for any Schatten p-norm, other than the
Frobenius norm. To show this is possible, given an
n × n matrix A, we left multiply by an n × n matrix
G of i.i.d. Gaussians and right multiply by an n × n
matrix H of i.i.d. Gaussians, resulting in a matrix A′

of the form G′ΣH ′, where G′, H ′ are i.i.d. Gaussian
and Σ is diagonal with the singular values of A on
the diagonal. We then look at cycles in a submatrix
of G′ΣH ′. The (i, j)-th entry of A′ is

∑n
`=1 σ`G

′
i,`H

′
`,j .

Interestingly, for even p, for any distinct i1, . . . , ip/2 and
distinct j1, . . . , jp/2,

E[(A′i1,j1
A′i2,j1

) · (A′i2,j2
A′i3,j2

) · · · (A′ip/2,jp/2
A′i1,jp/2

)]

= ‖A‖pp.

The row indices of A′ read from left to right form a
cycle (i1, i2, i2, i3, i3, , ..., ip/2, ip/2, i1), which since also
each column index occurs twice, results in an unbiased
estimator. We need to average over many cycles to
reduce the variance, and one way to obtain these is to
store a submatrix of A′ and average over all cycles in it.
While some of the cycles are dependent, their covariance
is small, and we show that storing an n1−2/p × n1−2/p

submatrix of A′ suffices.
Our Techniques for General Linear Sketches:

We follow the same framework for bilinear sketches.
The crucial difference is that since the input A is now
viewed as an n2-dimensional vector, we are not able to
design two rotationally invariant distributions L1 and
L2, since unlike rotating A in Rn, rotating A in Rn2

does not preserve its Schatten p-norm. Fortunately, for
both of our lower bounds (p > 2) and (p ∈ {0, 1}) we
can choose L1 and L2 so that L′1 is the distribution
of a k-dimensional vector g of i.i.d. Gaussians. For
p > 2, L′2 is the distribution of g + h, where g is as
before but h = 1

n1/2−1/p (uTL1v, . . . , uTLkv) for random
n-dimensional Gaussian u and v and where Li is the
i-th row of the the sketching matrix L, viewed as an
n × n matrix. We again use the χ2-divergence to
bound dTV (L′1,L′2) with appropriate conditioning. In
this case the problem reduces to finding tail bounds
for Gaussian chaoses of degree 4, namely, sums of the
form

∑
a,b,c,dAa,b,c,d uau

′
bvcv

′
d for a 4th-order array P of

n4 coefficients and independent n-dimensional Gaussian
vectors u, u′, v, v′. We use a tail bound of Latała

[30], which generalizes the more familiar Hanson-Wright
inequality for second order arrays P .

For p ∈ {0, 1} we look at distinguishing an n × n
Gaussian matrix G from a matrix (G′, G′M), where G′
is an n× n/2 Gaussian random matrix and M is a ran-
dom n/2 × n/2 orthogonal matrix. For all constants
p 6= 2, the Schatten p-norms differ by a constant factor
in the two cases. Applying our sketching matrix L, we
have L′1 distributed as N(0, Ik), but L′2 is the distribu-
tion of (Z1, . . . , Zk), where Zi = 〈Ai, G′〉 + 〈Bi, G′M〉
and each Li is written as the adjoined matrix (Ai, Bi)
for n × n/2 dimensional matrices Ai and Bi. For each
fixed O, we can view Z as a k-dimensional Gaussian
vector formed from linear combinations of entries of G′.
Thus the problem amounts to bounding the variation
distance between two zero-mean k-dimensional Gaus-
sian vectors with different covariance matrices. For L′1
the covariance matrix is the identity Ik, while for L′2 it
is Ik+P for some perturbation matrix P . We show that
with constant probability over M , the Frobenius norm
‖P‖F is small enough to give us an k = Ω(

√
n) bound,

and so it suffices to fix M with this property. One may
worry that fixing M reduces the variation distance—
in this case one can show that with k = O(

√
n), dis-

tributions L′1 and L′2 already have constant variation
distance.

We believe our work raises a number of intriguing
open questions.

Open Question 1: Is it possible that for every odd
integer p <∞, the Schatten-p norm requires k = Ω(n2)?
Interestingly, odd and even p behave very differently
since for even p, we have ‖A‖p = ‖A2‖p/2, where A2

is PSD. Note that estimating Schatten norms of PSD
matrices A can be much easier: in the extreme case of
p = 1 the Schatten norm ‖A‖1 is equal to the trace of
A, which can be computed with k = 1, while we show
k = Ω(

√
n) for estimating ‖A‖1 for non-PSD A.

Open Question 2: For general linear sketches our
lower bound for the operator norm is Ω(n3/2/α3) for
α-approximation. Can this be improved to Ω(n2/α4),
which would match our lower bound for bilinear sketches
and the upper bound of [4]? Using the tightness of
Latała’s bounds for Gaussian chaoses, this would either
require a new conditioning of distributions L′1 and L′2,
or bounding the variation distance without using the
χ2-divergence.

2 Preliminaries
Notation. Let Rn×d be the set of n × d real matrices
and On the orthogonal group of degree n (i.e., the set
of n × n orthogonal matrices). Let N(µ,Σ) denote
the (multi-variate) normal distribution of mean µ and
covariance matrix Σ. We write X ∼ D for a random



variable X subject to a probability distribution D. We
also use On to denote the uniform distribution over the
orthogonal group of order n (i.e., endowed with the
normalized Haar measure). We denote by G(m,n) the
ensemble of random matrices with entries i.i.d. N(0, 1).

For two n× n matrices X and Y , we define 〈X,Y 〉
as 〈X,Y 〉 = tr(XTY ) =

∑
i,j XijYij , i.e., the entrywise

inner product of X and Y .
Singular values and Schatten norms. Consider

a matrix A ∈ Rn×d. Then ATA is a positive semi-
definite matrix. The eigenvalues of

√
ATA are called

the singular values of A, denoted by σ1(A) ≥ σ2(A) ≥
· · · ≥ σd(A) in decreasing order. Let r = rank(A). It
is clear that σr+1(A) = · · · = σd(A) = 0. The matrix
A also has the following singular value decomposition
(SVD) A = UΣV T , where U ∈ On, V ∈ Od and Σ is an
n× d diagonal matrix with diagonal entries σ1(A), . . . ,
σmin{n,d}(A). Define

‖A‖p =
(

r∑
i=1

(σi(A))p
) 1
p

, p > 0

then ‖A‖p is a norm over Rn×d, called the p-th Schatten
norm, over Rn×d for p ≥ 1. When p = 1, it is also called
the trace norm or Ky-Fan norm. When p = 2, it is
exactly the Frobenius norm ‖A‖F , recalling that σi(A)2

are the eigenvalues of ATA and thus ‖A‖2F = tr(ATA).
Let ‖A‖ denote the operator norm of A when treating
A as a linear operator from `d2 to `n2 . Besides, it holds
that limp→∞ ‖A‖p = σ1(A) = ‖A‖ and limp→0+ ‖A‖p =
rank(A). We define ‖A‖∞ and ‖A‖0 accordingly in this
limit sense.

Finally note that A and AT have the same non-zero
singular values, so ‖A‖p = ‖AT ‖p for all p.

Distance between probability measures. Sup-
pose µ and ν are two probability measures over some
Borel algebra B on Rn such that µ is absolutely contin-
uous with respect to ν. For a convex function φ : R→ R
such that φ(1) = 0, we define the φ-divergence

Dφ(µ||ν) =
∫
φ

(
dµ

dν

)
dν.

In general Dφ(µ||ν) is not a distance because it is not
symmetric.

The total variation distance between µ and ν,
denoted by dTV (µ, ν), is defined as Dφ(µ||ν) for φ(x) =
|x− 1|. It can be verified that this is indeed a distance.

The χ2-divergence between µ and ν, denoted by
χ2(µ||ν), is defined as Dφ(µ||ν) for φ(x) = (x − 1)2 or
φ(x) = x2 − 1. It can be verified that these two choices
of φ give exactly the same value of Dφ(µ||ν).

Proposition 2.1. ([45, p90]) It holds that

dTV (µ, ν) ≤
√
χ2(µ||ν).

Proposition 2.2. ([25, p97]) It holds that
χ2(N(0, In) ∗ µ||N(0, In)) ≤ Ee〈x,x′〉 − 1, where
x, x′ ∼ µ are independent.

In the case of n = 1, if F (x) and G(x) are the cu-
mulative distribution functions of µ and ν, respectively,
the Kolmogorov distance is defined as

dK(µ, ν) = sup
x
|F (x)−G(x)|.

It follows easily that for continuous and bounded f ,

(2.1)
∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤ ‖f‖∞ · dK(µ, ν).

If both µ and ν are compactly supported, it suffices
to have f continuous and bounded on the union of the
supports of µ and ν.

Hanson-Wright Inequality. Suppose that µ is a
distribution over R. We say µ is subgaussian if there
exists a constant c > 0 such that Prx∼µ{|x| > t} ≤
e1−ct2 for all t ≥ 0.

The following form of the Hanson-Wright inequality
on the tail bound of a quadratic form is contained in
the proof of [41, Theorem 1.1] due to Rudelson and
Vershynin.

Theorem 2.1. (Hanson-Wright inequality) Let
u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Rn be random
vectors such that u1, . . . , un, v1, . . . , vn are i.i.d. sym-
metric subgaussian variables. Let A ∈ Rn×n be a fixed
matrix, then

Pr{|uTAv−EuTAv| > t} ≤ 2 exp
(
−cmin

{
t

‖A‖
,

t2

‖A‖2F

})
for some constant c > 0, which depends only on the
constant of the subgaussian distribution.

