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Abstract— We consider the problem of estimating cas-
caded aggregates over a matrix presented as a sequence of
updates in a data stream. A cascaded aggregate P ◦Q is de-
fined by evaluating aggregate Q repeatedly over each row of
the matrix, and then evaluating aggregate P over the resulting
vector of values. This problem was introduced by Cormode
and Muthukrishnan, PODS, 2005 [CM].

We analyze the space complexity of estimating cascaded
norms on an n ×d matrix to within a small relative error. Let
Lp denote the p-th norm, where p is a non-negative integer.
We abbreviate the cascaded norm Lk ◦Lp by Lk,p .

(1) For any constant k ≥ p ≥ 2, we obtain a 1-pass
Õ(n1−2/k d1−2/p )-space algorithm for estimating Lk,p . This
is optimal up to polylogarithmic factors and resolves an open
question of [CM] regarding the space complexity of L4,2. We
also obtain 1-pass space-optimal algorithms for estimating
L∞,k and Lk,∞.
(2) We prove a space lower bound ofΩ(n1−1/k ) on estimating
Lk,0 and Lk,1, resolving an open question due to Indyk, IITK
Data Streams Workshop (Problem 8), 2006.

We also resolve two more questions of [CM] concerning
Lk,2 estimation and block heavy hitter problems. Ganguly,
Bansal and Dube (FAW, 2008) claimed an Õ(1)-space algo-
rithm for estimating Lk,p for any k, p ∈ [0,2]. Our lower
bounds show this claim is incorrect.

1. INTRODUCTION

The recent explosion in the processing of terabyte-
sized data sets has led to significant scientific advances
as well as competitive advantages for economic en-
tities. With the widespread adoption of information
technology in healthcare, and in the tracking of in-
dividual clicks over the internet, massive data sets
have become increasingly important on a societal and
personal level. The constraints imposed by process-
ing this massive data have inspired highly successful
new paradigms, such as the data stream model, in
which a processor makes a quick “sketch” of its input
data in a single pass and is able to extract impor-
tant statistical properties of the data. This has yielded
efficient algorithms for several classical problems in
the area including frequency-based statistics, ranking-
based statistics, metric norms, and similarity measures
(see [24] for a survey), and a complementary rich set of
lower-bound techniques and results [2], [6], [27].

Two classical problems in the foundations of pro-
cessing massive data sets are frequency moments and

norms. For a stream X with general updates, let wa(X )
denote the total weight of an item a induced by the
weighted increments and decrements to a. Let the k-
th frequency moment Fk (X ) ,

∑
a |wa(X )|k and the

k-th norm Lk (X ) , F 1/k
k . For simplicity, we describe

the results using norms; the analogous statements for
frequency moments can be obtained via suitable ma-
nipulations of exponents. Special cases include distinct
elements (L0), Euclidean norms (L2), the mode (L∞)
and the closely related “heavy-hitters” problem, that
have all been thoroughly studied [15], [2], [7], [6], [11],
[19]. Estimating Lk for k > 2 has applications in statis-
tics to the skewness and kurtosis of a random variable,
that provide a measure of asymmetry of a distribution
(see http://en.wikipedia.org/wiki/Kurtosis_risk).

Although norms are useful measure for single-
attribute aggregation, most applications deal with
multi-dimensional data. Here, the real insights are ob-
tained by slicing the data multiple times and apply-
ing several aggregate measures in a cascaded fashion,
e.g., volatility in the stock market, IP traffic [13], r -
means and r -median problems in computational ge-
ometry [14], approximating various matrix norms, and
product norms in metric spaces [4]. A common query,
involving two levels of aggregation, was introduced by
Cormode and Muthukrishnan [13]:

Definition 1 (Cascaded Aggregates). Consider a
stream X consisting of integer updates to items in
a matrix [n] × [d ]. We assume that the maximum
update in magnitude, the stream length, n and d are
all polynomially related. Let W denote the matrix
whose (i , j )-th entry is wi j (X ). Given two aggregate
operators P and Q, the cascaded aggregate P ◦ Q is
obtained by first applying Q to each row of A, and
then applying P to the resulting vector of values.
Abusing notation, we also apply P ◦ Q to X and
denote (P ◦Q)(X ) = P (Q(X1),Q(X2), . . . ,Q(Xn)), where
Xi , for each i ∈ [n], denotes the sub-stream of X
corresponding to updates to item (i , j ) for all j ∈ [d ].
We abbreviate the cascaded norm Lk ◦Lp by Lk,p .

The focus in [13] was mostly on the case P ◦ L0

for different choices of P . For estimating L2,0, under
the restriction that the updates are nonnegative, they



Figure 1. The optimal space complexity (upto Õ(1) factors) of
estimating Lk,p of an n ×d matrix where k and p are integers. The
upper bound for k ≥ p, where p = 0 is due to [13] and p = 1 to
[23], and the bound for k = 1 and p > 2 can be obtained using the
techniques of [3].

gave an algorithm using Õ(
p

n) space1. They left open
the problem of whether the space bound could be
improved. Under the same restriction of non-negative
updates, Ganguly et al. [16] obtained an Õ(1) space
algorithm for estimating Lk,p where 0 ≤ k ≤ 1 and
0 ≤ p ≤ 2. One can estimate L1,p for p > 2 using space
Õ(d 1−2/p ) by applying Theorem 1.5 of [3]2. Also, Mone-
mizadeh and the second author [23] gave an algorithm
for estimating Lk,1 for k ≥ 1 using space Õ(n1−1/k ).
Both of these algorithms can handle positive as well as
negative updates.

In this paper, we study the space complexity of esti-
mating cascaded norms Lk,p to within a (1±ε)-factor,
where k and p are assumed to be non-negative inte-
gers. We obtain a near-complete characterization of
the problem for a large regime of parameter values. Our
results are summarized in Figure 1.

The main result in the paper, and also technically
the most involved, is the following: for any constants
k ≥ p ≥ 2, we obtain a 1-pass Õ(n1−2/k d 1−2/p )-space
algorithm for estimating Lk,p . In particular, we show
that the space complexity of estimating L4,2 = F2 ◦ F2

is Θ̃(
p

n), thus resolving an open question of Cormode
and Muthukrishnan. The space complexity of our algo-
rithm is optimal up to Õ(1) factors.

Since Lk
k,p = Fk/p ◦Fp , overloading notation, we will

consider the problem of estimating Fk,p , Fk ◦ Fp ,
k ≥ 1, p ≥ 2, using space Õ(n1−2/(kp)d 1−2/k ). Naively
estimating Fp on every row i using space-optimal Fp

estimation algorithms uses too much space. To over-
come this hurdle, we design two generic 1-pass proce-
dures that have potential applications to other Fp -type
computations.

1The tilde notation shall hide poly(log(n)/ε) factors.
2One needs to slightly adjust their data structure to directly obtain

the parameter “γ” mentioned there, as well as use the Lp -sketch of
[19] in the buckets of their data structure.

