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Abstract

In [12] a private approximationof a functionf is defined to be another functionF that approxi-
matesf in the usual sense, but does not reveal any information aboutx other than what can be deduced
from f(x). We give the first two-party private approximation of thel2 distance with polylogarithmic
communication. This, in particular, resolves the main openquestion of [12].

We then look at theprivate near neighborproblem in which Alice has a query point in{0, 1}d and
Bob a set ofn points in{0, 1}d, and Alice should privately learn the point closest to her query. We
improve upon existing protocols, resolving open questionsof [13, 10]. Then, we relax the problem
by defining theprivate approximate near neighbor problem, which requires introducing a notion of
secure computation of approximations for functions that return sets of points rather than values. For this
problem we give several protocols with sublinear communication.

1 Introduction

Recent years witnessed the explosive growth of the amount ofavailable data. Large data sets, such as
transaction data, the web and web access logs, or network traffic data, are in abundance. Much of the data is
stored or made accessible in a distributed fashion. This neccessitates the development of efficient protocols
that compute or approximate functions over such data (e.g. see [2]).

At the same time, the availability of this data has raised significant privacy concerns. It became apparent
that one needs cryptographic techniques in order to controldata access and prevent potential misuse. In
principle, this task can be achieved using the general results of secure function evaluation (SFE) [32, 18].
However, in most cases the resulting private protocols are much less efficient than their non-private coun-
terparts1. Moreover, SFE applies only to algorithms that compute functionsexactly, while for most massive
data sets problems, only efficientapproximationalgorithms are known or are possible. Indeed, while it is
true that SFE can be used to privately implement any efficientalgorithm, it is of little use applying it to an
approximation algorithm when the approximation leaks moreinformation about the input than the solution
itself.

In a pioneering paper [12], the authors introduced a framework for secure computation of approxima-
tions. They also proposed añO(

√
n)-communication2 two-party protocol for approximating the Hamming

distance between two binary vectors. This improves over thelinear complexity of computing the distance
exactly via SFE, but still does not achieve the polylogarithmic efficiency of a non-private protocol of [24].
Improving the aforementioned bound was one of the main problems left open in [12].

1A rare exception is the result of [28], who show how to obtain private and communication-efficient versions of non-private
protocols, as long as the communication cost is logarithmic.

2We writef = Õ(g) if f(n, k) = O
(

g(n, k) logO(1)(n)poly(k)
)

, wherek is a security parameter.
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In this paper we provide several new results for secure computation of approximations. Our first result is
anÕ(1)-communication protocol for approximating the Euclidean (ℓ2) distance between two vectors. This,
in particular, solves the open problem of [12]. Since distance computation is a basic geometric primitive, we
believe that our result could lead to other algorithms for secure approximations. Indeed, in [1] the authors
show how to approximate theℓ2 distance using small space and/or short amount of communication, initiating
a rich body of work on streaming algorithms.

In the second part of the paper, we look at secure computationof a near neighborfor a query pointq
(held by Alice) amongn data pointsP (held by Bob) in{0, 1}d. We improve upon known results [10, 13]
for this problem under various distance metrics, includingℓ2, set difference, and Hamming distance over
arbitrary alphabets. Our techniques also result in better communication for theall-near neighborsproblem,
where Alice holdsn different query points, resolving an open question of [13],and yield a binary inner
product protocol with communicationd + O(k) in the common random string model.

Complexity Problem Prior work SFE
Õ(n + d) near neighbor underl2, Hamming over{0, 1}d, set difference [10] Õ(nd)

Õ(dU + n) near neighbor under distancesf(a, b) =
∑d

i=1 fi(ai, bi), ai, bi ∈ [U ] [10] Õ(nd log U)
⌈log d⌉d + O(k) Hamming distance [14] O(kd)

Õ(nd2 + n2) all-near neighbors [13] Õ(n2d)

However, all of our protocols for the near neighbor problem have the drawback of needingΩ(n) bits
of communication, though the dependence ond is often optimal. Thus, we focus on what we term the
approximate near neighbor problem. For this we introduce a new definition of secure computationof ap-
proximations for functions that return points (or sets of points) rather than values.

Approximate privacy. LetPt(q) be the set of points inP within distancet from q. In thec-approximate
near neighborproblem, the protocol is required to report a point inPcr(q), as long asPr(q) is nonempty.
We say that a protocol solving this problem isc′-private (or just private if c′ = c) if Bob learns nothing,
while Alice learns nothing except what can be deduced from the setPc′r(q). In our paper we always set
c′ = c.

We believe this to be a natural definition of privacy in the context of the approximate near neighbor
problem. First, observe that if we insist that Alice learns only the setPr (as opposed toPcr), then the
problem degenerates to theexactnear neighbor problem. Indeed, even though the definition ofcorrectness
allows the protocol to output a pointp ∈ Pcr − Pr, in general Alice cannot simulate this protocol given
only the setPr. Thus, in order to make use of the flexibility provided by the approximate definition of the
problem, it seems necessary to relax the definition of privacy as well.

Second, the above relaxation of privacy appears natural in the context of applications of near neighbor
algorithms. In most situations, the distance function is only a heuristic approximation of the dis-similarity
between objects, and there is no clear rationale for a sharp barrier between objects that can or cannot be
revealed (still, it is important that the information leak is limited). Our model formalizes this intuition, and
our algorithmic results shows that it is possible to exploitthe model to obtain more efficient algorithms.

Specifically, within this framework, we give ac-approximate near neighbor protocol with communica-
tion Õ(n1/2 + d) for any constantc > 1. The protocol is based on dimensionality reduction technique of
[24]. We show how the dependence ond can be made polylogarithmic if Alice just wants a coordinateof a
point in Pcr. We also give a protocol based on locality-sensitive hashing (LSH) [23], with communication
Õ(n1/2+1/(2c) + d), but significantly less work (though still polynomial).

Finally, proceeding along the lines of [20], we say the protocol leaksb bits of informationif it can be
simulated givenb extra bits which may depend arbitrarily on the input. With this definition, we give a
protocol withÕ(n1/3 + d) communication leaking onlyk bits, wherek is a security parameter.
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General vs specific solutions.As described above, this paper offers solutions tospecificcomputational
problems. In principle, a general “compiler-like” approach (as in [32, 18]) would be preferable. However, it
appears unlikely that a compiler approach can be developed in the context ofapproximateproblems. Indeed,
there is no general method that, for a given problem, generates an efficient approximation algorithm (even
ignoring the privacy issue). This implies that a compiler would have to start from a particular approxima-
tion to a given function. Unfortunately, as mentioned earlier, such approximation itself can leak too much
information.

This argument leads us to believe that, in context of approximate algorithms, designing efficient private
solutions to specific problems is the only possible approach.

2 Preliminaries

Background on homomorphic encryption, oblivious transfer(OT), and secure function evaluation (SFE) can
be found in appendix A.

We assume both parties are computationally bounded and semi-honest, meaning they follow the protocol
but may keep message histories in an attempt to learn more than is prescribed. In [18, 7, 28], it is shown how
to transform a semi-honest protocol into a protocol secure in the malicious model. Further, [28] does this at
a communication blowup of at most a factor of poly(k). Therefore, we assume parties are semi-honest in
the remainder of the paper.

We briefly review the semi-honest model, referring the reader to [17, 25] for more details. Letf :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a function, the first element denotedf1(x1, x2) and the second
f2(x1, x2). Let π be a two-party protocol for computingf . The views of playersP1 andP2 during an
execution ofπ(x1, x2), denotedViewπ

1 (x1, x2) andViewπ
2 (x1, x2) respectively, are:

Viewπ
1 (x1, x2) = (x1, r1,m1,1, . . . ,m1,t), View

π
2 (x1, x2) = (x2, r2,m2,1, . . . ,m2,t),

whereri is the random input andmi,j the messages received by playeri respectively. The outputs ofP1

andP2 during an execution ofπ(x1, x2) are denotedoutputπ
1 (x1, x2) andoutputπ

2 (x1, x2). We define
outputπ(x1, x2) to be(outputπ

1 (x1, x2), output
π
2 (x1, x2)). We say thatπ privately computes a function

f if there exist PPT algorithmsS1, S2 for which for i ∈ {1, 2} we have the following indistinguishability

{Si(xi, fi(x1, x2)), f(x1, x2)}
c≡ {Viewπ

i (x1, x2), output
π(x1, x2)}.