Latała’s Tail Bound. Suppose that gi1 , . . . , gid
are i.i.d. N(0, 1) random variables. The following re-
sult, due to Latała [30], bounds the tails of Gaussian
chaoses

∑
ai1 · · · aidgi1 · · · gid . The Hanson-Wright in-

equality above, when restricted to Gaussian random
variables, is a special case (d = 2) of this tail bound.
The proof of Latała’s tail bound was later simplified by
Lehec [32].

Suppose that A = (ai)1≤i1,...,id≤n is a finite multi-
indexed matrix of order d. For i ∈ [n]d and I ⊆ [d],
define iI = (ij)j∈I . For disjoint nonempty subsets
I1, . . . , Ik ⊆ [d] define

‖A‖I1,...,Ik = sup
{∑

i

aix
(1)
iI1
· · ·x(k)

iIk
:



∑
iI1

(
x

(1)
iI1

)2
≤ 1, . . . ,

∑
iIk

(
x

(1)
iIk

)2
≤ 1

 .

Also denote by S(k, d) the set of all partitions of
{1, . . . , d} into k nonempty disjoint sets I1, . . . , Ik. It
is easy to see that if a partition {I1, . . . , Ik} is finer
than another partition {J1, . . . , J`}, then ‖A‖I1,...,Ik ≤
‖A‖J1,...,J` .

Theorem 2.2. For any t > 0 and d ≥ 2,

Pr


∣∣∣∣∣∣
∑

i

ai

d∏
j=1

g
(j)
ij

∣∣∣∣∣∣ ≥ t


≤ Cd exp
{
−cd min

1≤k≤d
min

(I1,...,Ik)∈S(k,d)

(
t

‖A‖I1,...,Ik

) 2
k

}
,

where Cd, cd > 0 are constants depending only on d.

Distribution of Singular Values We shall need
the following two lemmata.

Lemma 2.1. (Marčenko-Pastur Law [36, 18])
Suppose that X is a p ×m matrix with i.i.d N(0, 1/p)
entries. Consider the probability distribution FX(x)
associated with the spectrum of XTX as

FX(x) = 1
m

∣∣{i : λi(XTX) ≤ x
}∣∣ .

For γ ∈ (0, 1], define a distribution Gγ(x) with density
function pγ(x) as

pγ(x) =
√

(b− x)(x− a)
2πγx , x ∈ [a, b],

where
a = (1−√γ)2, b = (1 +√γ)2.

Then when m → ∞, p → ∞ and p/m → γ ∈ (0, 1) it
holds that the expected Kolmogorov distance

E sup
x
|FX(x)−Gγ(x)| = O(n−1/2).

Lemma 2.2. ([46]) Suppose that X ∼ G(p,m). Then
with probability at least 1−e−t2/2, it holds that σ1(X) ≤√
p+
√
m+ t.

3 Lower Bounds for Bilinear Sketches
3.1 The case of p > 2 Fix rn ≤ n and sn ≤ n.
Let L1 = G(rn, sn) and L2 denote the distribution of
the upper-left rn × sn block of G + 5n−1/2+1/puvT ,
where G ∼ G(n, n), u, v ∼ N(0, In) and G, u, v are
independent.

Theorem 3.1. Suppose that p > 2, ζ ∈ (0, 1) and
rn, sn ≥ 4. Whenever rnsn ≤ cζ2n2(1−2/p), it holds that
dTV (L1,L2) ≤ ζ + 0.009, where c > 0 is an absolute
constant.

Proof. For simplicity we write rn and sn as r and
s, respectively. The distribution L1 is identical to
N(0, Irs), and the distribution L2 is a Gaussian mixture
N(z, Irs) with shifted mean z ∈ Rrs, where

zij = 5n−1/2+1/puivj 1 ≤ i ≤ r, 1 ≤ j ≤ s.

For a given t > 0, define the truncated Gaussian
distribution, denoted by Nt(0, In), as the marginal
distribution of N(0, In) conditioned on the event that
‖x‖ ≤ t, where x ∼ N(0, In). Since ‖x‖2 ∼ χ2(n),
the probability pn := Pr{‖x‖ > 2

√
n} < 0.004 by

evaluating an integral of the p.d.f. of χ2(n) distribution.
Consider an auxiliary random vector z̃ ∈ Rrs defined as

z̃ij = 5n−1/2+1/pũiṽj 1 ≤ i ≤ r, 1 ≤ j ≤ s,

where (ũ1, . . . , ũr) is drawn from N2
√
r(0, Ir) and

(ṽ1, . . . , ṽs) is drawn from N2
√
s(0, Is). Define an aux-

iliary distribution L̃2 as N(z̃, Irs). It is not difficult to
see that

dTV (L2, L̃2) ≤ max
{

1
1− pr − ps

− 1, pr + ps

}
< 0.009.

So we need only bound dTV (L1, L̃2). It follows from
Proposition 2.1 and Proposition 2.2 that

dTV (L1, L̃2) ≤
√
Ee〈z̃1,z̃2〉 − 1,

where the expectation is taken over independent z̃1 and
z̃2, which are both identically distributed as z̃. Next we
compute Ee〈z̃1,z̃2〉.

Ez̃1,z̃2 exp(〈z̃1, z̃2〉)

= Eũ,ṽ,ũ′,ṽ′ exp
(

5n−1+2/p
∑

i,j
ũiṽj ũ

′
iṽ
′
j

)
= Eũ,ṽ,ũ′,ṽ′ exp

(
5n−1+2/p

∑
i
ũiũ
′
i

∑
j
ṽj ṽ
′
j

)
.(3.2)

Now let us bound E|
∑
i ũũ

′|2k. Note that |
∑
i ũũ

′| ≤
‖ũ‖2‖ũ′‖2 ≤ 4r. By our assumption that r ≥ 4 it holds
that r2k−1 ≥ 4, so t2/r ≤ t for t ≤ 4r. Applying the
Hanson-Wright inequality (Theorem 2.1) to the identity
matrix Ir, we have that

E

∣∣∣∣∣∑
i

ũũ′

∣∣∣∣∣
2k

≤
∫ 4r

0
Pr


∣∣∣∣∣∑
i

ũiũ
′
i

∣∣∣∣∣
2k

> t

 dt

≤ 2
∫ 4r

0
e−c1t

1/k/rdt ≤ 2
(
r

c1

)k
k!

for some absolute constant c1 > 0, where the integral



is evaluated by variable substitution. We continue
bounding (3.2) using the Taylor series as below:

Ez̃1,z̃2 exp(〈z̃1, z̃2〉)

≤
∞∑
k=0

(5n−1+ 2
p )2kE|

∑
i ũũ

′|2kE|
∑
i ṽṽ
′|2k

(2k)!

≤ 1 + 2
∞∑
k=1

(
5n2(−1+ 2

p )rs

c21

)k
· (k!)2

(2k)!

≤ 1 + 2
∞∑
k=1

(
ζ2

3

)k
≤ 1 + ζ2,

provided that 5rs/c21n2(1−2/p) ≤ ζ2/3. Therefore

dTV (L1,L2) ≤ (lnEe〈z̃1,z̃2〉)1/2+dTV (L2, L̃2) ≤ ζ+0.009,

as claimed. The absolute constant c in the statement
can be taken as c = c21/15. �

It is not difficult to see that ‖G‖p and ‖G +
5n1/p−1/2uvT ‖p differ by a constant factor with high
probability. The lower bound on the dimension of the
bilinear sketch is immediate, using L1 and L2 as the
hard pair of distributions and the observations that (i)
both distributions are rotationally invariant, and (ii) by
increasing the dimension by at most a constant factor,
one can assume that rn ≥ 4 and sn ≥ 4.

Theorem 3.2. Let A ∈ Rn×n and p > 2. Suppose that
an algorithm takes a bilinear sketch SAT (S ∈ Rr×n
and T ∈ Rn×s) and computes Y with (1 − cp)‖A‖pp ≤
Y ≤ (1 + cp)‖A‖pp for any A ∈ Rn×n with probability
at least 3/4, where cp = (1.2p − 1)/(1.2p + 1). Then
rs = Ω(n2(1−2/p)).

Proof. It suffices to show that ‖G‖p and ‖G +
5n1/p−1/2uvT ‖p differ by a constant factor with high
probability. Let X = 5n1/p−1/2uvT . Since X is of rank
one, the only non-zero singular value σ1(X) = ‖X‖F ≥
4.9 · n1/p+1/2 with high probability, since ‖uvT ‖2F ∼
(χ2(n))2, which is tightly concentrated around n2.

On the other hand, combining Lemma 2.1 and
Lemma 2.2 as well as (2.1) with f(x) = xp on [0, 4],
we can see that with probability 1 − o(1) it holds for
X ∼ 1√

n
G(n, n) (note the normalization!) that

(3.3) ‖X‖pp = (Ip + o(1))n,

where

(3.4) Ip =
∫ 4

0
x
p
2 ·
√

(4− x)x
2πx dx ≤ 2p.

Hence ‖G‖p ≤ 1.1 · I1/p
p n1/2+1/p ≤ 1.1 · 2 · n1/2+1/p

with high probability. By the triangle inequality,

‖G+X‖p ≥ ‖X‖p − ‖G‖p ≥ (4.9− 2.2)n1/p+1/2

≥ 1.2 · 2.2n1/p+1/2 ≥ 1.2‖G‖p

with high probability. �

3.2 General p > 0 The following theorem is a
generalization of a result of Jiang [26]. Following his
notation, we let Zn denote the distribution of the upper-
left rn × sn block of an orthonormal matrix chosen
uniformly at random from On and Gn ∼ 1√

n
G(rn, sn).