Our first procedure is a space efficient Fp -sampling
algorithm, p ≥ 2, for obtaining a large number of
samples (with replacement) according to an approx-
imate histogram for Fp . While the Fp estimation al-
gorithm of [19] also yields an approximate frequency
histogram, the variance of the estimator is too large,
and the samples obtained from the approximate his-
togram are not sufficient. Further, repeating the pro-
cedure will result in a huge blowup in space. We add
new ingredients to limit the space used to generate the
samples. In particular, we resort to another subsam-
pling procedure to handle levels in the histogram that
have many more items than the expected number of
samples needed from this level. For Fk,p estimation,
the Fp -sampling algorithm can be used to return row
ids according to their approximate Fp value by ignoring
the matrix structure. If we also had the Fp values for
the chosen row ids, we could have fed them into an
appropriate Fk estimator. In effect, this estimator is
the one used in the Fk algorithm in [2]. However, the
sampling guarantees are not sufficient to estimate the
Fp value of the chosen row ids, thereby incurring an
additional pass.

To avoid the second pass, we design a new oracle
Fk -estimation algorithm, k ≥ 1, that is based only on
obtaining sample items according to their weight but
whose weights themselves are not available. Techni-
cally, we need the following stronger oracle: for a pa-
rameter j , the oracle forms a sub-stream by including
each item in the domain independently with probabil-
ity 2− j , and returns a large number of samples accord-
ing to their weight in the substream. By additionally
estimating the L1 norm of the substream (which via
known algorithms uses small space), we show how to
obtain an appropriate Fk estimator. The analysis is
quite complicated because the sampling is not exact
and items may be misclassified if their weights are too
close to the boundaries of the different weight levels.

A few more comments regarding our Lk,p contribu-
tion are worth mentioning. In the literature, there is
another algorithm for Lk estimation in a data stream
due to Bhuvanagiri et al. [8], which achieves a much
smaller space by a poly((logn)/ε) factor. However, it
seems this latter algorithm cannot be easily modified
to obtain an approximate histogram. We are not aware
of other work which builds on the histogram of [19].

Next, we consider the problem of estimating Lk,p

where k > 0 and p ∈ {0,1}. As mentioned ear-
lier, [13] gave an algorithm for a restricted case of L2,0-
estimation using Õ(

p
n) space. Indyk [1, Problem 8]

asked whether any non-trivial lower bounds can be
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shown for this problem. We prove a space lower bound
of Ω(n1−1/k ) for this problem, which matches the up-
per bound of [13] with k = 2 and p = 0.

Our proof involves a new technique for information
complexity [9], [6] for an appropriate communication
problem. Via the information complexity direct sum
theorem, we reduce it to the following problem: given
two input vectors in the Hamming cube {0,1}d of di-
mension d , show that any communication protocol
that can distinguish close instances (distance at most
1) from far instances (distance d) must have infor-
mation complexity Ω(1/d). The caveat, as in previous
applications of this paradigm, is that the support of the
distribution is only on the close instances, so just the
correctness of the protocol does not immediately yield
the desired lower bound. Bar-Yossef et al. [6] manage
to prove such a lower bound for L∞ by resorting to the
Hellinger distance in statistics. Using the Pythagorean
property of communication protocols, the information
cost is bounded in terms of distances between pairs of
close and far instances, as needed. Adapting this proof
for our case yields a weaker lower bound of Ω(1/d 2),
which is not useful for Lk,0. We show how to exploit the
Euclidean nature of Hellinger distance by employing
the “short diagonals” property of points in Euclidean
space. This property has been used previously to give
non-embeddability results for metric spaces but this
is the first application, to our knowledge, to commu-
nication complexity and data streams. Following our
work, further applications of the “information geom-
etry” of communication protocols have been shown to
get improved lower bounds for edit distance [5], and to
simplify the proof for the multiparty number-in-hand
information complexity of AND [20].

Next, for Lk,2 for any k > 0, we obtain a 1-pass space-
optimal algorithm for estimating Lk,2. Our techniques
also allow us to find all rows whose L2 norm is at least
a constant φ > 0 fraction of L1,2 in Õ(1) space, i.e.,
to solve the “heavy hitters” problem for rows of the
matrix weighted by L2 norm. These results resolve two
more open questions of Cormode and Muthukrishnan.
Finally, for k ≥ 1, we obtain 1-pass space-optimal algo-
rithms for L∞,k and Lk,∞.

We note that previously, Ganguly, Bansal, and
Dube [16] claimed an Õ(1)-space algorithm for esti-
mating Lk,p for any k, p in [0,2]. Our lower bounds,
as well as a reduction from multiparty set disjointness,
show that this claim is incorrect.

Reducing Randomness: We describe our algo-
rithms using random oracles, i.e., they have access to
unlimited randomness including the use of continuous

distributions. This assumption can be eliminated by
the use of pseudorandom generators (PRGs) [25], sim-
ilar to Indyk [18]. We give the standard transformation
in the full version of this paper.

Proposition 2 (Hölder’s inequality). Given a stream
X of updates to D distinct items, (a) F2(X ) ≤ D1−2/p ·
Fp (X )2/p , p ≥ 2; (b) F1(X ) ≤ D1−1/k ·Fk (X )1/k , k ≥ 1.

2. CASCADED FREQUENCY MOMENTS

In this section, we show that the space complexity
of estimating Lk,p , when k ≥ p ≥ 2, is an optimal
Õ(n1−2/k d 1−2/p ). Due to lack of space, many proofs are
omitted from this version.

The lower bound follows via a simple reduction from
multiparty set disjointness. Specifically, the inputs are
t = 2n1/k d 1/p subsets of [n] × [d ] such that on a NO

instance, the sets are pairwise disjoint, and on a YES

instance there exists (i , j ) such that the intersection of
every distinct pair of sets equals (i , j ). The sets can be
concatenated to form a stream input X for Lk,p in a
standard manner. For a NO instance, wi j ∈ {0,1} for
every i , j . Therefore Lk,p (X ) ≤ (

∑
i d k/p )1/k = n1/k d 1/p .

For a YES instance, wi j = t for some i , j . Therefore
Lk,p (X ) ≥ t = 2n1/k d 1/p . Thus, there is a constant
factor gap in the value. From the known communica-
tion complexity lower bounds for multiparty set dis-
jointness [6], [10], [17] for any constant number of
passes, the space lower bound for estimating Lk,p is
Ω(nd/t 2) =Ω(n1−2/k d 1−2/p ).

As stated in the introduction, we will design a 1-pass
algorithm for estimating Fk,p , Fk ◦Fp , k ≥ 1 and p ≥ 2.
Fix a stream X whose items belong to an arbitrary set D

of size poly(n). We partition items into levels according
to their weights and identify levels having a significant
contribution to Fp (X ).

Notation: Fix an η ≥ 1. We let η = 1 + γ, where
γ= poly(ε/logn) will be chosen to be sufficiently small.
We shall also choose a parameter ϑ= poly(log(n)/ε) to
be large enough, and in particular ϑ > γ−ι for a large
constant ι> 1. We say that x approximates y within η if

y ≤ x ≤ η · y . We say x
η
(−−+ y if y ≤ x ≤ (1+poly(γ))y .