This simplifies to{Si(xi, fi(x1, x2))}
c≡ {Viewπ

i (x1, x2)} if either f1(x1x2) = f2(x1, x2) or if f(x1, x2)
is deterministic or equals a specific value with probability1 − negl(k, n), for k a security parameter.

We need a standard composition theorem [17] concerning private subprotocols. Anoracle-aided pro-
tocol (see [25]) is a protocol augmented with a pair of oracle tapesfor each party and oracle-call steps.
In an oracle-call step parties write to their oracle tape andthe oracle responds to the requesting parties.
An oracle-aided protocol uses theoracle-functionalityf = (f1, f2) if the oracle responds to queryx, y
with (f1(x, y), f2(x, y)), wheref1, f2 denote first and second party’s output respectively. An oracle-aided
protocolprivately reducesg to f if it privately computesg when using oracle-functionalityf .

Theorem 1 [17] If a function g is privately reducible to a functionf , then the protocolg′ derived fromg by
replacing oracle calls tof with a protocol for privately computingf , privately computesg.

We now define thefunctional privacyof an approximation as in [12]. For our approximation protocols we
will havef1(x, y) = f2(x, y) = f(x, y).
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Definition 2 Letf(x, y) be a function, and let̂f(x, y) be a randomized function. Then̂f(x, y) is function-

ally private forf if there is an efficient simulatorS s.t. for everyx, y, we havef̂(x, y)
c≡ S(f(x, y)).

A private approximationof f privately computes a randomized function̂f that is functionally private forf .
Finally, we need the notion of a protocol for securely evaluating a circuitwith ROM. In this setting, the

ith party has a tableRi ∈ ({0, 1}r)s defined by his inputs. The circuit, in addition to the usual gates, is
equipped withlookup gateswhich on inputs(i, j), outputRi[j].

Theorem 3 [28] If C is a circuit with ROM, then it can be securely computed withÕ(|C|T (r, s)) commu-
nication, whereT (r, s) is the communication of1-out-of-s OT on words of sizer.

3 Private ℓ2 Approximation

Here we give a private approximation of theℓ2 distance. Alice is given a vectora ∈ [M ]n, and Bob a

vectorb ∈ [M ]n. Note that‖a − b‖2 ≤ Tmax
def
= nM2. In addition, parametersǫ, δ andk are specified.

For simplicity, we assume thatk = Ω(log(nM)). The goal is for both parties to compute an estimateE

such that|E − ‖x‖2| ≤ ǫ‖x‖2 with probability at least1 − δ, for x
def
= a − b. Further, we wantE to be a

private approximation of‖x‖, as defined in section 2. As discussed there, wlog we assume the parties are
semi-honest. We set the parameterB = Θ(k); this notation meansB = ck for a large enough constantc
independent fromk, n,M, δ, ǫ. In our protocol we make the following cryptographic assumptions.

1. There exists a PRGG stretchingpolylog(n) bits ton bits secure againstpoly(n)-sized circuits.

2. There exists an OT scheme for communicating1 of n bits with communicationpolylog(n).

At the end of the section we discuss the necessity and plausibility of these assumptions. Our protocol relies
on the following fact and corollary.

Fact 4 [26] Let A be a randomn × n orthonormal matrix (i.e.,A is picked from a distribution defined by
the Haar measure). Then there isc > 0 such that for anyx ∈ ℜn, anyi = 1 . . . n, and anyt > 1,

Pr[|(Ax)i| ≥
‖x‖√

n
t] ≤ e−ct2 .

Corollary 5 Suppose we sampleA as in Fact 4 but instead generate our randomness fromG, rounding its
entries to the nearest multiple of2−Θ(B). Then,

∀x ∈ ℜn, Pr[(1 − 2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and∀i(Ax)2i <
‖x‖2

n
B] > 1 − neg(k, n)

Proof: If there were an infinite sequence ofx ∈ [M ]n for which this did not hold, a circuit withx hardwired
would contradict the pseudorandomness ofG.

Protocol Overview:Before describing our protocol, it is instructive to look atsome natural approaches
and why they fail. We start with the easier case of approximating the Hamming distance, and suppose the
parties share a common random string. Consider the following non-private protocol of [24] discussed in
[12]: Alice and Bob agree upon a randomO(log n) × n binary matrixR where theith row consists ofn
i.i.d. Bernoulli(βi) entries, whereβ is a constant depending onǫ. Alice and Bob exchangeRa,Rb, and
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computeR(a − b) = Rx. Then‖x‖ can be approximated by observing thatPr[(Ra)i = (Rb)i] ≈ 1/2
if ‖x‖ ≫ β−i, andPr[(Ra)i = (Rb)i] ≈ 1 if ‖x‖ ≪ β−i. Let the output beE. The communication is
O(log n), but it is not private since both parties learnRx. Indeed, as mentioned in [12], ifa = 0 andb = ei,
thenRx equals theith column ofR, which cannot be simulated without knowingi.

However, given only‖x‖, it is possible to simulateE. Therefore, as pointed out in [12], one natural
approach to try to achieve privacy is to run an SFE with inputsRa,Rb, and outputE. But this also fails,
since knowingE together with the randomnessR may reveal additional information about the inputs. IfE
is a deterministic function ofRa,Rb, and ifa = 0 andb = ei, Alice may be able to findi from a andR.

In [12], two private protocols which each haveΩ(n) communication for a worst-case choice of inputs,
were cleverly combined to overcome these problems and to achieve Õ(

√
n) communication. The first

protocol, High-Distance Estimator, works when‖x‖ >
√

n. The idea is for the parties to obliviously
sample random coordinates ofx, and use these to estimate‖x‖. Since the sampling is oblivious, the views
depend only on‖x‖, and since it is random, the estimate is good provided we takeÕ(

√
n) samples.

The second protocol,Low-Distance Estimator, works when‖x‖ ≤ √
n. Roughly, the idea is for the

parties to perfectly hash their vectors intoÕ(
√

n) buckets so that at most one coordinatej for whichaj 6= bj

lies in any given bucket. The parties then run an SFE with their buckets as input, which can compute‖x‖
exactly by counting the number of buckets which differ.

Our protocol breaks thisO(
√

n) communication barrier as follows. First, Alice and Bob agree upon a
randomorthonormalmatrix A in R

n×n, and computeAa andAb. The point of this step is to uniformly
spread the mass of the difference vectorx over then coordinates, as per Fact 4, while preserving the length.
Since we plan to sample random coordinates ofAx to estimate‖x‖, it is crucial to spread out the mass of
‖x‖, as otherwise we could not for instance, distinguishx = 0 from x = ei. The matrix multiplication can
be seen as an analogue to the perfect hashing inLow-Distance Estimator, and the coordinate sampling as
an analogue to that inHigh-Distance Estimator.

To estimate‖x‖ from the samples, we need to be careful of a few things. First,the parties should
not learn the sampled values(Ax)j , since these can reveal too much information. Indeed, ifa = 0, then
(Ax)j = (Ab)j , which is not private. To this end, the parties run a secure circuit with ROM (see section 2)
Aa andAb, which privately obtains the samples.

Second, we need the circuit’s output distributionE to depend only on‖x‖. It is not enough forE[E] =
‖x‖2, since a polynomial number of samples fromE may reveal non-simulatable information aboutx based
on E’s higher moments. To this end, the circuit uses the(Ax)j to independently generate r.v.szj from a
Bernoulli distribution with success probability depending only on‖x‖. Hence,zj depends only on‖x‖.