Theorem 3.3. If rnsn = o(n) and sn ≤ rn ≤
nd/(d+2) as n → ∞ for some integer d ≥ 1, then
limn→∞ dTV (Zn, Gn) = 0.

Jiang’s original result restricts rn and sn to rn = o(
√
n)

and sn = o(
√
n). We follow the general notation

and outline in his paper, making a few modifications
to remove this restriction. We postpone the proof to
Appendix A.

The lower bound on bilinear sketches follows from
Theorem 3.3, with the hard pair of rotationally invariant
distributions being a Gaussian random matrix versus a
random orthonormal matrix. The proof follows from
Theorem 3.3 and is postponed to Appendix B.

Theorem 3.4. Let A ∈ Rn×n and p > 0. Suppose that
an algorithm takes a bilinear sketch SAT (S ∈ Rr×n
and T ∈ Rn×s) and computes Y with (1 − cp)‖A‖pp ≤
Y ≤ (1 + cp)‖A‖pp for any A ∈ Rn×n with probability
at least 3

4 , where cp = |Ip−1|
2(Ip+1) . Then rs = Ω(n1−η) for

any constant η > 0.

3.3 Rank (p = 0) Let S ⊂ [n]×[n] be a set of indices
of an n×n matrix. For a distribution L over Rn×n, the
entries of S induce a marginal distribution L(S) on R|S|
as

(Xp1,q1 , Xp2,q2 , . . . , Xp|S|,q|S|), X ∼ L.

Theorem 3.5. Let U, V ∼ G(n, d), G ∼ γG(n, n) for
γ = n−14. Consider two distributions L1 and L2 over
Rn×n defined by UV T and UV T + G respectively. Let
S ⊂ [n]× [n]. When |S| ≤ d2, it holds that

(3.5) dTV (L1(S),L2(S)) ≤ C|S|
(
n−2 + dcd

)
,

where C > 0 and 0 < c < 1 are absolute constants.

Proof. (sketch, see Appendix D for the full proof.) We
give an algorithm which gives a bijection f : R|S| →
R|S| with the property that for all but a subset of
R|S| of measure o(1) under both L1(S) and L2(S), the
probability density functions of the two distributions are
equal up to a multiplicative factor of (1 ± 1/poly(n)).



The idea is to start with the row vectors U1, . . . , Un
of U and V1, . . . , Vn of V , and to iteratively perturb
them by adding γGi,j to UV T for each (i, j) ∈ S. We
find new vectors U ′1, . . . , U ′n and V ′1 , . . . , V

′
n of n × d

matrices U ′ and V ′ so that (U ′)(V ′)T and UV T + γG
are equal on S. We do this in a way for which ‖Ui‖2 =
(1±1/poly(n))‖U ′i‖2 and ‖Vi‖2 = (1±1/poly(n))‖V ′i ‖2
for all i, and so the marginal density function evaluated
on Ui (or Vj) is close to that evaluated on U ′i (or V ′j ),
by definition. Moreover, our mapping is bijective, so the
joint distribution of (U ′1, . . . , U ′n, V ′1 , . . . , V ′n) is the same
as that evaluated of (U1, . . . , Un, V1, . . . , Vn) up to a
(1±1/poly(n))-factor. The bijection we create depends
on properties of S, e.g., if the entry (UV T )i,j = 〈Ui, Vj〉
is perturbed, and more than d entries of the i-th row of
A appear in S, this places more than d constraints on
Ui, but Ui is only d-dimensional. Thus, we must also
change some of the vectors Vj . We change those Vj for
which (i, j) ∈ Q and there are fewer than d rows i′ 6= i
for which (i′, j) ∈ S; in this way there are fewer than
d constraints on Vj so it is not yet fixed. We can find
enough Vj with this property by the assumption that
|S| ≤ d2. �

In the theorem above, choose d = n/2 and so
rank(UV T ) ≤ n/2 while rank(G) = n with probability
1. Note that both distributions are rotationally invari-
ant, and so the lower bound on bilinear sketches follows
immediately.
Theorem 3.6. Let A ∈ Rn×n. Suppose that an al-
gorithm takes a bilinear sketch SAT (S ∈ Rr×n and
T ∈ Rn×s) and computes Y with (1 − cp) rank(A) ≤
Y ≤ (1 + cp) rank(A) for any A ∈ Rn×n with probability
at least 3/4, where cp ∈ (0, 1/3) is a constant. Then
rs = Ω(n2).

As an aside, given that w.h.p. over A ∼ L2 in
Theorem 3.5, A requires modifying Θ(n2) of its entries
to reduce its rank to at most d if d ≤ n/2, this implies
that we obtain an Ω(d2) bound on the non-adaptive
query complexity of deciding if an n×nmatrix is of rank
at most d or ε-far from rank d (for constant ε), showing
an algorithm of Krauthgamer and Sasson is optimal [29].

4 Bilinear Sketch Algorithms
By the Johnson-Lindenstrauss Transform, or in fact,
any subspace embedding with near-optimal dimension
(which can lead to better time complexity [44, 12, 37,
39]), we can reduce the problem of general matrices
to square matrices (see Appendix C for details), and
henceforth we shall assume the input matrices are
square.

We present a sketching algorithm to compute a
(1+ε)-approximation of ‖A‖pp for A ∈ Rn×n using linear

Algorithm 1 The sketching algorithm for even p ≥ 4.
Input: n, ε > 0, even integer p ≥ 4 and A ∈ Rn×n.

1: N ← Ω(ε−2)
2: Let {Gi} and {Hi} be independent n1−2/p × n

matrices with i.i.d. N(0, 1) entries
3: Maintain each GiAHT

i , i = 1, . . . , N
4: Compute Z as defined in (4.6)
5: return Z

sketches, which can thus be implemented in the most
general turnstile data stream model (arbitrary number
of positive and negative additive updates to entries
given in an arbitrary order). The algorithm works for
arbitrary A when p ≥ 4 is an even integer.

Suppose that p = 2q. We define a cycle σ to
be an ordered pair of a sequence of length q: σ =
((i1, . . . , iq), (j1, . . . , jq)) such that ir, jr ∈ [k] for all r,
ir 6= is and jr 6= js for r 6= s. Now we associate with σ

Aσ =
q∏
`=1

Ai`,j`Ai`+1,j`

where we adopt the convention that ik+1 = i1. Let C
denote the set of cycles. We define

(4.6) Z = 1
N

N∑
i=1

1
|C|

∑
σ∈C

(GiAHT
i )σ

for even p.

Theorem 4.1. With probability ≥ 3/4, the output Z
returned by Algorithm 1 satisfies (1 − ε)‖A‖pp ≤ Z ≤
(1 + ε)‖A‖pp when p is even. The algorithm is a bilinear
sketch with r · s = Op(ε−2n2−4/p).

See Appendix E for the proof. A similar algorithm
works for odd p and PSD matrices A. See Appendix F
for details.

5 Lower Bounds for General Linear Sketches
5.1 Lower bound for p > 2 Let G ∼ G(n, n), u, v ∼
N(0, In) be independent. Define two distributions:
L1 = G(n, n), while L2 is the distribution induced by
G+ 5n−

1
2 + 1

puvT .
A unit linear sketch can be described using an n×n

matrix L. Applying this linear sketch to an n × n
matrix Q results in 〈L,Q〉. More generally, consider
k orthonormal linear sketches (which as was argued
earlier, is equivalent to any k linear forms, since, given
a sketch, one can left-multiply it by an arbitrary matrix
to change its row space) corresponding to {Li}ki=1 with
tr(LTi Lj) = δij .

Let X ∼ L2 and Zi = 〈Li, X〉. We define



a distribution Dn,k on Rk to be the distribution of
(Z1, . . . , Zk).

Theorem 5.1. Suppose that p > 2. For all suffi-
ciently large n, whenever k ≤ cn

3
2 (1− 2

p ), it holds that
dTV (N(0, Ik),Dn,k) ≤ 0.24, where c > 0 is an absolute
constant.

Proof. It is clear that Dn,k is a Gaussian mixture with
shifted mean

Xu,v = 5n−1/2+1/p(uTL1v, u
TL2v, . . . , u

TLkv)T

=: 5n−1/2+1/pYu,v.

Without loss of generality we may assume that k ≥ 16.
Consider the event Eu,v = {‖Yu,v‖2 ≤ 4

√
k}. Since

E‖Yu,v‖22 = k, it follows from Markov’s inequality
that Pru,v{Eu,v} ≥ 15/16. Let D̃n,k be the marginal
distribution of Dn,k conditioned on Eu,v. Then

dTV (D̃n,k,Dn,k) ≤ 1/8

and it suffices to bound dTV (N(0, In), D̃n,k). Resort-
ing to χ2 divergence by invoking Proposition 2.1 and
Proposition 2.2, we have that

dTV (N(0, In), D̃n,k) ≤
√
Ee〈Xu,v,Xu′,v′ 〉 − 1,

where u, v, u′, v′ ∼ N(0, In) conditioned on Eu,v and
Eu′,v′ . We first calculate that

〈Xu,v, Xu′,v′〉 = c2pn
−1+ 2

p

n∑
a,b,c,d=1

∑
i

(Li)ab(Li)cduau′bvcv′d

=: D
∑
a,b,c,d

Aa,b,c,duau
′
bvcv

′
d,

where D = c2pn
−1+ 2

p and Aa,b,c,d is an array of order 4
such that

Aa,b,c,d =
k∑
i=1

LiabL
i
cd.