Definition 3. Choose ζ ∈ [0,γ] uniformly at
random. Define the level sets St (X ) = {a ∈ D :
|wa(X )| ∈ [ζηt−1,ζηt )}, for 1 ≤ t ≤ C , where
C =O(logη(poly(n)/ζ)) is the total number of level sets.
Let B ≥ 1 be a parameter. Call a level t contributing if
|St (X )| ·ζpηpt ≥ Fp (X )

Bϑ . For a contributing level t , items
in St (X ) will be called contributing items.
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2.1. Fuzzy intervals and items

Define the fuzzy intervals to be [ζηt−1,ζηt−1 +
γ3ζηt−1) and [ζηt − γ3ζηt−1,ζηt ). For each a ∈ D for

which wa
def= wa(X ) > 0 (and hence, |wa | ≥ 1), let Ea be

the event that wa lies in a fuzzy interval, in which case
a is fuzzy. Let I (a, t ) be an indicator which is 1 iff a ∈ St .
Then Pr[Ea] = ∑

t Pr[Ea | I (a, t ) = 1]Pr[I (a, t ) = 1]. Let
t∗ be such that wa/ηt∗ < γ but wa/ηt∗−1 ≥ γ. Then
I (a, t ) = 0 if t < t∗ since ζ ≤ γ. Also, Pr[I (a, t∗) =
1] = Pr[ζηt∗−1 ≤ wa < ζηt∗] = Pr[ζ ≥ wa/ηt∗], since
wa/ηt∗−1 ≥ γ. But Pr[ζ ≥ wa/ηt∗ ] = γ− wa/ηt∗ = γ−
wa/(ηηt∗−1) ≤ γ−γ/η≤ γ2.

For t > t∗, to compute Pr[Ea | I (a, t ) = 1], we
compute ∆1 = Pr[ζ ∈ [wa/(ηt−1(1 + γ3)), wa/ηt−1]] =
(waγ

3)/(ηt−1(1 + γ3)) ≤ waγ
3/ηt−1. Also, ∆2 = Pr[ζ ∈

[wa/ηt , wa/(ηt − γ3ηt−1)]] = (wa/ηt−1)(1/(η − γ3) −
1/η) = waγ

3/(ηt (η − γ3)) ≤ waγ
3/ηt−1. Finally, ∆3 =

Pr[ζ ∈ [wa/ηt , wa/ηt−1]] = waγ/ηt . Now, Pr[Ea |
I (a, t ) = 1] = (∆1+∆2)/∆3 ≤ 2γ2η≤ 3γ2. Hence, Pr[Ea] ≤
3γ2 +γ2 =O(γ2).

Let X ′ be the stream of updates restricted to non-
fuzzy items. With probability at least 1 − O(γ1/2),
Fp (X ′) ≥ (1 − γ3/2)Fp (X ). Also, note that with proba-
bility 1− 1/poly(n), ζ ≥ 1/poly(n), and so the number
of level sets C = O(logn)/γ. As E[|St (X )| − |St (X ′)|] =
O(γ2)|St (X )|, Pr[|St (X )| − |St (X ′)| > γ1/2|St (X )|] =
O(γ3/2), so Pr[∃t | |St (X )| − |St (X ′)| > γ1/2|St (X )|] =
O(γ1/2 logn) = poly(γ), for γ sufficiently small. That is,

Lemma 4. With probability 1 − poly(γ): for all t ,
|St (X ′)| ≥ (1 − poly(γ))|St (X )|, and Fp (X ) ≥ Fp (X ′) ≥
(1−poly(γ))Fp (X ).

We condition on the events of Lemma 4.

2.2. An approximate Fp -sampling algorithm

The main result of this section is a sampling algo-
rithm geared towards contributing items.

Theorem 5. There is a 1-pass procedure
Sample(X ,Q;B ,η) using space Õ((B 2/p +Q2/p ) · |D|1−2/p )
that outputs the following with probability
≥ 1−poly(γ):

1) a set G including all contributing levels and val-

ues st for t ∈ G with st
1+poly(γ)
(−−−−−−−−−−−−+ |St (X )|. If t ∈ G,

then |St (X )|ζpηpt ≥ Fp (X )/(Bϑ(1+poly(γ))).

2) A quantityΦ such thatΦ
η
(−−+ Fp (X ).

3) For each t ∈ G, a set At formed as follows: either
(1) St (X ′) ⊆ At ⊆ St (X ) is arbitrary, or (2) a subset

Bt of St (X ) of size at least Q · ϑ2st ζ
pηpt

Φ is chosen
at random, and At is arbitrary subject to B ′

t ⊆
At ⊆ Bt , where B ′

t denotes the non-fuzzy items

of Bt . Further, the subsets Bt are independent for
different values of t .

Proof: The algorithm of [19] defines a contributing
level t to be one for which |St (X )|ζpηpt ≥ Fp (X )/(Bϑ).
That algorithm returns values s′t for all t for which
s′t ≤ η|St (X )|, and if t contributes, then s′t ≥ |St (X )|
(see, e.g., Corollary 20 and Lemma 33 of [26], together
with the surrounding discussion and Section 3.5. The
bounds here follow by replacing ε with poly(ε/logn)
and multiplying the estimates there by (1 + ε) to en-

sure one-sided error). The algorithm also returns F̃p
η
(−−+

Fp (X ). All of this holds with probability ≥ 1−1/poly(n).
Let σ = 1+poly(γ) be such that both F̃p ≤ σFp (X )

and s′t ≤ σ|St (X )| for all contributing t . Define τ =
F̃p /(Bϑσ). Put t in G iff s′tζ

pηpt ≥ τ.

Claim 6. If t is contributing, then t is in G.

Claim 7. If t is in G, then s′t ≥ |St (X )|/σ.

Claim 8. If t is in G, then |St (X )|ζpηpt ≥ Fp (X )/(Bϑσ2).

Let st =σs′t for each t ∈G . Claims 6, 7, and 8 now imply
part 1. The space is determined by the algorithm of
[19], and is Õ((Bϑ)2/p · |D|1−2/p ) = Õ(B 2/p · |D|1−2/p ). For
part 2, letΦ,

∑
t∈G stζ

pηpt .

Claim 9. For large enough ϑ, Fp (X ) ≤Φ≤σ2ηp Fp (X )

For Part 3, fix a t ∈ G and let αt = st ζ
pηpt

Φ ·Q. The
quantity αt represents the expected number of sam-
ples that are needed from level t . Assume, w.l.o.g.,
that Q ≥ 2Bσ2ηpϑ2; this will affect the space bound
claimed in the theorem by only an Õ(1) factor. For

t ∈ G , αt = st ζ
pηpt

Φ ·Q ≥ |St (X )|ζpηpt

σ2ηp Fp (X )
·Q = |St (X )|ζpηpt

Fp (X ) ·
Q

σ2ηp ≥ Fp (X )
Fp (X )Bϑ(1+poly(γ)) · Q

σ2ηp ≥ Q
2Bϑσ2ηp ≥ ϑ, where the

first inequality follows from parts 1 and 2, the second
inequality by the second property of a t ∈ G given in
part 1, and the last inequality our bound on Q.

We show how to obtain a near-uniform set of roughly
βt = min(ϑ2αt , st ) samples from each t ∈ G . Let j ≥ 0
be such that st /2 j ≤βt < st /2 j−1.

The key idea is sub-sampling: for each j ∈ [log |D|],
let h j : D 7→ {0,1} be a random function such that
h j (a) = 1 with probability 1/2 j and the values h j (a) for
all a are jointly independent. We create a substream
Y j for each j , and items a for which h j (a) = 0 in the
corresponding substream are discarded. By Markov’s
inequality and a union bound, with probability at
least 1 − 2/ϑ, (*) Fp (Y j ) ≤ (log |D|)ϑFp (X )/2 j and (**)
L0(Y j ) ≤ (log |D|)ϑ|D|/2 j .