Third, we need to ensure that thezj contain enough information to approximate‖x‖. We do this by
maintaining a loop variableT which at any point in time is guaranteed to be an upper bound on‖x‖2 with

overwhelming probability. Using Corollary 5, for allj it holds thatq
def
= n(Ax)2j/(TB) ≤ 1 for a parameter

B, so we can generate thezj from a Bernoulli(q) distribution. SinceT is halved in each iteration, for some
iterationE[

∑

j zj ] will be large enough to ensure thatE is tightly concentrated.
We now describe the protocol in detail. Setℓ = Θ(B)(1/ǫ2 log(nM) log(1/δ) + k). In the following,

if q > 1, then the distribution Bernoulli(q) means Bernoulli(1).
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ℓ2-Approx (a, b):

1. Alice, Bob exchange a seed ofG and generate a randomA as in Corollary 5

2. SetT = Tmax

3. Repeat:

(a) {Assertion:‖x‖2 ≤ T }
(b) A secure circuit with ROMAa,Ab computes the following

• Generate random coordinatesi1, . . . , iℓ and compute(Ax)2i1 , . . . (Ax)2iℓ

• For j ∈ [ℓ], independently generatezj from a Bernoulli
(

n(Ax)2ij/(TB)
)

distribution

(c) T = T/2

4. Until
∑

i zi ≥ ℓ
4B or T < 1

5. OutputE = 2TB
l

∑

i zi as an estimate of‖x‖2

Note that the protocol can be implemented inO(1) rounds by parallelizing the secure circuit invocations.

Analysis: To show the correctness and privacy of our protocol, we startwith the following lemma.

Lemma 6 The probability that assertion 3a holds in every iteration of step 3 is1 − neg(k, n). Moreover,
when the algorithm exits, with probability1 − neg(k, n) it holds thatE[

∑

j zj] ≥ ℓ/(3B).

Proof: By Corollary 5,PrA[(1−2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and∀i(Ax)2i < ‖x‖2

n B] = 1−neg(k, n), so
we may condition on this occurring. If‖x‖2 = 0, thenPr[Ax = 0] = 1− neg(k, n), and thusPr[E = 0] =
1 − neg(k, n). Otherwise,‖x‖2 ≥ 1. Consider the smallestj for which Tmax/2j < ||x||2. We show for
T = Tmax/2j−1 ≥ ‖x‖2 ≥ 1 thatPr[

∑

j zj < ℓ/(4B)] = neg(k, n). The assertion holds at the beginning
of the jth iteration by our choice ofT . Thus,n(Ax)2i ≤ TB for all i ∈ [n]. So for allj, Pr[zj = 1] =
‖Ax‖2

TB ≥ (1 − 2−B)/(2B), and thusE[
∑

j zj ] ≥ ℓ/(3B). By a Chernoff bound,Pr[
∑

j zj < ℓ/(4B)] =

neg(k, n), so if everT = Tmax/2j−1, then this is the last iteration with overwhelming probability.

Correctness:We showPr[|E−‖x‖2| ≤ ǫ] ≥ 1−δ. By Lemma 6, when the algorithm exits, with probability
1 − neg(k, n), E [

∑

i zi] > ℓ
3B , so we assume this event occurs. By a Chernoff bound,

Pr

[
∣

∣

∣

∣

∣

∑

i

zi − E

[

∑

i

zi

]
∣

∣

∣

∣

∣

≥ ǫ

2
E

[

∑

i

zi

]

|
∑

i

zi ≥
ℓ

4B

]

≤ e−Θ(ǫ2 ℓ
B ) <

δ

2

By Lemma 6, assertion 3a holds, so that

ℓ(1 − 2−B)‖x‖2 ≤ TB · E[
∑

i

zi] ≤ ℓ ‖x‖2

SettingE = 2TB
ℓ

∑

i zi (recall thatT is halved in step 3c) shows thatPr[|E − ‖x‖2 ≥ ǫ‖x‖2] ≤ δ.

Privacy: We replace the secure circuit with ROM in step 3b ofℓ2-Approx with an oracle (see section

2). We construct a single simulatorSim, which given∆
def
= ‖x‖2, satisfiesSim(∆)

c≡ Viewπ
A
(a, b) and
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Sim(∆)
c≡ Viewπ

B
(a, b), whereViewπ

A
(a, b), Viewπ

B
(a, b) are Alice, Bob’s real views respectively. This, in

particular, implies functional privacy. It will follow that ℓ2-Approx is a private approximation of∆.

Sim (∆):

1. Generate a random seed ofG

2. SetT = Tmax

3. Repeat:

(a) Forj ∈ [ℓ], independently generatezj from a Bernoulli(∆/(TB)) distribution

(b) T = T/2

4. Until
∑

i zi ≥ ℓ
4B or T < 1

5. OutputE = 2TB
l

∑

i zi

With probability1 − neg(k, n), the matrixA satisfies the property in Corollary 5, so we assume this event
occurs. In each iteration, the random variableszj are independent in both the simulation and the protocol.
Further, the probabilities thatzj = 1 in the simulated and real views differ only by a multiplicative factor of
(1 − 2−B) as long asT ≥ ∆. But the probability that, in either view, we encounterT < ∆ is neg(k, n).

Complexity. Given our cryptographic assumptions, we useÕ(1) communication andO(1) rounds.

Remark 7 Our cryptographic assumptions are fairly standard, and similar to the ones in [12]. There the
authors make the weaker assumptions that PRGs stretchingnγ bits ton bits and OT withnγ communication
exist for any constantγ. In fact, the latter implies the former [21, 15]. If we were toinstead use these
assumptions, our communication would beO(nγ), still greatly improving upon theO(n1/2+γ) communica-
tion of [12]. A candidate OT scheme satisfying our assumptions can be based on theΦ-Hiding Assumption
[6], and can be derived by applying the PIR to OT transformation of [29] to the scheme in that paper.

Remark 8 For the special case of Hamming distance, we have an alternative protocol based on the follow-
ing idea. Roughly, both parties apply the perfect hashing oftheLow-Distance Estimator protocol of [12]
for a logarithmic number of levelsj, where thejth level containsÕ(2j) buckets. To overcome thẽO(

√
n)

barrier of [12], instead of exchanging the buckets, the set of buckets is randomly and obliviously sampled.
From the samples, an estimate of∆(a, b) is output. For somej, 2j ≈ ∆(a, b), so the estimate will be tightly
concentrated, and for reasons similar toℓ2-Approx, will be simulatable. We omit the details, but note that
two advantages of this alternative protocol are that the time complexity will beÕ(n) instead ofÕ(n2), and
that we don’t need the PRGG, as we may usek-wise independence for the hashing.

4 Private near neighbor andc-approximate near neighbor problems

Here we consider the setting in which Alice has a pointq, and Bob a set ofn pointsP .

4.1 Private near neighbor problem

Suppose for some integerU , Alice hasq ∈ [U ]d, Bob hasP = p1, . . . , pn ∈ [U ]d, and Alice should learn
mini f(q, pi), wheref is some distance function. In [10] protocols forℓ1, ℓ2, Hamming distance overU -ary
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alphabets, set difference, and arbitrary distance functions f(a, b) =
∑d

i=1 fi(ai, bi) were proposed, using
an untrusted third party. We improve the communication of these protocols and remove the third party using
homomorphic encryption to implement polynomial evaluation as in [13], and various hashing tricks.

In [13], the authors consider the private all-near neighbors problem in which Alice hasn queries
q1, . . . , qn ∈ [U ]d and wants allpi for which ∆(pi, qj) ≤ t < d for somej and parametert. Our tech-
niques improve thẽO(n2d) communication of a generic SFE and theÕ(n

(d
t

)

) communication of [13] for
this problem toÕ(nd2 +n2). Finally, in the common random string model we achieve⌈log d⌉+O(k) com-
munication for the (exact) Hamming distance, and an inner product protocol withd+O(k) communication.