We shall compute the partition norms of Aa,b,c,d as
needed in Latała’s tail bound.
Partition of size 1. The only possible partition is
{1, 2, 3, 4}. We have

‖A‖{1,2,3,4} =

 ∑
a,b,c,d

(
k∑
i=1

Lia,bL
i
c,d

)21/2

=

 ∑
a,b,c,d

k∑
i,j=1

Lia,bL
i
c,dL

j
a,bL

j
c,d

1/2

=

 ∑
a,b,c,d

k∑
i=1

(Lia,b)2(Lic,d)2

1/2

=
√
k

Partition of size 2 and 3. The norms are automati-
cally upper-bounded by ‖A‖{1,2,3,4} =

√
k.

Partition of size 4. The only partition is
{1}, {2}, {3}, {4}. We have

‖A‖{1},{2},{3},{4} = sup
u,v,u′,v′∈Sn−1

k∑
i=1

uTLivu′TLiv′

≤ sup
u,v,u′,v′

1
2

(
k∑
i=1
〈uvT , Li〉2 + 〈u′v′T , Li〉2

)
≤ 1

The last inequality follows the fact that uvT is a unit
vector in Rn2 and Li’s are orthonormal vectors in Rn2 .

Latała’s inequality (Theorem 2.2) states that for
t ∈ [
√
k, k2],

Pr
{∣∣∣∑

a,b,c,d
Aa,b,c,duau

′
bvcv

′
d

∣∣∣ > t
}

≤ C1 exp
(
−cmin

{
t√
k
,
t2

k
,
t

2
3

k
1
3
,
√
t

})

≤ C1 exp
(
−c · t

2
3

k
1
3

)
with no conditions imposed on u, v, u′, v′. It follows that

Pr
{
|〈Yu,v, Yu′,v′〉| > t

∣∣Eu,vEu′,v′}
≤ Pr {|〈Yu,v, Yu′,v′ | > t}

Pr{Eu′,v′}Pr{Eu,v}

≤ C2 exp
(
−c · t

2
3

k
1
3

)
, t ∈ [

√
k, k2].

Note that conditioned on Eu,v and Eu′,v′ ,

|〈Yu,v, Yu′,v′〉| ≤ ‖Yu,v‖2‖Yu′,v′‖2 ≤ 16k.

Let ε = 1/8, then for t ∈ [k1/2+ε, 16k], it holds that

tD − ct2/3

k1/3 ≤ −
ct2/3

2k1/3 ,

provided that k ≤ c′n
3
2 (1− 2

p ). Integrating the tail bound
gives that

EeXu,v,Xu′,v′

= 1 +
∫ 16k

0
etD Pr{|〈Yu,v, Yu′,v′〉| > t}dt

= 1 +D

∫ k1/2+ε

0
etD Pr{|〈Yu,v, Yu′,v′〉| > t}dt



+D

∫ 16k

k1/2+ε
etD Pr{|〈Yu,v, Yu′,v′〉| > t}dt

≤ 1 +D

∫ k1/2+ε

0
etDdt+ C2D

∫ 16k

k1/2+ε
etD−ct

2/3/k1/3
dt

≤ eDk
1/2+ε

+ C2D

∫ 16k

k1/2+ε
e
− ct2/3

2k1/3 dt

≤ exp(Dk1/2+ε) + 16C2kD · exp
(
−ck

2ε/3

2

)
≤ exp

(
c2p

n( 1
4−

3
2 ε)(1−

2
p )

)

+ 16C2c
′c2pn

1
2 (1− 2

p ) exp
(
−cc

′nε(1−
2
p )

2

)
≤ 1.01

when n is large enough. It follows immediately that
dTV (N(0, In), D̃n,k) ≤ 1/10 and thus

dTV (N(0, In),Dn,k) ≤ 1/10 + 1/8 < 0.24.

�

The lower bound on the number of linear sketches
follows immediately as a corollary.

Theorem 5.2. Let X ∈ Rn×n and p > 2. Suppose
that an algorithm takes k linear sketches of X and
computes Y with (1 − cp)‖X‖pp ≤ Y ≤ (1 + cp)‖X‖pp
for any X ∈ Rn×n with probability at least 3/4, where
cp = (1.2p − 1)/(1.2p + 1). Then k = Ω(n(3/2)(1−2/p)).

5.2 General p ≥ 0 Consider a random matrix
(G,GM), where G ∼ G(n, n/2) and M ∼ On/2.

A unit linear sketch can be described using an n×n
matrix L = (A,B), where A,B ∈ Rn×(n/2) such that
‖A‖2F + ‖B‖2F = 1. Applying this linear sketch to an
n × n matrix Q = (Q1, Q2) (where Q1, Q2 ∈ Rn×(n/2))
results in 〈A,Q1〉+ 〈B,Q2〉.

More generally, consider k orthonormal linear
sketches (which as was argued earlier, is equivalent to
any k linear forms, since, given a sketch, one can left-
multiply it by an arbitrary matrix to change its row
space) corresponding to {Li}ki=1 with tr(LTi Lj) = δij .

Now we define a probability distribution Dn,k on
Rk. For each i write Li as Li = (A(i), B(i)). Then
by orthonormality, 〈A(i), A(j)〉 + 〈B(i), B(j)〉 = δi,j .
Define Zi = 〈A(i), G〉 + 〈B(i), GM〉 and Dn,k to be the
distribution of (Z1, . . . , Zk).

Theorem 5.3. Let Dn,k be defined as above and ζ ∈
(0, 1). Then for k ≤ (ζ/3)3/2√n it holds that

dTV (Dn,k, N(0, Ik)) ≤ ζ,

where N(0, Ik) is the standard k-dimensional Gaussian
distribution.

Proof. The sketch can be written as a matrix Φg, where
Φ ∈ Rk×n2/2 is a random matrix that depends on A(i,σ),
B(i,σ) and M , and g ∼ G(n2/2, 1). Assume that Φ has
full row rank (we shall justify this assumption below).
Fix Φ (by fixing M). Then Φg ∼ N(0,ΦΦT ). It is
known that ([27, Lemma 22])

dTV (N(0,ΦΦT ), N(0, Ik)) ≤
√

tr(ΦΦT )− k − ln |ΦΦT |,

where λ1, . . . , λk are the eigenvalues values of ΦΦT .
Write ΦΦT = I + P . Define an event E ={
M : ‖P‖2F ≤ 12

ζ ·
k2

n

}
. When E happens, the eigenval-

ues of P are bounded by
√

12
ζ ·

k√
n
≤ 2/3. Let µ1, . . . , µk

be the eigenvalues of P , then λi = 1+µi and |µi| ≤ 2/3.
Hence

dTV (N(0,ΦΦT ), N(0, Ik)) ≤

√√√√ k∑
i=1

(µi − ln(1 + µi))

≤

√√√√ k∑
i=1

µ2
i =

√
‖P‖2F ≤

√
12
ζ
· k√

n
≤ 2

3ζ,

where we use that x − ln(1 + x) ≤ x2 for x ≥ −2/3.
Therefore, when E happens, Φ is of full rank and we can
apply the total variation bound above. We claim that
EP 2

ij ≤ 4/n for all i, j and thus E‖P‖2F ≤ 4k2/n, it then
follows that Pr(E) ≥ 1−ζ/3 by Markov’s inequality and

dTV (Dn,k, N(0, Ik)) ≤ 2
3ζ + Pr(Ec) ≤ 2

3ζ + 1
3ζ = ζ

as advertised.
Now we show that EP 2

ij ≤ 4/n for all i, j. Suppose
that M = (mij). Notice that the r-th row of Φ is

A
(r)
i` +

∑
j

B
(r)
ij m`j , i = 1, . . . , n, ` = 1, . . . , n2 .

Hence by a straightforward calculation, the inner prod-
uct of r-th and s-th row is

〈Φr·,Φs·〉 = δrs +
∑
i,j,`

A
(r)
i` B

(s)
ij m`j +

∑
i,j,`

A
(s)
i` B

(r)
ij m`j

= δrs +
∑
j,`

(
〈A(r)

` , B
(s)
j 〉+ 〈A(s)

` , B
(r)
j 〉
)
m`j

where A(r)
i denotes the i-th column of A(r). Then

Prs = tr(UM),



where the matrix U is defined by

uj` = 〈A(r)
` , B

(s)
j 〉+ 〈A(s)

` , B
(r)
j 〉.

Since

u2
jk ≤ 2

{(∑
i
|A(r)
ik |

2
)(∑

i
|B(s)
ij |

2
)

+
(∑

i
|A(s)
ik |

2
)(∑

i
|B(r)
ij |

2
)}

and thus

‖U‖2F ≤ 2
∑

j,k

{(∑
i
|A(r)
ik |

2
)(∑

i
|B(s)
ij |

2
)

+(∑
i
|A(s)
ik |

2
)(∑

i
|B(r)
ij |

2
)}

≤ 2
(
‖A(r)‖2F ‖B(s)‖2F + ‖A(s)‖2F ‖B(r)‖2F

)
≤ 2.

We conclude that

E[P 2
rs] =

∑
j,k
u2
jkE[m2

kj ]+
∑

(j,k)6=(i,`)
ujkui`E[mkjmi`]

= 2
n

∑
j,k
u2
jk = 2‖U‖2F

n
≤ 4
n
.

This completes the proof. �

Without loss of generality, we can normalize our
matrix by a factor of 1/

√
n. Let X ∼ 1√

n
G(n, n) and

Y = (G,GM), where G ∼ G(n, n/2) and M ∼ On/2. It
is not difficult to see that ‖X‖pp and ‖Y ‖pp differs by a
constant with high probability. The following theorem
is now an immediate corollary of Theorem 5.3. The
proof is postponed to Appendix H.