Now st
2 j ≤ βt ≤ ϑ2αt = ϑ2st ζ

pηpt

Φ Q, which by ap-
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plying part 2 yields ηpt ≥ Φ
ζpϑ22 j Q

≥ Fp

ζpϑ22 j Q
. So,

η2t = (ηpt )2/p ≥
(

Fp (X )

ζpϑ22 j Q

)2/p ≥
(

Fp (Y j )

ζpϑ3(log |D|)Q
)2/p ≥

F2(Y j )(ϑ(log |D|)|D|/2 j )2/p−1

(ζpϑ3(log |D|)Q)2/p ≥ F2(Y j )

ζ2(log |D|)ϑ4Q2/p ·|D|1−2/p , where

the first inequality follows from our previous calcu-
lation, the second from (*), the third from Hölder’s
inequality, and the last inequality since p ≥ 2, so in
particular (2 j )1−2/p ≥ 1. Thus by running the F2-heavy
hitters algorithm of [11] on each Y j , every sub-sampled
item of St will be returned in 1-pass with space
Õ(Q2/p |D|1−2/p ) with probability 1−O(ϑ−1). However,
the algorithm does not know which items it returns
are in St . Nevertheless, with space Õ(Q2/p |D|1−2/p ), for
each item a returned by the algorithm, it also returns
an estimate w ′

a for which wa ≤ w ′
a ≤ (1+γ3/η)wa .

Now we have two cases. Suppose βt = st . In this
case j = 0, and there is no sub-sampling. It follows that
every item of St is returned by the algorithm of [11]. On
the other hand, suppose βt = ϑ2αt < st . Then the ex-
pected number of items in St in Y j is Θ(ϑ2αt ) =Ω(ϑ3).
It follows by a Chernoff bound that with probability
1 − e−Ω(ϑ), the number of items in St in Y j will be at
least ϑαt . Hence, with probability 1 − O(ϑ−1), either
the entire set St , or at least ϑαt samples will be in the
output of the algorithm of [11].

Moreover, for every item returned by the F2-heavy
hitters algorithm, we could naively spend an addi-
tional pass to determine its exact frequency, and thus
which St it belongs to. To implement this in 1 pass,
the algorithm declares a to be borderline if w ′

a is in
∪t [ζηt−1,ζηt−1 +γ3ζηt−1). If a is borderline, then w ′

a ∈
[ζηt−1,ζηt−1+γ3ζηt−1) for some value of t . This means
ζηt−1/(1+γ3/η) ≤ wa < ζηt−1 +γ3ζηt−1. But ζηt−1/(1+
γ3/η) ≥ ζηt−1 −γ3ζηt−2, so a is fuzzy.

If a is not borderline, then using w ′
a , a is correctly

classified. Indeed, since a is not borderline, w ′
a ∈

[ζηt−1 +γ3ζηt−1,ζηt ) for some value of t . As wa ≤ w ′
a ,

a misclassification can only occur if wa < ζηt−1. But
wa ≥ w ′

a/(1 + γ3/η) ≥ (ζηt−1 + γ3ζηt−1)/(1 + γ3/η) ≥
ζηt−1+γ3ζηt−1−γ3ζηt−2−γ6ζηt−2 = ζηt−1+γ4ζηt−2−
γ6ζηt−2 > ζηt−1, so a is classified correctly.

This analysis was for a given t ∈ G . For sufficiently
large ϑ (as a function of γ), by a union bound over all
O(logn)/γ many t ∈ G , the above events occur for all
t ∈G with probability ≥ 1−poly(γ).

If βt = st , then the set At is St minus borderline
items. Otherwise, Bt is a random subset of St (X ) of the
desired size, and At denotes the items in Bt that were
not discarded. As only borderline (and hence fuzzy)
items were discarded, this completes the proof.

For Section 2.4, we need the following algorithm.

Algorithm 1 Generator(Q, {At , st }t ,Φ,G)

1) Initialize an array T of length Q.
2) For each i = 1,2, . . . ,Q,

a) Choose a value of t with probability ζpηpt st
Φ .

b) Let T [i ] be a random item of At .

3) Output T .

2.3. A new 1-pass Fk -algorithm

We describe a new 1-pass Õ(|D|1−1/k )-space algo-
rithm OracleEstimator to perform Fk -estimation on a
stream X , k ≥ 1, whose items belong to a set D′ of size
poly(n). While the space is inferior, the algorithm will
only have limited oracle access to X .

For flexibility, we fix an η′ ≥ 1, where η′ = 1 + γ′
for γ′ = poly(ε/logn). It will turn out in our appli-
cation in Section 2.4 that η′ will be slightly larger
than η. In this section we will use the same suf-
ficiently large parameter ϑ = poly(log(n)/ε) as in
the previous section. Choose ζ′ ∈ [0,γ′] uniformly
at random. Define the level sets St (X ) = {a ∈ D′ :
|wa(X )| ∈ [ζ′(η′)t−1,ζ′(η′)t )}, for 1 ≤ t ≤ C ′, where C ′ =
O(logη′ (poly(n)/ζ′)) is the total number of level sets.
We condition on C ′ = O(logn)/γ′, which occurs with
probability 1 − 1/poly(n). Notice that we assume, if
wa(X ) 6= 0, then |wa(X )| ≥ 1.

Call a level t important if |St (X )| · (ζ′)k (η′)kt ≥
Fk (X )
ϑ . For an important level t , items in St (X ) will

be called important items. The algorithm is allowed
to specify an integer j ∈ [C ′], and a value Q. The
oracle forms a sub-stream by including each item in
D′ independently with probability 2− j . Call the in-
cluded items the survivors, and the set of such sur-
vivors S. The oracle returns Q i.i.d. samples from
a distribution on S with the following two proper-
ties: (1) survivor a is returned with probability (1 ±
O((γ′)3/η′)) |wa (X )|∑

b∈S |wb (X )| ± 2
ϑQ , (2) if wa(X ) = 0, then sur-

vivor a is returned with probability 0. The oracle also
returns a (1 + O((γ′)3/η′))-approximation to the L1-
norm of the vector of survivors (using, say, the algo-
rithm of [21]), which can be done in poly(ε−1 logn)
space. Notice that

∑
unimportant t |St (X )|(ζ′)k (η′)tk ≤ γ′ ·

Fk (X ), provided ϑ = poly(ε−1 logn) is large enough,
and so

∑
important t |St (X )|(ζ′)k (η′)tk ≥ (

1−γ′)Fk (X ).

Theorem 10. Given the above oracle, there exists an
algorithm OracleEstimator taking Õ(|D′|1−1/k ) non-
adaptive samples, and outputting a (1 ± poly(γ′))-
approximation to Fk with probability ≥ 1−poly(γ′).

Proof: Suppose we obtain approximations st to
|St | for each t with the following two properties:
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(1) if St is important, then (1 − poly(γ′))|St | ≤ st ,
and (2) for every t , st ≤ (1 + poly(γ′))|St |. Con-
sider the following estimate E ,

∑
t st (ζ′)k (η′)kt .

Then E ≤ (η′)k (1 + poly(γ′))
∑

t |St |(ζ′)k (η′)k(t−1) ≤
(η′)k (1 + poly(γ′))Fk ≤ (1 + poly(γ′))Fk . On the other
hand, E ≥ ∑

important t st (ζ′)k (η′)kt ≥ ∑
important t (1 −

poly(γ′))|St |(ζ′)k (η′)kt ≥ (1 − poly(γ′))Fk . It suffices to
compute the values st .