For the details of our schemes, see appendix B. We do not focuson them since they still suffer from an
Ω(n) communication cost. We instead focus on how to privately approximate these problems.

4.2 Privatec-approximate near neighbor problem

Supposeq ∈ {0, 1}d andpi ∈ {0, 1}d for all i. Let Pt = {p ∈ P | ∆(p, q) ≤ t}, andc > 1 be a constant.

Definition 9 A c-approximate NN protocol is correct if whenPr 6= ∅, Alice outputs a pointf(q, P ) ∈ Pcr

with probability 1 − 2−Ω(k). It is private if in the computational sense, Bob learns nothing, while Alice
learns nothing except what follows fromPcr. Formally, Alice’s privacy is implied by an efficient simulator
Sim for which〈q, P, f(q, P )〉 c≡ 〈q, P, Sim(1n, Pcr, q)〉 for poly(d, n, k)-time machines.

Following [20], we say the protocolleaksb bits of informationif there is a deterministic “hint” function
h : {0, 1}(n+1)d → {0, 1}b such that the distributions〈q, P, f(q, P )〉 and〈q, P, Sim(1n, Pcr, q, h(P, q))〉
are indistinguishable. As motivated in section 1, we believe these to be natural extensions of private approx-
imations in [12, 20] from values to sets of values.

We give a privatec-approximate NN protocol with communicatioñO(
√

n+d) and ac-approximate NN
protocol with communicatioñO(n1/3 + d) which leaksk bits of information. Both protocols are based on
dimensionality reduction in the hypercube [24]. There it isshown that for anO(log n) × d matrix A with
entries i.i.d. Bernoulli(1/d), there is anτ = τ(r, cr) such that for allp, q ∈ {0, 1}d, the following event
holds with probability at least1 − 1/poly(n)

If ∆(p, q) ≤ r, then∆(Ap,Aq) ≤ τ, and if∆(p, q) ≥ cr, then∆(Ap,Aq) > τ.

Here, arithmetic occurs inZ2. We use this idea in the following helper protocolDimReduce(τ,B, q, P ).
Let A be a random matrix as described above. LetS = {p ∈ P | ∆(Ap,Aq) ≤ τ}. If |S| > B, replaceS
with the lexicographically firstB elements ofS. DimReduce outputs random shares ofS.

DimReduce(τ,B, q, P ):

1. Bob performs the following computation

• Generate a matrixA as above, and initializeL to an empty list.

• For eachv ∈ {0, 1}O(log n), let L(v) be the firstB pi for which∆(Api, v) ≤ τ .

2. A secure circuit with ROML performs the following computation on input(q,A),

• ComputeAq.

• LookupAq in L to obtainS. If |S| < B, padS so that allS have the same length.

• Output random shares(S1, S2) of S so thatS = S1 ⊕ S2.
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It is an easy exercise to show the correctness and privacy ofDimReduce.

Remark 10 As stated, the communication is̃O(dB). The dependence ond can be improved tõO(d + B)
using homomorphic encryption. Roughly, Alice sendsE(q1), . . . , E(qd) to Bob, who setsL(v) to be the
first B different E(∆(pi, q)) for which ∆(Api, v) ≤ τ . Note thatE(∆(pi, q)) is efficiently computable,
and has sizẽO(1) ≪ d.

It will be useful to define the following eventH(r1, r2, P ) with r1 < r2. Suppose we runDimReduce
independentlyk times with matricesAi. ThenH(r1, r2, P ) is the event that at leastk/2 differenti satisfy

∀p ∈ Pr1 , ∆(Aip,Aiq) ≤ τ(r1, r2) and∀p ∈ P \ Pr2, ∆(Aip,Aiq) > τ(r1, r2).

The next lemma follows from the properties of theAi and standard Chernoff bounds:

Lemma 11 Pr[H(r1, r2, P )] = 1 − 2−Ω(k).

4.3 c-approximate NN protocol

Protocol Overview:Our protocol is based on the following intuition. When|Pcr| is large, a simple solution
is to run a secure function evaluation with Alice’s pointq as input, together with a random sampleP ′ of
roughly ak/|Pcr| fraction of Bob’s pointsP . The circuit returns a random point ofP ′ ∩ Pcr, which is
non-empty with overwhelming probability. The communication isÕ(n/|Pcr|).

On the other hand, when|Pcr| is small, if Alice and Bob runDimReduce(τ(r, cr), |Pcr|, q, P ) indepen-
dently k times, then with overwhelming probabilityPr ⊆ ∪iSi, whereSi denotes the (randomly shared)
output in theith execution. A secure function evaluation can then take in the random shares of theSi and
output a random point ofPr. The communication of this scheme is̃O(|Pcr|).

Our protocol combines these two protocols to achieveÕ(
√

n) communication, by sampling roughly
ann−1/2 fraction of Bob’s points in the first protocol, and by invoking DimReduce with parameterB =
Õ(

√
n) in the second protocol. This approach is similar in spirit tothe “high distance / low distance”

approach used to privately approximate the Hamming distance in [12].

c-Approx (q, P):

1. SetB = Õ(
√

n).

2. Independently runDimReduce(τ(r, cr), B, q, P ) k times, generating shares(S1
i , S2

i ).

3. Bob finds a random subsetP ′ of P of sizeB.

4. A secure circuit performs the following computation on inputsq, S1
i , S2

i , P ′.

• ComputeSi = S1
i ⊕ S2

i for all i.

• Let f(q, P ) be a random point fromPcr ∩ P ′ 6= ∅ if it is non-empty,

• Else letf(q, P ) be a random point fromPr ∩ ∪iSi if it is non-empty, else setf(q, P ) = ∅.

• Output(f(q, P ), null).

Using the ideas in Remark 10, the communication isÕ(d + B), since the SFE has sizẽO(B). LetF be the
event thatP ′ ∩ Pcr 6= ∅, and putH = H(r, cr, P ).

9



Correctness: SupposePr is nonempty. The probabilitys of correctness is just the probability we don’t
output∅. Thuss ≥ Pr[F ] + Pr[¬F ] Pr[f(q, P ) 6= ∅ | ¬F ].

Case|Pcr| ≥
√

n: For sufficiently largeB, we haves ≥ Pr[F ] = 1 − 2−Ω(k).

Case|Pcr| <
√

n: It suffices to showPr[f(q, P ) 6= ∅ | ¬F ] = 1 − 2−Ω(k). But this probability is at least
Pr[f(q, P ) 6= ∅ | H,¬F ] Pr[H], and ifH occurs, thenf(q, P ) 6= ∅. By Lemma 11,Pr[H] = 1 − 2−Ω(k).

Privacy Note that Bob gets no output, so Alice’s privacy follows fromthe composition of ofDimRe-
duce and the secure circuit protocol of step 5. Similarly, if we can construct a simulatorSim with inputs
1n, Pcr, q so that the distributions〈q, P, f(q, P )〉 and〈q, P, Sim(1n, Pcr, q)〉 are statistically close, Bob’s
privacy will follow by that ofDimReduce and the secure circuit protocol of step 5.

Sim (1n, Pcr, q):

1. SetB = Õ(n1/2).

2. With probability1 −
(n−|Pcr|

B

)(n
B

)−1
, output a random element ofPcr,

3. Else output a random element ofPr.

Let X denote the output ofSim(1n, Pcr, q). It suffices to show that for eachp ∈ P , |Pr[f(q, P ) =
p] − Pr[X = p]| = 2−Ω(k), since this also implies|Pr[f(q, P ) = ∅] − Pr[X = ∅]| = 2−Ω(k). We have

Pr [f(q, P ) = p] = Pr [f(q, P ) = p,F ] + Pr [f(q, P ) = p,¬F ]

= Pr [f(q, P ) = p,F ] + Pr [f(q, P ) = p,¬F | H] ± 2−Ω(k)

= Pr [F ] |Pcr|−1 + Pr[¬F ] Pr[f(q, P ) = p | H,¬F ] ± 2−Ω(k),

where we have used Lemma 11. SincePr[F ] = 1 −
(n−|Pcr|

B

)(n
B

)−1
, we have

|Pr[f(q, P ) = p] − Pr[X = p]| ≤ Pr[¬F ]
∣

∣Pr[f(q, P ) = p | H,¬F ] − δ(p ∈ Pr)|Pr|−1
∣

∣ + 2−Ω(k).