Theorem 5.4. Let X ∈ Rn×n and p ≥ 0. Suppose that
an algorithm takes k linear sketches of X and computes
Y with

• (when p > 0) (1 − cp)‖X‖pp ≤ Y ≤ (1 + cp)‖X‖pp,
or

• (when p = 0) (1− cp)‖X‖0 ≤ Y ≤ (1 + cp)‖X‖0
for any X ∈ Rn×n with probability at least 3

4 , where cp
is some constant depends only on p. Then k = Ω(

√
n).
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Appendices
A Proof of Theorem 3.3
Proof. First we strengthen Lemma 2.6 in [26] and in
this proof we shall follow Jiang’s notation that the we
read the upper-left p × q block despite the usage of rn
and sn in the statement of the theorem.

It holds that f ′s(s, t) = −2/(1 − 2s − t) = −2 +
O(n−1/(d+2)) and f ′t(s, t) = −1 + O(n1/(d+2)). The
bounds for second-order derivatives of f(s, t) still hold.
Thus

Bn = n2
∫∫

ln(1−2s− t)dsdt+ 3kq
2n +O

(
1

n1/(d+2)

)
= n2

∫∫
ln(1− 2s− t)dsdt+ o(1).

Now, we expand the Taylor series into r terms,∣∣∣∣ln(1+s+t)−
{

(s+t)− (s+t)2

2 +· · ·+(−1)d+1 (s+t)d

d

}∣∣∣∣
≤ (s+ t)d+1

d+ 1 .

So∫ v

0

∫ u

0
ln(1 + s+ t)dsdt

=
d∑
k=1

(−1)k+1

k(k + 1)(k + 2)((u+ v)k+2 − uk+2 − vk+2)

+O((u+ v)d+3)

as n→∞. Substituting u = −(p+ 2)/n and v = −q/n
back into two integrals in (2.5), (2.7) becomes

n2

2

∫ v

0

∫ u

0
ln(1 + s+ t)dsdt



= −1
2

d∑
k=1

1
k(k+1)(k+2)

(p+q+2)k+2 − (p+2)k+2 − qk+2

nk

+O

(
(p+ q + 2)d+3

nd+1

)
and

n2

2

∫ v

0

∫ −2/n

0
ln(1 + s+ t)dsdt

= −1
2

d∑
k=1

1
k(k + 1)(k + 2)

(q + 2)k+2 − 2k+2 − qk+2

nk

+O

(
qd+3

nd+1

)
Hence

Bn = −1
2

d∑
k=1

1
k(k+1)(k+2)

(
k+1∑
i=1

(
k+2
i

)
piqk+2−i

nk

)
+o(1).

Notice that for i ≥ 2, it holds that piqk+2−i/nk ≤
pkq2/nk → 0 as n→∞. It follows that

Bn = −1
2

d∑
k=1

pk+1q

k(k + 1)nk + o(1).

This is our desired form of Lemma 2.6.
Now, following the proof of Lemma 2.7, we expand

into more terms

ln
(

1− x

n

)
= −x

n
−x

2

n2−· · ·−
xd+1

(d+ 1)nd+1−
xd+2

d+ 2 ·
1

(ξ − n)d+2 .

so

f(x) = p+q+1
2n x−n−p−q−1

4n2 x−· · ·− n−p−q−1
2(d+1)nd+1x

d+1

+ gn(x)x
d+2

nd+1 ,

where

gn(x) = −n
d+1(n− p− q − 1)

2(d+ 2)(ξ − n)d+2 .

It is trivial to see that

sup
0≤x≤αn

|gn(x)| ≤ 1
(1− α)d+2 .

The eigenvalues are bounded by O((√p + √q)2) =
O(n1−1/(d+2)). Define Ω accordingly. Then

q∑
i=1

f(λi)

= p+ q + 1
2n tr(XTX)−

d+1∑
j=2

n− p− q − 1
2jnj tr((XTX)j)

+ g̃n
tr((XTX)d+2)

nd+2 ,

where gn ∈ [0, 2) for n sufficiently large.
We want to show that

(A.1) Bn +
q∑
i=1

f(λi)→ 0

in probability as n → ∞. First, we look at the last
term. It is clear from

tr((XT
nXn)m) =

q∑
i=1

∑
j∈[q]m−1

∑
k∈[p]m

xk1,ixk1,j1xk2,j1xk2,j2

· · ·xkm−1,jm−2xkm−1,jm−1xkm,jm−1xkm,i

that E tr((XT
nXn)m) = O(pmn qn), where the constant in

O(·) notation depends on m but not p and q. For any
ε > 0,

Pr
{

tr((XT
nXn)r+2 > εnr+2} ≤ E[(tr(XT

nXn)r+2)2]
ε2n2r+4

≤ E[q tr(XT
nXn)2r+4]

ε2n2r+4 = O

(
p2r+4q2

ε2n2r+4

)
→ 0

as n→∞. So the last term goes to 0 in probability.
For the other terms, fix ε > 0, we see that

Pr
{
| tr((XT

nXn)m)− E tr((XT
nXn)m)| ≥ εnm

}
≤ E[(tr((XT

nXn)m)2]
ε2n2m ≤ E[q(tr((XT

nXn)2m)]
ε2n2m

= O

(
p2mq2

ε2n2m

)
→ 0

hence
q∑
i=1

f(λi)→
p+q+1

2n E tr(XTX)

−
d+1∑
j=2

n−p−q−1
2jnj E tr((XTX)j)

in probability. It suffices to show that

Bn+

p+q+1
2n E tr(XTX)−

d+1∑
j=2

n−p−q−1
2jnj E tr((XTX)j)


goes to 0. Rearrange the terms in the bracket as

d∑
j=1

(
p+q+1
jnj

E(tr(XTX)j)− 1
(j+1)nj E(tr(XTX)j+1)

)
+ p+ q + 1

(d+ 1)nd+1E(tr(XTX)j+1)



The last term goes to 0 as E(tr(XTX)j+1) = O(pj+1q)
and pd+1/nd → 0. Hence it suffices to show that for
each k

− pk+1q

k(k + 1)nk + p+ q + 1
knk

E(tr(XTX)k)

− 1
(k + 1)nkE(tr(XTX)k+1)→ 0,

or

−pk+1q+(k+1)(p+q+1)E(tr(XTX)k)−kE(tr(XTX)k+1)
nk

→ 0,

which can be verified easily using that
E tr((XT

nXn)m) = pmn qn + o(nm). Therefore (A.1)
holds and the rest of the argument in Jiang’s paper
follows.

B Proof of Theorem 3.4
Proof. Choose A from D0 with probability 1/2 and from
On with probability 1/2. Let b ∈ {0, 1} indicate which
distribution A is chosen from, that is, b = 0 when A
is chosen from D0 and b = 1 otherwise. Note that
both D0 and O(n) are rotationally invariant, so without
loss of generality, we can assume that S =

(
Ir 0

)
and T =

(
Is
0

)
. Hence SAT ∼ Zn when b = 0 and

SAT ∼ Gn when b = 1. Notice that the singular
values of an othorgonal matrix are all 1s. Then with
probability 1− o(1) we have that

(1− cp)((Ip + o(1))n ≤ Y ≤ (1 + cp)((Ip + o(1))n, b = 0
(1− cp)n ≤ Y ≤ (1 + cp)n, b = 1

so we can recover b from Y with probability 1 − o(1),
provided that cp ≤ |Ip−1|

2(Ip+1) .
Consider the event E that the algorithm’s output

indicates b = 1. Then as in the proof of Theorem 5.4,

dTV (Dn,k, N(0, Ik)) ≥ 1
2 + o(1).

On the other hand, by Theorem 3.3,
dTV (Dn,k, N(0, Ik)) = o(1) when rs ≤ n1−η for some
η > 0. This contradiction implies that rs = Ω(n1−η)
for any η > 0.

C Reduction to Square Matrices for the upper
bound

Suppose that A ∈ Rn×d (n > d). When n = O(d/ε2),
let Ã = (A, 0) with zero padding so that Ã is a square
matrix of dimension n. Then ‖Ã‖p = ‖A‖p for all
p > 0. Otherwise, we can sketch the matrix with

O(d/ε2) rows while roughly maintaining the singular
values as follows. Call Φ a (d, δ)-subspace embedding
matrix if with probability ≥ 1− δ it holds that

(1− ε)‖x‖ ≤ ‖Φx‖ ≤ (1 + ε)‖x‖

for all x in a fixed d-dimensional subspace. In [44], it is
proved that

Lemma C.1. Suppose that H ⊂ Rn is a d-dimensional
subspace. Let Φ be an r-by-n random matrix with
entries i.i.d N(0, 1/r), where r = Θ(d/ε2 log(1/δ)).
Then it holds with probability ≥ 1− δ that

(1− ε)‖x‖ ≤ ‖Φx‖ ≤ (1 + ε)‖x‖, ∀x ∈ H.

In fact we can use more modern subspace embeddings
[44, 12, 37, 39] to improve the time complexity, though
since our focus is on the sketching dimension, we defer a
thorough study of the time complexity to future work.

Now we are ready for the subspace embedding
transform on singular values, which follows from the
min-max principle for singular values.

Lemma C.2. Let Φ be a (d, δ)-subspace embedding ma-
trix. Then, with probability ≥ 1 − δ, it holds that
(1−ε)σi(ΦA) ≤ σi(A) ≤ (1+ε)σi(ΦA) for all 1 ≤ i ≤ d.

Proof. [of Lemma C.2] The min-max principle for sin-
gular values says that

σi(A) = max
Si

min
x∈Si
‖x‖2=1

‖Ax‖,

where Si runs through all i-dimensional subspace. Ob-
serve that the range of A is a subspace of dimension at
most d. It follows from Lemma C.1 that with probabil-
ity ≥ 1− δ,

(1− ε)‖Ax‖ ≤ ‖ΦAx‖ ≤ (1 + ε)‖Ax‖, ∀x ∈ Rd.