Queries: Put L = O((γ′)−2 log |D′|). For each j ∈
[log |D′|] and ` ∈ [L] the algorithm asks for an array
T j ,` of Q = ϑ4|D′|1−1/k samples from the oracle. So the
number of samples is as claimed.

Algorithm: Let S j ,` be the set of survivors in the `-th
independent sub-sampling phase at rate 2− j .

For each j ,`, the algorithm is given the array T j ,`

as well as a (1 ± O((γ′)3/η′))-approximation h j ,` to
the L1-norm of the stream restricted to items in S j ,`.
Let R j ,` be the set of coordinates which are sam-
pled at least ϑ times in T j ,`. For each i ∈ S j ,`, let
a j ,`

i be the number of times item i was sampled in

T j ,`. Put b j ,`
i =

(
h j ,`

Q

)
· a j ,`

i . Then we have E[b j ,`
i ] =

E
[

h j ,`

Q ·a j ,`
i

]
= (1±O((γ′)3/η′))

(
h j ,`

Q

)
Q|wi (X )|
L1(S j ,`)

± 2Q
ϑQ = (1±

O((γ′)3/η′))|wi (X )| ± 2
ϑ . Since if wi (X ) = 0 then i is

not sampled, i.e., does not occur in any T j ,`, we have
|wi (X )| ≥ 1. But provided ϑ is large enough, it follows
that E[b j ,`

i ] = (1±O((γ′)3/η′))|wi (X )|.
For all i ∈ S j ,`, a j ,`

i is a sum of Q i.i.d. indicator
random variables. By Chernoff bounds there is a
constant α > 0 so that the following events hold
with probability ≥ 1 − 1/poly(n): for all i , E[a j ,`

i ] ≤
α(η′)2(γ′)−6 log |D′| ⇒ a j ,`

i = O((η′)2(γ′)−6 log |D′|),

and E[a j ,`
i ] > α(η′)2(γ′)−6 log |D′| ⇒ |a j ,`

i −
E[a j ,`

i ]| = O((γ′)3/η′)E[a j ,`
i ]. By choosing

ϑ = ω((η′)2(γ′)−6 log |D′|), these events imply that
for all i ∈ R j ,`, |a j ,`

i − E[a j ,`
i ]| = O((γ′)3/η′)E[a j ,`

i ].

Hence, for all i ∈ R j ,`, b j ,`
i = (1±O((γ′)3/η′))|wi (X )|. By

rescaling and adjusting constants in the O(·), we can
ensure that |wi (X )| ≤ b j ,`

i ≤ (1 + (γ′)3/η′)|wi (X )|.
The algorithm classifies i as borderline if
b j ,`

i ∈ ∪t [ζ′(η′)t−1,ζ′(η′)t−1 + (γ′)3(η′)t−1). The
algorithm throws away sampled items that are
borderline. We adapt the definition of fuzzy intervals
in Section 2.1 to ζ′,η′,γ′, as well as Lemma 4
to conclude that with probability 1 − poly(γ′),
for all t , |St (X ′)| ≥ (1 − poly(γ′))|St (X )|, and
Fk (X ) ≥ Fk (X ′) ≥ (1 − poly(γ′))Fk (X ). As in the
proof of Theorem 5, if a is borderline, then a is fuzzy.
Also, if a is not borderline, then a is correctly classified.

For each t ∈ [C ′], the algorithm attempts to find a

j (t ) for which more than a 1/3 fraction of the different
values of `, R j (t ),` contains an item i for which b j (t ),`

i ∈
[ζ′(η′)t−1,ζ′(η′)t ), after discarding borderline items. If
there are multiple such j , the algorithm chooses the
smallest one. If the algorithm finds such a value j (t ),
for each ` ∈ [L], let z j (t ),`,t be the number of distinct
items i in R j (t ),` for which b j (t ),`

i ∈ [ζ′(η′)t−1,ζ′(η′)t )
(after discarding borderline items).

If the algorithm finds such a j (t ), it sets st =
2 j (t )

L

∑L
`=1 z j (t ),`,t , otherwise it sets st = 0. Now the al-

gorithm outputs the estimate E described earlier.
Analysis: For each value of j and `, the number n j ,`,t

of items in S j ,` from St has expectation |St |/2 j . Since
n j ,`,t is a sum of i.i.d. Bernoulli random variables, and
since the n j ,`,t are jointly independent as we vary `,∑L
`=1 n j ,`,t is a sum of i.i.d. Bernoulli variables, and so

by a Chernoff bound the following events hold with
probability ≥ 1 − 1/poly(n): ∀t , j for which |St |2− j >
1/4, (1−γ′)|St | ≤ 2 j

L

∑L
`=1 n j ,`,t ≤ (1+γ′)|St |. Here we use

that L =O((γ′)−2 log |D′|). We condition on this event in
the remainder of the proof. We are only conditioning
on the randomness of the sub-sampling, rather than on
what the oracle samples from the substreams.

We also condition on the event that the L1-norm of
the survivors, denoted L1(S j ,`), for each j and ` sat-
isfies L1(S j ,`) ≤ poly((γ′)−1)(L log |D′|)L1(X )2− j . This
occurs by a Markov and a union bound (over j ,` ∈
[log |D′|]) with probability ≥ 1−poly(γ′).

Lemma 11. With probability ≥ 1−1/poly(n), if a value
j (t ) is found for a given t , then |St |2− j (t ) > 1/4.

This lemma shows that 2 j (t )

L

∑L
`=1 n j (t ),`,t is a (1±γ′)-

approximation to |St | if a value j (t ) is found. Since
z j (t ),`,t ≤ n j (t ),`,t for every ` and t , and since st = 0 if
no j (t ) is found, for every t , st ≤ (1+γ′)|St |.
Lemma 12. With probability ≥ 1−poly(γ′), ∀ impor-
tant t , a value j (t ) is found and st ≥ (1−poly(γ′))|St |.

Proof: If t is important then |St |(ζ′)k (η′)tk ≥
Fk
ϑ , so |St |1/kζ′(η′)t ≥ F 1/k

k

ϑ1/k ≥ L1(X )
|D′|1−1/kϑ1/k , where the

last inequality follows by Hölder’s inequality. Con-
sider any value of j for which 1/4 < 2− j |St | ≤
1, and fix any ` ∈ [L]. As conditioned above,
L1(S j ,`) ≤ poly((γ′)−1)(L log |D′|)L1(X )2− j . Also, since

k ≥ 1, we have |St |ζ′(η′)t ≥ 2 j L1(S j ,`)
|D′|1−1/k (L log |D′|)poly((γ′)−1)ϑ

≥
2 j L1(S j ,`)
|D′|1−1/kϑ2 , since L log |D′|poly((γ′)−1)ϑ≤ϑ2.

Using our choice of j , it follows that ζ′(η′)t−1 ≥
L1(S j ,`)

|D′|1−1/kϑ2η′ = Ω
(

L1(S j ,`)
|D′|1−1/kϑ2

)
. Since we take ϑ4|D|1−1/k

samples from the oracle, by a Chernoff bound, with
probability ≥ 1− e−Ω(ϑ), for every `, T j ,` will contain
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at least ϑ samples from every element of St in S j ,`, and
so all such elements will be in R j ,`.