If |Pcr| ≥
√

n, thenPr[¬F ] = 2−Ω(k). If |Pcr| <
√

n, thenPr[f(q, P ) = p | H,¬F ] = δ(p ∈ Pr)|Pr|−1.

Extensions: The way the current problem is stated, there is anΩ(d) lower bound. In appendix C we
sketch how, if Alice just wants to learn some coordinate of anelement ofPcr, this dependence can be made
polylogarithmic. We also have a similar protocol based on locality-sensitive hashing (LSH), which only
achievesÕ(n1/2+1/(2c) + d) communication, but has much smaller time complexity (though still polyno-
mial). More precisely, the work of the LSH scheme isnO(1), whereas the work ofc-Approx is nO(1/(c−1)2),
which is polynomial only for constantc. See Appendix D for the details.

4.4 c-approximate NN protocol leakingk bits

Protocol Overview:We consider three ballsPr ⊆ Pbr ⊆ Pcr, wherec − b, b − 1 ∈ Θ(1). We start by
trying to use dimensionality reduction to separatePr from P \ Pbr, and to output a random point ofPr. If
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this fails, we try to sample and output a random point ofPcr. If this also fails, then it will likely hold that
n1/3 ≤ |Pbr| ≤ |Pcr| ≤ n2/3. We then sample down the pointsetP by a factor ofn−1/3, obtainingP̃ with
survivorsP̃br, P̃cr of Pbr, Pcr respectively. It will now likely hold that we can use dimensionality reduction
to separatẽPbr from P̃ \ P̃cr to obtain and output a random point of̃Pbr. The hint function will encode
the probability, to the nearest multiple of2−k, that the first dimensionality reduction fails, which may bea
non-negligible function ofP \ Pcr. This hint will be enough to simulate the entire protocol.

c-ApproxWithHelp (q, P):

1. SetB = Õ(n1/3).

2. Independently runDimReduce(τ(r, br), B, q, P ) k times, generating shares(S1
i , S2

i ).

3. Bob finds random subsetsP ′, P̃ of P of respective sizesB andn2/3.

4. Independently runDimReduce(τ(br, cr), B, q, P̃ ) k times, generating shares(S̃1
i , S̃2

i ).

5. A secure circuit performs the following computation on inputsq, S1
i , S2

i , P ′, S̃1
i , S̃2

i .

• ComputeSi = S1
i ⊕ S2

i andS̃i = S̃1
i ⊕ S̃2

i for all i.

• If for most i, |Si| < B, let f(q, P ) be a random point inPr ∩ ∪iSi, or ∅ if it is empty.

• Else ifPcr ∩ P ′ 6= ∅, let f(q, P ) be a random point inPcr ∩ P ′.

• Else letf(q, P ) be a random point inPbr ∩ ∪iS̃i if it is non-empty, otherwise setf(q, P ) = ∅.

• Output(f(q, P ), null).

The protocol can be implemented in polynomial time with communicationÕ(B + d) = Õ(n1/3 + d).
To prove correctness and privacy, we introduce some notation. LetE1 be the event that the majority of

the |Si| are less thanB, andE2 the event thatPr ⊆ ∪iSi. LetF be the event thatP ′ ∩ Pcr 6= ∅. LetG1 be
the event that1 ≤ P̃br ≤ P̃cr ≤ B andG2 the event that̃Pbr ⊆ ∪iS̃i. Finally, letH1 = H(r, br, P ) and
H2 = H(br, cr, P̃ ). Note thatPr[H1],Pr[H2] are1 − 2−Ω(k) by Lemma 11. We need two lemmas:

Lemma 12 Pr[E2 | E1] = 1 − 2−Ω(k).

Proof: If H1 andE1 occur, then there is ani for whichPr ⊆ Si, soE2 occurs.

Lemma 13 Pr[G2 | G1] = 1 − 2−Ω(k).

Proof: If H2 andE2 occur, then the majority of thẽSi containP̃br, soG2 occurs.

Correctness:We may assumePr 6= ∅. The probabilitys of correctness is just the probability the algorithm
doesn’t return∅. SinceF , E1, andG1 are independent,

s ≥ Pr[E1] Pr[E2 | E1] + Pr[¬E1](Pr[F ] + Pr[¬F ] Pr[G1] Pr[G2 | G1]).

Case|Pbr| < B: H1 impliesE1 since|Pbr| < B, and using Lemma 12,s ≥ Pr[E1] Pr[E2 | E1] = 1−2−Ω(k).

Case|Pbr| ≥ B: SincePr[E2 | E1] = 1 − 2−Ω(k) by Lemma 12, we just need to show thatPr[F ] +
Pr[¬F ] Pr[G1] Pr[G2 | G1] = 1−2−Ω(k). If |Pcr| > n2/3, it suffices to showPr[F ] = 1−2−Ω(k). This holds
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for large enoughB = Õ(n1/3). Otherwise, if|Pcr| ≤ n2/3, then it suffices to showPr[G1] Pr[G2 | G1] =
1−2−Ω(k). By assumption,B ≤ |Pbr| ≤ |Pcr| ≤ n2/3. Therefore, for large enoughB, Pr[G1] = 1−2−Ω(k),
and thus by Lemma 13,Pr[G1] Pr[G2 | G1] = 1 − 2−Ω(k).

Privacy: Note that Bob gets no output, so Alice’s privacy follows fromthe composition ofDimReduce
and the secure circuit protocol of step 5. Similarly, if we can construct a simulatorSim with inputs
1n, Pcr, q, h(Pcr, q) so that the distributions〈q, P, f(q, P )〉 and〈q, P, Sim(1n, Pcr, q, h(Pcr, q))〉 are sta-
tistically close, Bob’s privacy will follow by that ofDimReduce and the secure circuit of step 5.

We define the hint functionh(Pcr, q) to output the nearest multiple of2−k to Pr[E1]. In the analysis
we may assume thatSim knowsPr[E1] exactly, since its output distribution in this case will be statistically
close to its real output distribution.

Sim (1n, Pcr, q,Pr[E1]):

1. SetB = Õ(n1/3).

2. With probabiityPr[E1], output a random element ofPr, or output∅ if Pr = ∅.

3. Else with probability1 −
(n−|Pcr|

B

)(n
B

)−1
, output a random element ofPcr,

4. Else output a random element ofPbr.

Let X denote the output ofSim(1n, Pcr, q,Pr[E1]). It suffices to show that for eachp ∈ P ,

|Pr[f(q, P ) = p] − Pr[X = p]| = 2−Ω(k),

since then we have|Pr[f(q, P ) = ∅] − Pr[X = ∅]| = 2−Ω(k). Using the independence ofF , E1,G1, and
Lemmas 12, 13, we boundPr[f(q, P ) = p] as follows

Pr[f(q, P ) = p] = Pr[E1, f(q, P ) = p] + Pr[¬E1, f(q, P ) = p]

= Pr[E1] Pr[f(q, P ) = p | E2E1] ± 2−Ω(k) + Pr[¬E1] Pr[F ] Pr[f(q, P ) = p | F,¬E1]

+ Pr[¬E1] Pr[¬F ] Pr[f(q, P ) = p | ¬F,¬E1]

= Pr[E1]|Pr|−1δ(p ∈ Pr) ± 2−Ω(k) + Pr[¬E1] Pr[F ]|Pcr|−1

+ Pr[¬E1] Pr[¬F ] Pr[G1] Pr[f(q, P ) = p | G1G2¬F¬E1] ± 2−Ω(k)

+ Pr[¬E1] Pr[¬F ] Pr[¬G1] Pr[f(q, P ) = p | ¬G1¬F¬E1]

= Pr[E1]|Pr|−1δ(p ∈ Pr) + Pr[¬E1] Pr[F ]|Pcr|−1 + Pr[¬E1] Pr[¬F ] Pr[G1]|Pbr|−1δ(p ∈ Pbr)

+ Pr[¬E1] Pr[¬F ] Pr[¬G1] Pr[f(q, P ) = p | ¬E1¬F¬G1] ± 2−Ω(k).