The claimed result follows immediately from the min-
max principle for singular values. �

Let Ã = (ΦA, 0) with zero padding so that Ã is
a square matrix of dimension O(d/ε2). Then by the
preceding lemma, with probability ≥ 1 − δ, ‖Ã‖p =
‖ΦA‖p is a (1± ε)-approximation of ‖A‖p for all p > 0.
Therefore we have reduced the problem to the case of
square matrices.

D Proof of Theorem 3.5
Proof. Suppose that |S| = k and S = {(pi, qi)}ki=1. By
symmetry, without loss of generality, we can assume
that S does not contain a pair of symmetric entries.
Throughout this proof we rewrite L1(S) as L1 and
L2(S) as L2. Now, using new notation, let us denote



the marginal distribution of L2 with fixed G by L2(G).
Then

dTV (L1,L2) = sup
A⊂M(Rk)

|Pr
L1

(A)− Pr
L2

(A)|

= sup
A⊂M(Rk)

∣∣∣∣Pr
L1

(A)−
∫
Rn2

Pr
L2

(A|G)p(G)dG
∣∣∣∣

≤ sup
A⊂M(Rk)

∫
Rn2

∣∣∣∣Pr
L1

(A)− Pr
L2

(A|G)
∣∣∣∣ p(G)dG

≤ sup
A⊂M(Rk)

 ∫
F (δ)

∣∣∣∣Pr
L1

(A)− Pr
L2

(A|G)
∣∣∣∣ p(G)dG+

∫
F (δ)c

∣∣∣∣Pr
L1

(A)− Pr
L2

(A|G)
∣∣∣∣ p(G)dG


≤ sup
G∈F (δ)

dTV (L1,L2(G)) + 2 Pr{F (δ)c},(D.2)

where F (δ) = {G ∈ Rn×n : |Gpi,qi | ≤ δ, ∀i = 1, . . . , k}
and Pr{F (δ)c} is the probability of the complement
of F (δ) under the distribution on G, and we choose
δ = n1/4γ. Recalling the PDF of a Gaussian random
variable and that k ≤ n2, it follows from a union bound
that

(D.3) Pr{F (δ)c} ≤ ke−δ
2/(2γ2) = ke−n

1/2/2 ≤ n−3.

Now we examine dTV (L1,L2(G)) with G ∈
F (δ). For notational convenience, let ξ =
(ξ1, . . . , ξk)T = (Gp1,q1 , . . . , Gpk,qk)T and define
ξ(i) = (ξ1, . . . , ξi, 0, . . . , 0)T . Applying the triangle
inequality to a telescoping sum,

dTV (L1,L2(G))(D.4)

= sup
A⊂M(Rk)

∣∣∣∣Pr
L1

(A)− Pr
L2(G)

(A)
∣∣∣∣

= sup
A⊂M(Rk)

∣∣∣∣Pr
L1

(A)− Pr
L1

(A− ξ)
∣∣∣∣

≤ sup
A⊂M(Rk)

k∑
i=1

∣∣∣∣Pr
L1

(A− ξ(i−1))− Pr
L1

(A− ξ(i))
∣∣∣∣(D.5)

where M(Rk) denotes the canonical Borel algebra on
Rk.

To bound (D.5), we need a way of bounding
|PrL1(A) − PrL1(A + tei)| for a value t with |t| ≤ δ.
In this case, we say that we perturb a single entry
(p, q) := (pi, qi) of UV T by t while fixing the remaining
k − 1 entries. We claim that there exists a mapping
Tt : Rn×d → Rn×d (we defer the construction to the
end of the proof) for which the following three proper-
ties hold:

1. ((TtU)(TtV )T )pq = (UV )pq + t and for all
(p′, q′) ∈ S \ {(p, q)}, we have ((TtU)(TtV )T )p′q′ =
(UV T )p′q′ .

2. ‖U−TtU‖F ≤ t′, ‖V −TtV ‖F ≤ t′ with probability
1 − O(1/n2 + dcd), over the randomness of U and
V . When this holds, we say that U and V are good,
otherwise we say that they are bad.

3. T−t · Tt = id.

Property 3 implies that Tt is bijective. Define

E(x) = {(U, V ) : UV T |S = x}
Egood(x) = {(U, V ) ∈ E(x) : (U, V ) is good},
Ebad(x) = {(U, V ) ∈ E(x) : (U, V ) is bad}

Then, using these three properties about Tt, as well as
the triangle inequality, and letting p(U), p(V ) be the
p.d.f.’s of U and V that

p(U) = 1
(2π)nd/2

exp
(
−‖U‖

2
F

2

)
(D.6)

p(V ) = 1
(2π)nd/2

exp
(
−‖V ‖

2
F

2

)
we have that∣∣∣∣Pr
L1

(A)− Pr
L1

(A+ tei)
∣∣∣∣

=

∣∣∣∣∣∣∣
∫

E(x)

p(U)p(V )dUdV −
∫

E(x−tei)

p(U)p(V )dUdV

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

Egood(A)

p(U)p(V )dUdV −
∫

Egood(A)

p(TtU)p(TtV )dUdV

∣∣∣∣∣∣∣
+
∫
Ebad(A)

p(U)p(V ) + p(TtU)p(TtV )dUdV

≤
∫
Egood(A)

|p(U)− p(TtU)|p(V )dUdV

+
∫

Egood(A)

p(TtU)|p(V )− p(TtV )|dUdV

+O

(
1
n2 + dcd

)
.

(D.7)

Using (D.6),
(D.8)

|p(U)− p(TtU)| = p(U) ·
∣∣∣∣1− exp

(
‖U‖2F − ‖TtU‖2F

2

)∣∣∣∣ .
Notice that ‖U‖2F ∼ χ2(nd), where χ2(nd) denotes the
χ-squared distribution with nd degrees of freedom, and



so by a tail bound for the χ2-distribution [31, Lemma 1],
‖U‖2F ≤ 6nd−t′ (recall that t′ = 1/n4) with probability
at least 1 − e−nd ≥ 1 − n−3. When this happens, for
good U it follows from the triangle inequality, the second
property of Tt above, and the fact that t′ = 1/n4 that∣∣‖U‖2 − ‖TtU‖2∣∣ = (‖U‖+ ‖TtU‖)

∣∣‖U‖ − ‖TtU‖∣∣
≤ (2‖U‖+‖U−TtU‖) ‖U−TtU‖ ≤ 2

√
6nd·t′ ≤ 6n−3.

Using |1 − e|x|| ≤ 2|x| for |x| < 1 and combining with
(D.8), we have

(D.9) |p(U)− p(TtU)| ≤ p(U) · 12n−3.

Similarly it holds that ‖V ‖2F ≤ 6nd−t′ with probability
≥ 1− n−3 and when this happens,

|p(V )− p(TtV )| ≤ p(V ) · 12n−3.

It then follows that

∫
Egood(A)

|p(U)− p(TtU)|p(V )dUdV = O

(
1
n3

)
,

(D.10)

∫
Egood(A)

p(TtU)|p(V )− p(TtV )|dUdV = O

(
1
n3

)(D.11)

Plugging (D.10) and (D.11) into (D.7) yields that

(D.12)
∣∣∣∣Pr
L1

(A)− Pr
L1

(A+ tei)
∣∣∣∣ = O

(
1
n2 + dcd

)
,

which, combined with (D.5), (D.2), and (D.3), finally
leads to

dTV (L1,L2) ≤ dTV (L1,L2(G)) + 2 Pr{F (δ)c}
= O

(
k(n−2 + dcd)

)
.

Construction of Tt. Now we construct Tt. Sup-
pose the entry to be perturbed is (p, q).
Case 1a. Suppose that the p-th row contains s ≤ d
entries read, say at columns q1, . . . , qs. Without loss of
generality, we can assume that s = d, as we can preserve
the entries in S, perturbing one of them, and preserve
d− s arbitrary additional entries in the p-th row.

Then we have (Ui denotes the i-th row of U and Vi
the i-th column of V )

Ui
(
Vq1 Vq2 · · · Vqd

)
= x

and we want to construct U ′i such that

U ′i
(
Vq1 Vq2 · · · Vqd

)
= x+ ∆x

Hence property 1 automatically holds and

(D.13) (U ′i − Ui)
(
Vq1 Vq2 · · · Vqd

)
= ∆x

With probability 1, the matrix Ṽ := (Vq1 , Vq2 , . . . , Vqd)
has rank d. Hence we can solve U ′i − Ui uniquely, and

‖U ′i − Ui‖ ≤
‖∆x‖
σd(Ṽ )

≤ δ

σd(Ṽ )
.

Using the tail bound on the minimum singular value
given in [42], we have Pr{σd(ṽ) ≤ ε/

√
d} ≤ Cε + cd,

where C > 0 and 0 < c < 1 are absolute constants.
Choosing ε = n−4 and recalling that d ≤ n, we see that
with probability at least 1 − Cn−4 − cd, it holds that
σd(Ṽ ) ≥ 1/n9/2 and thus

‖U ′i − Ui‖ ≤ n9/2δ = n9/2+1/4γ ≤ n−5.