By Lemma 4, at most a poly(γ′) fraction of St is fuzzy.
Since L =Ω(log |D′|) and 2− j |St | =Ω(1), it follows by a
Chernoff bound that with probability ≥ 1− 1/poly(n),
(1−poly(γ′))

∑L
`=1 n j ,`,t ≤ ∑L

`=1 z j ,`,t . It follows that st

is a (1±poly(γ′))-approximation to |St |. By Lemma 12,
if a value j (t ) is found, then |St |2− j (t ) > 1/4, and in this
case st (1±poly(γ′))-approximates |St |.

To show a value j (t ) for which 2− j (t )|St | ≤ 1 is found,
consider j for which 1/2 < 2− j |St | ≤ 1. By a Cher-
noff bound, since L = Ω(log |D′|), with probability ≥
1− 1/poly(n) for more than 5/12 of the values `, S j ,`

contains an element of St , and since 2− j |St | > 1/4, for
every `, R j ,` contains an element of St if S j ,` does.
After discarding borderline items, with probability ≥
1−1/poly(n), the sampling algorithm still finds at least
a (5/12)(1−poly(γ′)) > 1/3 fraction of different ` con-
taining an item in St . Hence, a value j (t ) is found,
and the algorithm chooses the smallest j found. As
the above events either occur with probability ≥ 1 −
1/poly(n), or occur simultaneously for all t with proba-
bility ≥ 1−poly(γ′), by a union bound the above events
jointly occur for all t with probability ≥ 1 − poly(γ′)
(note that the number of t depends on γ′, which is why
we needed probability of occurrence ≥ 1−1/poly(n) for
events pertaining to individual t ).

The theorem follows.

2.4. 1-pass estimation of Fk,p

We are given a stream X of items of length
m, each belonging to [n] × [d ]. Let Xi denote the
sub-stream of X corresponding to updates to item
(i , j ) for all j ∈ [d ]. We show how to estimate
Fk,p (X ) = ∑

i
(∑

j |wi j (X )|p)k = ∑
i |Fp (Xi )|k . Consider

the pseudo-code shown in Algorithm 2 which uses
space Õ(n1−2/(kp)d 1−2/p ). We now prove correctness.

A few natural events. Let W j ,` be the stream with all
updates to entries that are fuzzy (with respect to ζ,η,γ)
removed. Clearly, Fk,p (W j ,`) ≤ Fk,p (X j ,`) for all j ,`. In
the sequel, recall γ= poly(ε/logn) is sufficiently small.

Lemma 13. For all j ∈ [logn] and ` ∈ [L],

Prζ

[
Fk,p (W j ,`)
1−poly(γ) ≥ Fk,p (X j ,`)

]
≥ 1−poly(γ).

We condition on some events that jointly occur with
probability ≥ 1 − poly(γ). We condition on the event
of Lemma 13, as well as all invocations of Sample
succeeding (i.e., meeting the properties of Theorem
5). We also condition on the events of Lemma 4, for
all j ∈ [logn] and ` ∈ [L]. We also condition on the
event E that for all t ∈ [C ], j ∈ [logn], and ` ∈ [L],

Algorithm 2 Compute Fk,p (X )

1) For each j ∈ [logn] and each ` ∈ [L], where L =
O((γ′)−2 logn),

a) Keep each row of the matrix with probabil-
ity 2− j . Let X j ,` be the restriction of X to
updates to the set S j ,` of surviving rows.

b) Call Sample(X j ,`,Q;B ,η) with B = ϑ5n1−1/k ,
Q = 2ϑ4n1−1/k , and parameter p to obtain
the A j ,`

t , s j ,`
t ,Φ j ,`, and G j ,`, together with

sets Z j ,` of items declared borderline.

2) Put Z =∪ j ,`Z j ,`.
3) For each j ∈ [logn] and ` ∈ [L],

a) For each t ∈ [C ], set A j ,`
t = A j ,`

t \ Z .

b) T j ,` =Generator(Q, {A j ,`
t , s j ,`

t }t ,Φ j ,`,G j ,`).

4) ∀ j ,`, replace pairs (a,b) ∈ T j ,` with row IDs a.
5) Feed the T j ,` and Φ j ,` (here h j ,` in Section 2.3

is set to Φ j ,`) for all j ,` into OracleEstimator to
estimate Fk , and output its output.

|A j ,`
t | ≥ (1−poly(γ))|B j ,`

t |. As each E[|A j ,`
t |] is at least

the size of B j ,`
t with all fuzzy items removed, it is at

least (1 −O(γ2))|B j ,`
t |, so by a union bound over the

O(logn)/γ many t , j ∈ [logn], and ` ∈ [L], a Markov
bound shows E occurs with probability ≥ 1−poly(γ).

We further define and condition on the following
event F . Say a row a in X is obscured if Fp (Xa) ≥ (1+
O((γ′)3/η′))Fp (Wa). Then, Prζ[a is obscured] ≤ poly(γ),
and so with probability ≥ 1−poly(γ), at most npoly(γ)
rows are obscured. Moreover,

∑
obscured a |Fp (Xa)|k ≤

poly(γ)Fk,p (X ) with probability ≥ 1−poly(γ). The event
F is the joint occurrence of these two events.

Let V be the matrix obtained by deleting the set Z
of borderline items from X , and let V j ,` be the ma-
trix obtained by deleting the items in Z from X j ,`.
As any borderline item (as classified by any invoca-
tion of Sample) is also fuzzy, (1−poly(γ))Fk,p (X j ,`) ≤
Fk,p (W j ,`) ≤ Fk,p (V j ,`) ≤ Fk,p (X j ,`).

Lemma 14. Suppose γ ≤ (γ′)q for a sufficiently large
constant q > 0. Then with probability ≥ 1 − poly(γ),
for all j ,`, Fp (V j ,`) ≤ Φ j ,` ≤ (1±O((γ′)3/η′))Fp (V j ,`),
where the constant in the O(·) can be made arbitrarily
small (here the matrix structure of V j ,` is ignored).

Overall strategy. We will show that for every row
a ∈ [n] that is not obscured, for every j ∈ [logn] and
` ∈ [L], the i -th sample of T j ,` from a surviving row a is
(1±poly(γ))

Fp (Va )

Fp (V j ,`)
± 2

Qϑ . Provided that γ is sufficiently

small, this probability is (1 ±Θ((γ′)3/η′))
Fp (Va )

Fp (V j ,`)
± 2

Qϑ .
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If all rows were not obscured, then, by Theorem 10,
with probability≥ 1−poly(γ), the output of Algorithm 2
will be a (1 ± poly(γ))-approximation to Fk,p (V ), and
hence Fk,p (X ), completing the proof. It turns out that
obscured rows do not pose much of a problem, and can
be handled by slight modifications to OracleEstima-
tor. We first consider unobscured rows a, then explain
the modifications to OracleEstimator.