On the other hand, sincePr[F ] = 1 −
(n−|Pcr|

B

)(n
B

)−1
, we have

Pr[X = p] = Pr[E1]|Pr|−1δ(p ∈ Pr) + Pr[¬E1] Pr[F ]|Pcr|−1 + Pr[¬E1] Pr[¬F ]|Pbr |−1δ(p ∈ Pbr),

so that

|Pr[f(q, P ) = p] − Pr[X = p]| ≤ Pr[¬E1] Pr[¬F ] Pr[¬G1] Pr[f(q, P ) = p | ¬E1¬F¬G1] + 2−Ω(k).

If |Pbr| < B, Pr[¬E1] = 2−Ω(k). If |Pcr| ≥ n2/3, Pr[¬F ] = 2−Ω(k). OtherwiseB ≤ |Pbr| ≤ |Pcr| ≤ n2/3,
and as shown for correctness,Pr[¬G1] = 2−Ω(k), which shows|Pr[f(q, P ) = p] − Pr[X = p]| = 2−Ω(k).
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14



A.1 Homomorphic Encryption

An encryption scheme,E : (G1,+) → (G2, ·) is homomorphic if for alla, b ∈ G1, E(a+b) = E(a) ·E(b).
For more background on this primitive see, for example, [19,27].

We make use of the Paillier homomorphic encryption scheme [30] in some of our protocols and so we
briefly repeat it here:

1. Initialize: Choose two primes,p andq and setN = p · q. Let λ = lcm(p − 1, q − 1). Let the public
keyPK = (N, g) where the order ofg is a multiple ofN . Let the secret key,SK = λ.

2. Encrypt: Given a messageM ∈ ZN , choose a random valuex ∈ Z∗
N . The encryption ofM is,

E(M) = gMxNmodN2.

3. Decrypt: Let L(u) = (u−1)
N , whereu is congruent to1 moduloN .To recoverM from E(M) calcu-

late, L(E(M)λmod N2)
L(gλmod N2)

modN .

In [30] it’s shown that the Paillier encryption scheme’s semantic security is equivalent to the Decisional
Composite Residuosity Assumption. The following shows homomorphy:

E(M1) · E(M2) = (gM1x1
N modN2) · (gM2x2

N modN2) = gM1+M2(x1x2)
N modN2 = E(M1 + M2).

A.2 Oblivious Transfer and SPIR

Oblivious transfer is equivalent to the notion of symmetrically-private information retrieval (SPIR), where
the latter usually refers to communication-efficient implementations of the former. SPIR was introduced
in [16]. With each invocation of a SPIR protocol a user learnsexactly one bit of a binary database while
giving the server no information about which bit was learned. We rely on single-server SPIR schemes in our
protocols. Such schemes necessarily offer computational,rather than unconditional, security [9]. Applying
the transformation of [29] to the PIR scheme of [6] give SPIR constructions withÕ(n) server work and
Õ(1) communication.

One issue is that in some of our schemes, we actually perform OT on recordsrather than on bits. It is a
simple matter to convert a binary OT scheme into an OT scheme on records by runningr invocations of the
binary scheme in parallel, wherer is the record size. This gives us a 1-round,Õ(r) communication,Õ(nr)
server work OT protocol on records of sizer. The dependence onr can be improved using techniques of
[8].

A.3 Secure Function Evaluation

In [18, 32] it is shown how two parties holdings inputsx andy can privately evaluate any circuitC with
communicationO(k(|C| + |x| + |y|)), wherek is a security parameter. In [5] it is shown how to do this in
one round for the semi-honest case we consider. The time complexity is the same as the communication.
We use such protocols as black boxes in our protocols.

B Private Near Neighbor and All-Near Neighbors

B.1 Private near neighbor for ℓ2 and Hamming distance

Alice hasq ∈ [U ]d, and Bob a set of pointsP = p1, . . . , pn in [U ]d. Alice should output argmini
∑

j |pi,j −
qj|2. The protocol is easily modified to return thepi realizing the minimum. We assume a semantically
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secure homomorphic encryption schemeE such as Paillier encryption (see appendix A), that the message
domain is isomorphic toZm for somem, and thatm is large enough so that arithmetic is actually overZ.

Exact-ℓ2(q, P ):

1. Alice generates(PK,SK) for E and sendsPK, E(q1), . . . , E(qd) to Bob

2. For alli, Bob computes (by himself)zi = E(〈q, pi〉) andvi = ‖pi‖2

3. A secure circuit with inputsq, SK, {zi}i, and{vi}i computes

• 〈q, pi〉 = DSK(zi) for all i

• Return argmini(vi − 2〈q, pi〉)

Using the homomorphy ofE and theÕ(n)-sized circuit in step 3, we make the communicationÕ(n + d)
rather than thẽO(nd) of a generic SFE. The correctness is easy to verify. Using theorem 1 and the semantic
security ofE, privacy is just as easy to show. We note a natural extension to ℓp distances: Alice sends

{E(qi1)}, {E(qi1qi2)}, . . . , {E(qi1 · · · qip−1)},

where i1, . . . , ip−1 range over all of[d]. The communication is̃O(n + dp−1), which is interesting for
d = O(n1/(p−2)).

B.2 Private near neighbor for generic distance functions

Now Alice wantsmini f(q, pi) for an arbitraryf(a, b) =
∑d

i=1 fi(ai, bi). We use homomorphic encryption
to implement polynomial evaluation as in [13].

Exact-Generic(q, P ):

1. Alice createsd degree-(U −1) polynomialssj by interpolating fromsj(u) = fj(pj , u) for all u ∈ [U ]

2. Alice generates(PK,SK) for E and sends the encrypted coefficients of thesj andPK to Bob

3. Bob computes (by himself)zi = E(
∑

j sj(pi,j)) = E(f(q, pi)) for all i

4. A secure circuit with inputsSK, {zi}i outputs argminiDSK(zi)

The proofs are similar to those of the previous section and are omitted. The communication here is̃O(dU +
n), improving theO(ndU) communication of [10]. A special case of the result in section B.4 improves this
to Õ(d2 + n) in casef(a, b) is Hamming distance andU > d.

B.3 Private near neighbor for n = 1

We now show how Alice, holdingq ∈ {0, 1}d, and Bob, holdingp ∈ {0, 1}d for some primed, can
privately compute∆(q, p) with communicationd⌈log d⌉ + O(k). This extends to solve the private near
neighbor problem forn = 1 with communication2d⌈log d⌉ + Õ(k). The communication outperforms the
Θ(dk) communication of SFE.
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We assume both parties have access to the same uniformly random string. We need a homomorphic en-
cryption whose message domain can be decoupled from its security parameter. Recall in Paillier encryption
that if encryptions arek bits long, messages are aboutk/2 bits long. For low communication we want the
domain to be very small, that is, roughlyd elements instead of2k/2. To do this, we use a Benaloh encryption
schemeE [4], which is homomorphic and semantically secure assumingthe prime residuousity assumption.
The message domain isZd while encryptions are of sizek.