This proves property 2 of this case. To show property
3 in this case, we can show something stronger, which is
T−t ◦ Tt = id, namely, this step is invertible. Indeed, if
we replace ∆x with −∆x in (D.13) the solution U ′i −Ui
will be the opposite sign as well.
Case 1b. Suppose that the q-th column contains s ≤ d
entries read. Similarly to Case 1a we have U ′i = Ui and
‖V ′i −Vi‖ ≤ n−5 with probability ≥ 1−Cn−4− cd. The
invertibility is similar as in Case 1a and therefore holds.
Case 2. Suppose that there are more than d entries
read in both the p-th row and the q-th column. Define

J = {i∈ [n] : i-th column has ≤ d entries contained in S}
Cr = {i ∈ [n] : (r, i) ∈ S}, Rc = {i ∈ [n] : (i, c) ∈ S}

Call the columns with index in J good columns and
those with index in Jc bad columns.

Note that |Jc| ≤ d since the total number of entries
in S is at most d2. Take the columns in Jc ∩ Cp, and
notice that q ∈ Jc ∩ Cp. As in Case 1, we can change
Up to U ′p such that U ′V T agrees with the perturbed
entry of UV T at (p, q) and keeps the entries of UV T
the same for all (p, q′) for q′ ∈ (Jc ∩ Cp) \ {q}, since
|(Jc ∩ Cp) \ {q}| ≤ d− 1.

However, this new choice of U ′ possibly causes
(U ′V T )p,i 6= (UV T )p,i for i ∈ Cp ∩ J . For each
i ∈ Cp ∩ J , we also need to change Vi to a vector V ′i
without affecting the entries read in any bad column.
Now for each good column, the matrix Ũ used in Case
1 applied to each i in Cp∩J is no longer i.i.d. Gaussian
because one row of Ṽ has been changed, and this change
has `2 norm at most n−5 (the guarantee on property
2 in Case 1) with probability at least 1 − 4n−3 − cd,
and since the minimum singular value is a 1-Lipschitz
function of matrices, the minimum singular value is
perturbed by at most n−5. Hence for each good column
i, with probability at least 1 − 4n−3 − cd, we have
‖Vi − V ′i ‖ ≤ n−5. Since there are at most d good
columns, by a union bound, with probability at least
1 − 4/n2 − dcd we have ‖V − V ′‖F ≤ n−4. This



concludes the proof of properties 1 and 2 in Case
2.

The final step is to verify property 3. Suppose
that Tt(U, V ) = (U ′, V ′) and T−t(U ′, V ′) = (U ′′, V ′′),
we want to show that U ′′ = U and V ′′ = V . Observe
that Vi = (V ′)i = (V ′′)i for i ∈ Jc ∩ Cp = {q1, . . . , qd},
we have

(U ′p − Up)
(
Vq1 Vq2 · · · Vqd

)
= ∆x

(U ′′p − U ′p)
(
Vq1 Vq2 · · · Vqd

)
= −∆x

Adding the two equation yields

(U ′′p − Up)
(
Vq1 Vq2 · · · Vqd

)
= 0,

and thus U ′′p = Up provided that (Vq1 , Vq2 , . . . , Vqd) is
invertible. Since Ui = U ′i = U ′′i for all i 6= p, we have
U = U ′′. Next we show that V ′′i = Vi for each i ∈ Cp∩J .
Suppose Ri = {p1, . . . , pd} 3 p. Similarly to the above
we have that

U ′p1
...
U ′p
...
U ′pd

 (V ′i − Vi) =



0
...

−〈U ′p − Up, Vi〉
...
0


and 

U ′′p1
...
U ′′p
...
U ′′pd

 (V ′′i − V ′i ) =



0
...

−〈U ′′p − U ′p, V ′i 〉
...
0

 .

Adding the two equations and recalling that U ′′p = Up
and Ui = U ′i = U ′′i for all i 6= p, we obtain that

Up1
...
Up
...
Upd

 (V ′′i − Vi) +



0
...

U ′p − Up
...
0

 (V ′i − Vi)

=



0
...

〈U ′p − Up, V ′i − Vi〉
...
0

 ,

i.e., 

Up1
...
Up
...
Upd

 (V ′′i − Vi) =



0
...
0
...
0

 ,

whence it follows immediately that V ′′i = Vi provided
that (UTp1

, . . . , UTpd) is invertible. Together with Vi =
V ′i = V ′′i for all i ∈ Cp ∩ Jc, we conclude that V ′′ = V .

E Proof of Theorem 4.1
We say that two cycles σ = ({i}, {j}) and τ =
({i′}, {j′}) are (m1,m2)-disjoint if |i∆i′| = 2m1 and
|j∆j′| = 2m2, denoted by |σ∆τ | = (m1,m2).

Proof. Let X = UΣV be the SVD of X. Let G and
H be random matrices with i.i.d. N(0, 1) entries. By
rotational invariance, GXHT is identically distributed
as GΣHT . Let k = n1−2/p and X̃ be the upper-left k×k
block of GΛHT =: X̃. It is clear that

X̃s,t =
n∑
i=1

σiGi,sHi,t

Define

Y = 1
|C|

∑
σ∈C

X̃σ.

Suppose that σ = ({is}, {js}) then

X̃σ =
∑

`1,...,`q
m1,...,mq

q∏
s=1

σ`sσms

q∏
s=1

G`s,isH`s,jsGms,is+1Hms,js

It is easy to see that EX̃σ =
∑
σ2q
i = ‖A‖pp (all {`s}

and {ms} are the same) and thus EY = ‖X‖pp. Now we
compute EY 2.

EY 2 = 1
|C|2

q∑
m1=0

q∑
m2=0

∑
σ,τ∈C

|σ∆τ |=(m1,m2)

E(X̃σX̃τ ).

Suppose that |σ∆τ | = (m1,m2),

E(X̃σX̃τ ) =
∑

`1,...,`q
`′1,...,`

′
q

m1,...,mq
m′1,...,m

′
q

(∏q

i=1
σ`iσmiσ`′iσm′i

)
·

E
{∏q

s=1
G`s,isGms,is+1G`′s,i′sGm′s,i′s+1

}
·

E
{∏q

s=1
H`s,jsHms,jsH`′s,j

′
s
Hm′s,j

′
s

}
.



It is not difficult to see that (see Appendix G for details)

E(X̃σX̃τ ) .m,p

‖A‖2(2q−2m1−1)
2 ‖A‖2(m2+1)

2(m2+1)‖A‖
4(m1−m2)
4 , m2≤m1≤q−1

‖A‖2(2q−2m2−1)
2 ‖A‖2(m1+1)

2(m1+1)‖A‖
4(m2−m1)
4 , m1≤m2≤q−1

‖A‖4(q−m2−1)
4 ‖A‖4(m2+1)

2(m2+1), m1 =q,m2≤q−1
‖A‖4(q−m1−1)

4 ‖A‖4(m1+1)
2(m1+1), m2 =q,m1≤q−1

‖A‖4q2q, m1 = m2 = q

By Hölder’s inequality, ‖A‖22 ≤ n
1− 2

p ‖A‖2p and

‖A‖2(m+1)
2(m+1) ≤ n

1− 2(m+1)
p ‖A‖2(m+1)

p

Thus,

E(X̃σX̃τ ) .m,p


np−m1−m2−2‖A‖2pp , m1,m2 ≤ q − 1
nq−m1−1‖A‖2pp , p2 = q, p1 ≤ q − 1
nq−m2−1‖A‖2pp , p1 = q, p2 ≤ q − 1
‖A‖2pp , m1 = m2 = q.

There are Oq(kq+m1kq+m2) = Op(kp+m1+m2) pairs of
(m1,m2)-disjoint cycles and |C| = Θ(kp),

1
|C|2

∑
σ,τ∈C

|σ∆τ |=(m1,m2)

E(AσAτ )

≤ Cm1+m2,p
np−m1−m2−2

kp−m1−m2
‖A‖2pp

≤ Cm1+m2,p‖A‖2pp , m1,m2 ≤ q − 1,
1
|C|2

∑
σ,τ∈C

|σ∆τ |=(m1,m2)

E(AσAτ )

≤ Cm1+m2,p
nq−m1−1

kq−m1
‖A‖2pp

≤ Cm1,p‖A‖2pp ,
p

2 ≤ m2 = q,m1 ≤ q − 1,
1
|C|2

∑
σ,τ∈C

|σ∆τ |=(m1,m2)

E(AσAτ )

≤ Cm1+m2,p
np−2m2−2

kq−m2
‖A‖2pp

≤ Cm1,p‖A‖2pp ,
p

2 ≤ m1 = q,m2 ≤ q − 1,
1
|C|2

∑
σ,τ∈C

|σ∆τ |=(m1,m2)

E(AσAτ ) ≤ ‖A‖2pp , m1 +m2 = p.

Therefore EY 2 ≤ Cp‖A‖2pp for some constant Cp depen-

Algorithm 2 The sketching algorithm for odd p ≥ 3.
Input: n, ε > 0, odd integer p ≥ 3 and PSD A ∈ Rn×n

1: N ← Ω(ε−2)
2: Let {Gi} be independent n1−2/p × n matrices with

i.i.d. N(0, 1) entries.
3: Maintain each GiXGTi , i = 1, . . . , N
4: Compute Z as defined in (F.14)
5: return Z

dent on p only. Since

Z = 1
N

N∑
i=1

Yi,

then Yi’s are i.i.d. copies of Y . It follows that

EX = EY = ‖A‖pp
and

V ar(X) = V ar(Y )
N

≤ EY 2

N
= 1

4ε
2‖A‖2pp .