Fix j ∈ [logn] and ` ∈ [L]. In Generator, Pr[T j ,`[i ] =
a] = ∑

t∈G j ,`
ζpηpt s

j ,`
t

Φ j ,` · |{b|(a,b)∈A
j ,`
t }|

|A j ,`
t |

. There are two cases

for a given t ∈ G j ,`, depending on the property of A j ,`
t

given in step 3 of Theorem 5.
Finishing the analysis: In the full version we show

that no matter which case occurs, Pr[T j ,`[i ] = a] =∑
t∈G j ,`

ζpηpt s
j ,`
t

Φ j ,` · |{b|(a,b)∈A
j ,`
t }|

|A j ,`
t |

is at least (1 − poly(γ)) ·(
Fp (Wa )

Fp (V j ,`)
− 2

Qϑ

)
≥ (1−poly(γ)) · Fp (Wa )

Fp (V j ,`)
− 2

Qϑ , and at most

(1 + poly(γ))
Fp (Xa )

Fp (V j ,`)
+ 1

2Qϑ . Since a is not obscured,

Fp (Xa) ≤ (1+O((γ′)3/η′))Fp (Wa). As Fp (Wa) ≤ Fp (Va) ≤
Fp (Xa), it follows that for small enough γ, Pr[T j ,`[i ] =
a] = (1±O((γ′)3/η′))

Fp (Va )

Fp (V j ,`)
± 2

Qϑ .

The only remaining issue is that obscured
rows a need not satisfy Pr[T j ,`[i ] = a] =
(1 ± O((γ′)3/η′))

Fp (Va )

Fp (V j ,`)
. However, we can slightly

adapt the proof of Theorem 5 to handle this. In
that proof, we define the a j ,`

i and b j ,`
i variables

as before, and similarly deduce that for all j ,`,
|b j ,`

i − E[b j ,`
i ]| = O((γ′)3/η′)E[b j ,`

i ]. If row i is not

obscured, then b j ,`
i = (1±O((γ′)3/η′))Fp (Vi ). However,

if row i is obscured, our bounds above only guarantee
(1−O((γ′)3/η′))Fp (Wi ) ≤ b j ,`

i ≤ (1+O((γ′)3/η′))Fp (Xi ).
OracleEstimator then classifies row i in each
sub-sampling experiment ( j ,`). If in any two
experiments the classification differs, or i is ever
classified as borderline (w.r.t. ζ′,η′,γ′), then row i is
dropped. Rows that are not obscured do not have
differing classifications, and because of event F ,∑

obscured i |Fp (Xi )k ≤ poly(γ)Fk,p (V ), so dropping all
such rows only changes the output of OracleEstimator
by a (1 − poly(γ)) factor. It may happen that
an obscured row is not dropped, but then since
(1−O((γ′)3/η′))Fp (Wi ) ≤ b j ,`

i ≤ (1+O((γ′)3/η′))Fp (Xi ),
it follows that OracleEstimator approximates the
Fk -value of a vector v , where vi = Fp (Vi ) if i is
not obscured, and vi ∈ [0,Fp (Xi )] if i is obscured.
By the above, Fk (v) = (1 ± poly(γ))Fk,v (X ), as
desired. One final issue is that after a subset of
the obscured rows are dropped, OracleEstimator
still needs ϑ4n1−1/k samples for each j ,` in the

proof of Theorem 5. This still holds because
E[

∑
obscured i Fp (X j ,`

i )] ≤ poly(γ)Fp (X j ,`), so by a
Markov bound and a union bound, with probability
≥ 1 − poly(γ), for all j ,`,

∑
obscured i Fp (X j ,`

i ) ≤
poly(γ)Fp (X j ,`) ≤ poly(γ)Fp (V j ,`). Because
Q = 2ϑ4n1−1/k and the probability any entry of
T j ,` is obscured is bounded by poly(γ), it follows by
a Chernoff bound that w.h.p., for all j ,`, there are
ϑ4n1−1/k entries that are not dropped.

3. AN OPTIMAL LOWER BOUND FOR Lk,0 AND Lk,1

We prove an Ω(n1−1/k ) space bound for estimating
Lk,p where k > 0 and p = 0,1. This is achieved via the
two-party communication problem defined below.

Let H = {0,1}d denote the Hamming cube of dimen-
sion d with distance |·|. In the communication problem
f , Alice gets an input x = (x1, x2, . . . , xn) ∈ H n and Bob
gets an input (y1, y2, . . . , yn) ∈ H n . The NO instances
satisfy the promise that |xi − yi | ≤ 1 for all i . The YES

instances satisfy the promise that there is a coordinate
j such that |xi − yi | = d for some coordinate j . Thus,
f (x, y) =∨

i g (xi , yi ) where g (u, v) = 1 if |u − v | = d and
g (u, v) = 0 if |u−v | ≤ 1. This property suggests a direct-
sum argument for the communication complexity of f .

We first check that f yields a space lower bound for
estimating Lk,p in a data stream. Interpret the bits of
x as positive 0/1 updates and the bits of y as negative
0/1 updates and concatenate to form an single input
x ◦ y . Then Lk,p (x ◦ y) = (

∑
i |xi − yi |k )1/k . This is at

most n1/k for a NO instance but at least d for a YES

instance. Set d = 2n1/k to yield a constant factor gap
between the two values. Below, we will prove anΩ(n/d)
communication lower bound for f .

We now briefly review the information complexity
paradigm for proving communication lower bounds
via direct sum arguments, as developed in [6], for two-
party communication protocols. Let µ be a distribu-
tion on the inputs (X ,Y ) of Alice and Bob, denoted by
(X ,Y ) ∼ µ. We say that µ is product if X and Y are
independent. Non-product distributions are handled
via an auxiliary random variable D ∼ ν such that X
and Y are independent conditioned on D , denoted by
X ,Y ⊥ D . Given a randomized private-coin protocol
Π, let Π(x, y) be a random variable denoting the tran-
script of the communication between Alice and Bob
on inputs x and y . Consider the joint probability space
on X , Y , D , and the randomness used by the players
such that (1) the joint distribution of (X ,Y ,D) and the
randomness are independent (2) (X ,Y ) ∼ µ, (3) D ∼ ν,
and (4) X ,Y ⊥ D . The (conditional) information cost
of Π under (µ,ν) is defined to be I (X ,Y : Π(X ,Y ) | D),
where (X ,Y ) ∼ µ,D ∼ ν. Since I (X ,Y : Π(X ,Y ) | D) ≤
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H(Π(X ,Y )) ≤ |Π|, it suffices to prove lower bounds on
the information cost of a correct protocol. Throughout
this section, we define a correct protocol to be one
whose error probability is a sufficiently small constant.

For the communication problem f = ∨
i g given

above, we first define a distribution (µ′,ν′) for g (u, v)
where (U ,V ) ∼ µ′ and the auxiliary random variable
is a pair (S,T ) ∼ ν′: S ∈R {A, B} and T is a uniformly
chosen pair (u, v) such that u ∈R H and v is chosen
uniformly from the neighbors of u in H . If S = A, then
U ∈R {u, v} and V = v . Otherwise S = B, and here U = u
and V ∈R {u, v}. Note that U ⊥V | S,T .

The distribution for f (x, y) is defined by letting
µ = µ′n and ν = ν′n . In other words, if X =
(X1, X2, . . . , Xn) and Y = (Y1,Y2, . . . ,Yn) are the inputs
and ((S1,T1), (S2,T2), . . . , (Sn ,Tn)) are the auxiliary ran-
dom variables, then independently for each i , (Xi ,Yi ) ∼
µ′ and (Si ,Ti ) ∼ ν′.
Proposition 15 (Direct Sum[6]). Let ICµ( f | ν) (resp.
ICµ′ (g | ν′)) denote the minimum information cost of a
correct protocol computing f (resp. g ) under (µ,ν) (resp.
(µ′,ν′)). Then CC( f ) ≥ ICµ( f | ν) ≥ n · ICµ′ (g | ν′).

Via the direct sum theorem, the following implies
our communication complexity lower bound for f .