Exact-1(q, p):

1. Alice generate(PK,SK) for E, and sendsPK to Bob

2. Both parties interpret3 the common random stringR asd encryptionsE(zi)

3. Alice obtains thezi by decrypting, and sends Bobsi = qi − zi mod d for all i

4. Bob computes (by himself)E(zi + qi) = E(qi) andE(
∑d

i=1(pi + (−1)piqi)) = E(∆(p, q))

5. Bob rerandomizes theE(∆(p, q))

6. Alice outputsDSK(E(∆(p, q))) = ∆(x, y)

The correctness of the protocol is straightforward. The keyproperty for security is that ifR is uniformly
random, then for anyPK,SK, the E(z1), . . . , E(zd) are independent uniformly random encryptions of
random elementsz1, . . . , zd ∈ [d].

To see complexityd⌈log d⌉+o(d), the list ofsi’s that Alice sends has lengthd⌈log d⌉. Also,E(∆(q, p))
has lengthk, the security parameter, which can be set todǫ for anyǫ > 0. Similar techniques gived + O(k)
communication for private inner product, using GM-encryption [19].

B.4 Private All-Near Neighbors

We consider the setting of [13], in which Alice and Bob haveQ = q1, . . . , qn ∈ [U ]d andP = p1, . . . , pn ∈
[U ]d respectively, and Alice wants allpj for which∆(qi, pj) ≤ t < d for somei ∈ [n] and parametert. We
assume a semantically secure homomorphic encryption schemeE and OT withpolylog(n) communication.
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All-Near (Q,P ):

1. The parties randomly permute their points

2. Alice generates parameters(PK,SK) of E and sends BobPK

3. Forl = 1, . . . , k,

• The parties choose a pairwise independent hash functionh : [U ] → [2d]

• For i ∈ [n], Alice computes̃xi = h(xi), whereh is applied coordinate-wise

• Replace each entryj of eachx̃i with a length2d unit vector withrth bit 1 iff x̃i,j = r

• Bob formsŷi similarly

• Alice sends the coordinate-wise encryption of each vector for each coordinate of each̃xi

• Bob computes (by himself)Zi,j,l = E(∆(x̃i, ỹj)) for all i, j ∈ [n]

4. A secure circuit with inputsSK,Zi,j,l computes

• Zi,j = minl DSK(Zi,j,l)

• OutputZ = {j | ∃i s.t.Zi,j ≥ d − t} to Alice

5. Perform OT on records of sized for Alice to retrieveY = {yj | j ∈ Z}

Theorem 14 The above is a private all-near neighbors protocol with communicationÕ(nd2 + n2).

Proof: We first argue correctness, which means showingPr[Y = {yj | ∃i s.t.∆(qi, pj) ≤ t}] = 1−2−Ω(k).
We show fori, j ∈ [n], Pr[∆(qi, pj) = n − Zi,j] = 1 − 2−Ω(k). By a union bound, for anyh,

Pr[D(Zi,j) = n − ∆(qi, pj)] ≥ T/2T = 1/2.

ButD(Zi,j) ≥ n−∆(qi, pj) since hashing only increases the number of agreements. Thus, Pr[minl D(Zi,j,l) >
n − ∆(qi, pj)] < 2−Ω(k), so thatZi,j = n − ∆(qi, pj) with the required probability.

For privacy, since the output assumes a specific value with probability 1− 2−Ω(k), we just need to show
each party’s view is simulatable. As usual, we replace the SFE and OT by oracles. Alice’s output from the
SFE is a list of random indices, and her output from the OT is her protocol output. Hence, her simulator
just outputs a list of|Y | random indices. Bob’s simulator choosesk random hash functions and2d2nk
encryptions of0 underE. By the semantic security ofE and theorem 1, the protocol is secure.

To see that the communication is̃O(nd2+n2), in each ofk executions, Alice sendsO(nd2) encryptions.
Bob then inputsO(n2) encryptions to the SFE, which can be implemented with a circuit of sizeÕ(n2). Step
5 of the protocol can be done with̃O(nd) communication using the best OT schemes (see [8, 6]).

Remark 15 A simple modification of the protocol gives the promisedÕ(d2 + n) communication for Ham-
ming distance in the setting of [10] for anyU .

Remark 16 The protocol can be adapted to givẽO(d + n) communication for set difference. In this case
Alice has a single vectorq. The idea is that Alice, Bob can hash their entries down to2d values using
h as in the protocol, and now Alice can homomorphically encrypt and send the coefficients of a degree-
(2d − 1) polynomialpol, wherepol is such thatpol(t) = 0 if t ∈ {r | ∃i s.t. r = h(qi)} andpol(t) = 1
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otherwise. Bob can evaluatepol on each (hashed) coordinate of eachpi and useE’s homomorphy to
computeE(f(q̃, p̃i)), f denoting set difference. We then repeat thisk times over differenth and take a
maximum in the SFE. Since coordinate order is immaterial forset difference, we achievẽO(n + d) instead
of Õ(n + d2) communication.

Although we have improved the communication of [13], one mayworry about the work the parties need to
perform. We have the following optimization:

Theorem 17 The protocol can be implemented with total workÕ(n2d2c−4), wherec ≈ 2.376 is the expo-
nent of matrix multiplication.

Proof: The work is dominated by step 3, in which Bob needs to compute encryptions of all pairwise
Hamming distances. To reduce the work, we think of what Alicesends as an encryptedn×d2 matrixM1, and
that Bob has ad2 ×n matrixM2 and needs an encryptedM1M2. It is shown in [3] that even the best known
matrix multiplication algorithm still works if one of the matrices is homomorphically encrypted. Thus Bob
can perform(n/d2)2 fast multiplications ofd2 × d2 matrices, requiringÕ((n/d2)2(d2)r) = Õ(n2d2r−4)
work, which improves upon thẽO(n2d2) work of a naive implementation.

C Reducing the dependence ond for private c-approximate NN

Here we sketch how the communication of the protocol of section 4.3 can be reduced tõO(n1/2+polylog(d))
if Alice just wants to privately learn some coordinate of some element ofPcr.

Proof Sketch: The idea is to perform an approximation to the Hamming distance instead of using the
E(∆(pi, q)) in the current protocol (see, e.g.,DimReduce, and the following remark). The approximation
we use is that given in [24], namely, the parties will agree upon random matricesAi for some subset ofi
in [n], and from theAipi andAiq will determine(1 ± ǫ) approximations to the∆(pi, q) with probability
1 − 2−k. We don’t need private approximations since the parties will not learn these values, but rather, they
will input theAipi, Aiq into a secure circuit which makes decisions based on these approximations.

More precisely, Bob samplesB of his vectorspi, and in parallel agrees uponB matricesAi and feeds
theAipi into a secure circuit. Alice feeds in theAiq. Let c ≥ 1+8ǫ. The circuit looks for an approximation
of at mostr(1 + 6ǫ). If such a value exists, the circuit gives Alice the corresponding index. Observe that
if |Pr(1+4ǫ)| >

√
n, then with probability1 − 2−k an index is returned to an element inPcr, and that this

distribution is simulatable. So assume|Pr(1+4ǫ)| ≤
√

n.
The parties proceed by performing a variant ofDimReduce(τ(r, r(1+4ǫ)), B, q, P ), with the important

difference being that the output no longer consists of shares of theE(∆(pi, q)). Instead, for each entryL(v),
Bob pretends he is running the approximation of [24] with Alice’s pointq. That is, the parties agree onB
different matricesAi and Bob computesAip for eachp ∈ L(v). A secure circuit obtains these products,
and computes the approximations. It outputs an index to a random element with approximation at most
r(1 + 2ǫ). If Pr is nonempty, such an index will exist with probability1 − 2−k. Also, the probability that
an index to an element outside ofPr(1+4ǫ) is returned is less than2−k, and so the distribution of the index
returned is simulatable.