Finally, by Chebyshev inequality,

Pr
{∣∣X − ‖A‖pp∣∣ > ε‖A‖pp

}
≤ V ar(X)
ε2‖A‖2pp

≤ 1
4 ,

which implies the correctness of the algorithm. It is easy
to observe that the algorithm only reads the upper-left
k × k block of each GiXGTi , thus it can be maintained
in O(Nk2) = Op(ε−2n2−4/p) space. �

F Algorithms for Odd p

Given integers k and p < k, call a sequence (i1, . . . , ip)
a cycle if ij ∈ [k] for all j and ij1 6= ij2 for all j1 6= j2.
On a k × k matrix A, each cycle σ defines a product

Aσ =
p∏
i=1

Aσi,σi+1

where we adopt the convention that ip+1 = i1. Let C
denote the set of cycles. Call two cycles σ, τ ∈ C k-
disjoint if |σ∆τ | = 2k, where σ and τ are viewed as
multisets.

Theorem F.1. With probability ≥ 3/4, the output X
returned by Algorithm 2 satisfies (1 − ε)‖A‖pp ≤ X ≤
(1 + ε)‖A‖pp when A is positive semi-definite. The
algorithm is a bilinear sketch with r ·s = Op(ε−2n2−4/p).

Proof. Since X is symmetric it can be written as
X = OΛOT , where Λ is a diagonal matrix and O an
orthogonal matrix. Let G be a random matrix with
i.i.d. N(0, 1) entries. By rotational invariance, GXGT
is identically distributed as GΛGT . Let k = n1−2/p and



X̃ be the upper-left k × k block of GΛGT := X̃. It is
clear that

X̃s,t =
n∑
i=1

λiGi,sGi,t

Define

Y = 1
C

∑
σ∈C

X̃σ.

Suppose that σ = (i1, . . . , ip) then

X̃σ =
n∑

j1,...,jp=1
λj1 · · ·λjp

p∏
`=1

Gj`,i`Gj`,i`+1

It is easy to see that EX̃σ =
∑
λpi = ‖A‖pp (all j`’s are

the same) and thus EY = ‖X‖pp. Now we compute EY 2.

EY 2 = 1
|C|2

p∑
m=0

∑
σ,τ∈C

σ,τ are m-disjoint

E(X̃σX̃τ ).

It is not difficult to see that (see Appendix G for details),
when m ≤ p− 2, it holds for m-disjoint σ and τ that

E(X̃σX̃τ ) .m,p ‖A‖2(p−m−1)
2 ‖A‖2(m+1)

2(m+1)

By Hölder’s inequality, ‖A‖22 ≤ n
1− 2

p ‖A‖2p and

‖A‖2(m+1)
2(m+1) ≤ n

1− 2(m+1)
p ‖A‖2(m+1)

p , 2(m+ 1) ≤ p

Thus,

E(X̃σX̃τ ) .m,p

{
np−m−2‖A‖2pp , 2(m+ 1) ≤ p
kp−m−1‖A‖2pp , otherwise.

And when σ, τ are (p− 1)- and p-disjoint,

E(AσAτ ) ≤ ‖A‖2pp .

There are Op(kp+m) pairs ofm-disjoint cycles and |C| =
Θ(kp),

1
|C|2

∑
σ,τ∈C
|σ∆τ |=2m

E(AσAτ ) ≤ Cm,p
np−m−2

kp−m
‖A‖2pp

≤ Cm,p‖A‖2pp , m ≤ p

2 − 1,

1
|C|2

∑
σ,τ∈C
|σ∆τ |=2m

E(AσAτ ) ≤ Cm,p
kp−m−1

kp−m
‖A‖2pp

≤ Cm,p‖A‖2pp ,
p

2 − 1 < m ≤ p− 2,
1
|C|2

∑
σ,τ∈C
|σ∆τ |=2m

E(AσAτ ) ≤ 1
k
‖A‖2pp , m = p− 1

1
|C|2

∑
σ,τ∈C
|σ∆τ |=2m

E(AσAτ ) ≤ ‖A‖2pp , m = p.

Therefore EY 2 ≤ Cp‖A‖2pp for some constant Cp
dependent on p only. Hence if we take multiple copies
of this distribution as stated in Algorithm 2 and define

(F.14) Z = 1
N

N∑
i=1

1
|C|

∑
σ∈C

(GiXGTi )σ =: 1
N

N∑
i=1

Yi,

then Yi’s are i.i.d. copies of Y . It follows that

EX = EY = ‖A‖pp
and

V ar(X) = V ar(Y )
N

≤ EY 2

N
= 1

4ε
2‖A‖2pp .

Finally, by Chebyshev inequality,

Pr
{∣∣X − ‖A‖pp∣∣ > ε‖A‖pp

}
≤ V ar(X)
ε2‖A‖2pp

≤ 1
4 ,

which implies the correctness of the algorithm. It is easy
to observe that the algorithm only reads the upper-left
k × k block of each GiXGTi , thus it can be maintained
in O(Nk2) = Op(ε−2n2−4/p) space. �

G Omitted Details in the Proof of Theorem F.1
Suppose that σ = (i1, . . . , ip) and τ = (j1, . . . , jp) are
m-disjoint. Then

E(X̃σX̃τ ) =
∑

`1,...,`p
`′1,...,`

′
p

λ`1 · · ·λ`pλ`′1 · · ·λ`′p ·

E

{
p∏
s=1

G`s,isG`s,is+1G`′s,jsG`′s,js+1

}
.

For the expectation to be non-zero, we must have
each appeared entry repeated an even number of times.
Hence, if some is appears only once among the index
{is} and {js}, it must hold that `s = `s+1. Thus for
each of the summation term the indices {`s} breaks
into a few blocks, in each of which all `s takes the same
value, the same holds for {`′s}. We also need to piece
the blocks of {`s} which those of {`′s}. Hence the whole
sum breaks into sums corresponding to different block
configurations. For a certain kind of configuration,
in which `1, . . . , `w are free variables with multiplicity
r1, . . . , rw respectively, the sum is bounded by

C ·
∑

`1,...,`w

λr1
`1
· · ·λrw`w ≤ C‖A‖

r1
r1
· · · ‖A‖rwrw



where the constant C depends on the configuration
only, and thus can be made on m and p by taking
the maximum constant over all possible block config-
urations. Notice that in a configuration, all rw’s are
even,

∑
rw = 2p and w ≤ p−m. Note that

‖A‖rr‖A‖ss ≤ ‖A‖r−1
r−1‖A‖

s+1
s+1, r > s

‖A‖r+sr+s ≤ ‖A‖rr‖A‖ss,

it is easy to see that the worst case of configuration is
w = p−m and (r1, . . . , rw) = (2(m+1), 2 . . . , 2), giving
the bound

C‖A‖2(p−m−1)
2 ‖A‖2(m+1)

2(m+1).

Finally, observe that the number of configurations is a
constant depends on p and m only, giving the variance
claim.

H Proof of Theorem 5.4
Proof. First we show that ‖X‖pp and ‖Y ‖pp differ by a
constant factor. We have calculated ‖X‖pp = (Ip+o(1))n
in (3.3). Similarly, it holds that

‖Y ‖pp = (Jp + o(1))n,

where
(H.15)

Jp = 2
p
2

∫ b

a

x
p
2

√
(b− x)(x− a)

πx
dx, a, b = 3

2 ∓
√

2.

Extend the definition of Ip and Jp to p = 0 by Ip = 1
and Jp = 1/2. This agrees with ‖X‖0 = rank(X). Now
it suffices to show that Ip 6= Jp when p 6= 2. Indeed, let
us consider the general integral∫ (1+

√
β)2

(1−
√
β)2

xγ
√

((1 +
√
β)2 − x)(x− (1−

√
β)2)

2πβx dx

Change the variable y = (x− (1 + β))/
√
β, the integral

above becomes
1

2π

∫ 2

−2
(
√
βy + (1 + β))γ−1

√
4− y2dy.

Hence

Jp − Ip = 1
2π

∫ 2

−2
fp(x)

√
4− x2dx,

where

fp(x) = (
√

2x+ 3)
p
2−1 − (x+ 2)

p
2−1.

One can verify that fp < 0 on (−2, 2) when 0 < p < 2,
fp > 0 on (−2, 2) when p > 2 and fp = 0 when p = 2.
It is easy to compute that I2 = 1. The case p = 0 is
trivial. Therefore, Ip > Jp for p ∈ [0, 2), Ip < Jp for

p ∈ (2,∞), and Ip = Jp = 1 when p = 2.
Denote by D0 the distribution of X and by D1 that

of Y . Suppose that the k linear forms are a1, . . . , ak.
Choose X from D0 with probability 1/2 and from D1
with probability 1/2. Let b ∈ {0, 1} indicate that
X ∼ Db. Without loss of generality, we can assume
that a1, . . . , ak are orthonormal. Hence (a1, . . . , ak) ∼
N(0, Ik) when b = 0 and (a1, . . . , ak) ∼ Dn,k when
b = 1. Then with probability 3/4− o(1) we have that

(1− cp)((Ip + o(1))n ≤ Y ≤ (1 + cp)((Ip + o(1))n, b = 0
(1− cp)((Jp + o(1))n ≤ Y ≤ (1 + cp)((Jp + o(1))n, b = 1

so we can recover b from Y with probability 1 −
o(1), provided that cp ≤ |Ip−Jp|

2(Ip+Jp) . Consider the
event E that the algorithm’s output indicates b =
1. Then Pr(E|X ∼ D0) ≤ 1/4 + o(1) while
Pr(E|X ∼ D1) ≥ 3/4 − o(1). By definition of to-
tal variation distance, dTV (Dn,k, N(0, Ik)) is at least
|Pr(E|X ∼ D0)− Pr(E|X ∼ D1)|, which is at least
1
2 + o(1). On the other hand, by Theorem 5.3,
dTV (Dn,k, N(0, Ik)) ≤ 1

4 when k ≤ c
√
n for some c > 0.

We meet a contradiction. Therefore it must hold that
k > c

√
n.