Theorem 16. ICµ′ (g | ν′) =Ω(1/d).

Proof: LetΠ be a correct protocol for g and let πu,v

denote the probability distribution over transcripts in-
duced by Π on input (u, v). Let ψu,v ∈ `2 be obtained
via the square-root map ψu,v (τ) = √

πu,v (τ) for all
transcripts τ. Note that ‖ψu,v‖ = 1 where ‖�‖ denotes
the standard `2 norm. Following [20],ψu,v is called the
transcript wave function of (u, v) inΠ.

The Hellinger distance between two transcript wave
functions ψu,v , ψu′,v ′ is a scaled Euclidean distance
equal to 1p

2
‖ψu,v −ψu′,v ′‖.

Proposition 17 ([6]). Let ‖·‖′, 1
2‖·‖2.

Information-to-Hellinger: If (U ,V ) ∈R {(u, v), (u′, v ′)}
then I (U ,V :Π(U ,V )) ≥ ‖ψu,v −ψu′,v ′‖′.
Soundness: ‖ψu,v −ψu′,v ′‖′ =Ω(1) if g (u, v) 6= g (u′, v ′)
Pythagorean property: ‖ψu,v −ψu′,v ′‖′ ≥
1
2 · (‖ψu,v −ψu,v ′‖′+‖ψu′,v −ψu′,v ′‖′)

We now bound the information cost ofΠ:

I (U ,V :Π(U ,V ) | S,T )

= Es∈{A,B},u∈H , j∈[d ]I (U ,V :Π(U ,V ) | S = s,T = (u,u +e j ))

= 1
2 ·Eu∈H , j∈[d ]I (V :Π(u,V ) | T = (u,u +e j ))

+ I (U :Π(U ,u +e j ) | T = (u,u +e j ))

≥ 1
2 ·Eu∈H , j∈[d ]‖ψu,u −ψu,u+e j ‖′+‖ψu,u+e j −ψu+e j ,u+e j ‖′,

where the last inequality follows by relating mutual
information to Hellinger distance. Applying the trian-
gle inequality to the expression within the expectation
(which incurs a loss of 1/2 due to squared Euclidean
distances), the above quantity is at least

1
4 ·Eu∈H , j∈[d ]‖ψu,u −πu+e j ,u+e j ‖′ (1)

The short diagonals property (see [22]) implies
that for any family {ρu}u∈H of elements in `2,
Eu∈H , j∈[d ]‖ρu −ρu+e j ‖′ ≥ 1

d · Eu∈H‖ρu −ρu‖′, where
u is the bit-wise complement of u. Applying
the above bound with ρu = ψu,u in (1), the
information cost is at least 1

4d · Eu∈H‖ψu,u −ψu,u‖′ ≥
1

8d · Eu∈H‖ψu,u −ψu,u‖′ + ‖πu,u ,πu,u‖′, where the last
inequality follows from the Pythagorean property.
Now, since each Hellinger distance expression involves
a YES-instance and a NO-instance, the soundness
property implies that the information cost isΩ(1/d).

4. SOLUTION SKETCHES TO OTHER PROBLEMS

Estimating Lk,2 for k > 0: The main idea is to use an ex-
isting Lk -approximation algorithm to estimate Lk (u),
where u is a random variable satisfying E[Lk (u)] =
µk Lk,2(X ) and Var[Lk (u)] = µ2k L2k,2(X ), where µk and
µ2k are constants depending only on k, and reduce the
variance by averaging several such estimators.

To define u, we (pseudo-) randomly choose n vec-
tors vi of d-dimensional independent normal vari-
ables, and set ui = 〈vi , Xi 〉. Using the k-th moments
of the half-normal distribution and the 2-stability of
the normal distribution, we show E[|ui |k ] = µk‖Xi‖k

2
and establish the bounds on E[Lk (u)] and Var[Lk (u)]
given above. Hence, the space is the same as that of
estimating Lk , up to aΘ(ε−2) factor.
Finding heavy rows according to L2: This is denoted
as F r eq(L2) in [13]. Given φ > 0, let W = L1,2(X ) =∑

i‖Xi‖2 and define the set H Hφ(X ) = {i | ‖Xi‖2 ≥
φW }. The problem is to return a set T for which
H Hφ(X ) ⊆ T ⊆ H Hφ−ε(X ). We solve the related point
query problem, i.e. estimate ‖Xi‖2 for all rows i within
an additive error of γW , for a given γ > 0. With
γ = ε/2, and using an approximation to W , we solve
F r eq(L2) by including those rows we estimate as be-
ing heavy. Let u be as in the previous algorithm for
L1,2. Then E[|ui |] = µ1‖Xi‖2 and Var[|ui |] =O(E2[|ui |]),
while E[||u||1] = µ1

∑
i‖Xi‖2. Thus |ui | = Ω(‖Xi‖2)

and ‖u‖1 = O(L1,2(X )) with large probability. If we
run a heavy-hitters algorithm for L1(v) (e.g., [12]) we
will find the heavy rows ui . With minor modifica-
tions, one can achieve T ⊆ H Hφ−ε(X ) The space is
poly(φ−1ε−1 log(nd)).
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Estimating Lk,∞ and L∞,p : The tight space lower
bounds follow via reductions from multi-party set-
disjointness and L∞. For L∞,p , this bound is achieved
trivially (run Lp on each row). For Lk,∞ where k ≥ 2,
observe that if there is a row Xi with (L∞(Xi ))k ≥
εFk (L∞(X )), then (L∞(Xi ))2 ≥ ε2/k (Fk ◦ L∞)(X )2/k ≥
ε2/k F2(L∞(X ))/n1−2/k , by Hölder’s inequality. It fol-
lows that if we use CountSketch [11] to find all the
ε2/k /n1−2/k -heavy hitters w.r.t. to F2, we will find the
coordinate in Xi realizing L∞(Xi ). It follows by sub-
sampling entire rows at a time and running CountS-
ketch on the substreams, we can estimate the sizes of
all St = {i | (1 + ε′)t ≤ L∞(Xi ) < (1 + ε′)t+1} for which
|St |(1+ ε′)kt > Lk,∞(X )poly(ε/logn), and then use the
analogous estimator as that for Lk in [19] to estimate
Lk,∞. Using [12], similar techniques work for L1,∞.
Estimating L0,p : For any matrix X , L0,p (X ) = L0,0(X ).
Wlog assume that X is square. Each entry of X is
bounded by u = poly(n) ≥ n. Let q be a prime with
10u2 ≤ q < 20u2 and view X as a matrix over GF (q).
Let V be the q × n Vandermonde matrix over GF (q),
where row i is (1, i , i 2, . . . , i n−1) mod q . Then any n
rows of V are linearly independent. So for any i , if
Bi is non-zero then at most n − 1 rows v of V satisfy
〈v,Bi 〉 = 0 mod q . Let v be a randomly chosen row of
V . Then with probability at least 9/10, for all i for which
Bi 6= 0, 〈v,Bi 〉 6= 0 mod q . In this case we say that v is
good. Let Al g be a poly(ε−1 logn)-space algorithm [21]
which outputs a (1 ± ε)-approximation to L0(u) of an
input vector u with probability at least 5/6. Given an
update (i , j , x), we feed the pair (i , v j · x) to Al g and
return its output. This is a (1±ε)-approximation if Al g
succeeds and v is good. The space is poly(ε−1 logn).
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