Finally, given the index of some element inPcr, the parties perform OT and Alice obtains the desired
coordinate, The communication is now̃O(

√
n). �
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D Private c-approximate NN based on locality sensitive hashing

We give an alternative privatec-approximate NN protocol, with slightly more communication than that in
section 4.2, but less work (though still polynomial). It is based on locality sensitive hashing (LSH) [23].
The fact we need is that there is a family of functionsG : {0, 1}d → {0, 1}Õ(1) such that eachg ∈ G has
description sizẽO(1), andG is such that for allp, q ∈ {0, 1}d,

Pr
g∈G

[g(p) = g(q)] = Θ
(

n−∆(p,q)/cr
)

Recall that Alice has a pointq ∈ {0, 1}d and Bob hasn pointsP ⊆ {0, 1}d. For correctness, Alice
should learn a point ofPcr providedPr 6= ∅. For privacy, her view should be simulatable given onlyPcr.

Our protocol is similar to that in section 4.2. When|Pcr| is large, one can run a secure function evaluation
with Alice’s pointq as input, together with a random sampleP ′ of roughly ak/|Pcr| fraction of Bob’s points
P . The circuit returns a random point ofP ′ ∩ Pcr which is non-empty with probabiity1 − 2−Ω(k). The
communication isÕ(n/|Pcr|).

On the other hand, when|Pcr| is small, if Alice and Bob exchange functionsgi independentlyÕ(n1/c)
times, then with overwhelming probabilityPr ⊆ ∪iSi, whereSi denotes the subset of Bob’s pointsp with
gi(p) = gi(q). Using a secure ciruit with ROM, we can obtain these setsSi, and output a random point of
Pr. The communication is̃O(n1/c|Pcr|).

Our protocol balances these approaches to achieveÕ(n1/2+1/(2c)) communication.
There are a few technicalities dodged by this intuition. First, even though the parties exchangeÕ(n1/c)

different gi, and can thus guarantee that eachp is in someSi with probability 1 − 2−Ω(k), it may be that
wheneverp ∈ Si, many points fromP \ Pcr also land inSi, so thatSi is very large. Even though we only
expect|P \ Pcr|O(1/n) = O(1) points fromP \ Pcr in Si, sincePr[p ∈ Si] = Θ(n−1/c) is small,p may
only be inSi whenSi is large. Because the size of theSi affects the communication of our protocol, we
cannot always afford for the ROM to receive the wholeSi (sometimes we will truncate it). However, in the
analysis, we show that the averageSi is small, and this will be enough to get by with low communication.

Second, we need to extend the notion of a lookup gate given in section 2. Instead of just mapping inputs
(i, j) to outputRi[j], thejth entry in theith party’s ROM, we also allowj to be a key, so that the output is
the record inRi keyed byj. This can be done efficiently using [8], and Theorem 3 is unchanged, assuming
the length of the keys is̃O(1).
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LSH (q, P ):

1. SetB = Õ(n1/2+1/(2c)) andC = Õ(n1/c).

2. Bob finds a random subsetP ′ of P of sizeB .

3. Fori = 1 to k,

(a) Alice and Bob agree uponC randomgi,j ∈ G.

(b) Bob creates a ROML with entriesL(v) containing the pointsp for which g(p) = v.

(c) A secure circuit with ROML performs the following computation on input(q, {gi,j}),
• Computevi,j = gi,j(q) for eachj.

• Lookup theL(vi,j) one by one for the differentvi,j until the communication ex-
ceedsdB. If it is less, make dummy queries so that it is exactlydB.

• Output sharesS1
i , S2

i so thatS1
i ⊕ S2

i is the (possibly truncated) set of setsL(vj).

4. A secure circuit with inputsP ′, S1
i , S2

i ,

• Compute the setSi = S1
i ⊕ S2

i = ∪jL(vj) for all i.

• Let f(q, P ) be random inPcr ∩ P ′ if it is non-empty.

• Else letf(q, P ) be random inPr ∩ ∪iSi if it is non-empty, else setf(q, P ) = ∅.

• Output(f(q, P ), null).

The communication is̃O(dB). By using homomorphic encryption, one can reduce the dependence ond, as
per remark 10. LetE be the event thatPr ⊆ ∪iSi, and letF be the event thatPcr ∩ P ′ is non-empty.

Correctness: SupposePr 6= ∅. The probabilitys of correctness is just the probability we don’t output
∅. Thuss ≥ Pr[F ] + Pr[¬F ] Pr[f(q, P ) 6= ∅ | ¬F ].

Case|Pcr| ≥ n1/2−1/(2c): For sufficiently largeB, we haves ≥ Pr[F ] = 1 − 2−Ω(k).

Case|Pcr| < n1/2−1/(2c): It is enough to showPr[f(q, P ) 6= ∅ | ¬F ] = 1 − 2−Ω(k). Fix i. Put
Y =

∑

j |L(vi,j)|, where|L(vi,j)| denotes the number of points inL(vi,j). The expected number of points

in P \ Pcr that are inL(vi,j) is at mostn · O(1/n) = O(1). Since|Pcr| < n1/2−1/(2c), E[L(vi,j)] <
n1/2−1/(2c) + O(1). ThusE[Y ] ≤ B/3 for large enoughB, soPr[Y > B] ≤ 1/3 by Markov’s inequality.
Thus, with probability1−2−Ω(k), for at least half of thei, Si is not truncated in step 3c. Moreover, for large
enoughB, any i, and anyp ∈ Pr, Pr[p ∈ Si] = 1 − 2−Ω(k) for large enoughC. By a few union bounds
then,Pr[Pr ⊆ ∪iSi] = Pr[E ] = 1 − 2−Ω(k). Thus,

Pr[f(q, P ) 6= ∅ | ¬F ] ≥ Pr[f(q, P ) 6= ∅, E | ¬F ] = Pr[f(q, P ) 6= ∅ | E , ¬F ] Pr[E ] ≥ 1 − 2−Ω(k).

Privacy: Note that Bob gets no output, so Alice’s privacy follows fromthat of the secure circuit protocol. We
construct a simulatorSim(1n, Pcr, q) so that the distributions〈q, P, f(q, P )〉 and〈q, P, Sim(1n, Pcr, q)〉 are
statistically close. Bob’s privacy then follows by the composition with the secure circuit protocol.
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Sim (1n, Pcr, q):

1. SetB = Õ(n1/2+1/(2c)).

2. With probabiity1 −
(n−|Pcr|

B

)(n
B

)−1
, output a random element ofPcr.

3. Else output a random element ofPr.

Let X denote the output ofSim(1n, Pcr, q). It suffices to show that for eachp ∈ P , |Pr[f(q, P ) =
p] − Pr[X = p]| = 2−Ω(k), since this also implies|Pr[f(q, P ) = ∅] − Pr[X = ∅]| = 2−Ω(k). We have

Pr [f(q, P ) = p] = Pr [f(q, P ) = p,F ] + Pr [f(q, P ) = p,¬F ]

= Pr [F ] |Pcr|−1 + Pr [f(q, P ) = p,¬F ]

Note thatPr[F ] = 1 −
(n−|Pcr|

B

)(n
B

)−1
. Therefore,

|Pr[f(q, P ) = p] − Pr[X = p]| = Pr[¬F ]|Pr [f(q, P ) = p | ¬F ] − δ(p ∈ Pr)|Pr|−1|.

If |Pcr| ≥ n1/2−1/(2c), this is2−Ω(k), since thenPr[¬F ] = 2−Ω(k). Otherwise,|Pcr| < n1/2−1/(2c), and as
shown in the proof of correctness, we havePr[E ] = Pr[Pr ⊆ ∪iSi] = 1 − 2−Ω(k). Thus

Pr[f(q, P ) = p | ¬F ] = Pr[f(q, P ) = p | E , ¬F ] Pr[E ] ± 2−Ω(k) = δ(p ∈ Pr)|Pr|−1 ± 2−Ω(k),

which completes the proof.
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