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Abstract

In [12] a private approximatiorof a function f is defined to be another functidh that approxi-
matesf in the usual sense, but does not reveal any information abotiter than what can be deduced
from f(z). We give the first two-party private approximation of thedistance with polylogarithmic
communication. This, in particular, resolves the main opeestion of [12].

We then look at therivate near neighboproblem in which Alice has a query point {i, 1}¢ and
Bob a set ofn points in{0,1}¢, and Alice should privately learn the point closest to heergu We
improve upon existing protocols, resolving open questiohfl3, 10]. Then, we relax the problem
by defining theprivate approximate near neighbor problemvhich requires introducing a notion of
secure computation of approximations for functions thatrresets of points rather than values. For this
problem we give several protocols with sublinear commuitca

1 Introduction

Recent years witnessed the explosive growth of the amouavaifable data. Large data sets, such as
transaction data, the web and web access logs, or netwdfik ttata, are in abundance. Much of the data is
stored or made accessible in a distributed fashion. Thisessitates the development of efficient protocols
that compute or approximate functions over such data (eg[%).

At the same time, the availability of this data has raisedificant privacy concerns. It became apparent
that one needs cryptographic techniques in order to codata access and prevent potential misuse. In
principle, this task can be achieved using the generalteesiisecure function evaluation (SFE) [32, 18].
However, in most cases the resulting private protocols arehntess efficient than their non-private coun-
terpartd. Moreover, SFE applies only to algorithms that compute tions exactly while for most massive
data sets problems, only efficiempproximationalgorithms are known or are possible. Indeed, while it is
true that SFE can be used to privately implement any effi@égurithm, it is of little use applying it to an
approximation algorithm when the approximation leaks miofgrmation about the input than the solution
itself.

In a pioneering paper [12], the authors introduced a framnkeviar secure computation of approxima-
tions. They also proposed ﬁ(\/ﬁ)-communicatioﬁ two-party protocol for approximating the Hamming
distance between two binary vectors. This improves ovefitiear complexity of computing the distance
exactly via SFE, but still does not achieve the polyloganithefficiency of a non-private protocol of [24].
Improving the aforementioned bound was one of the main problleft open in [12].

1A rare exception is the result of [28], who show how to obtaiivgie and communication-efficient versions of non-pevat
protocols, as long as the communication cost is logarithmic

2We write f = O(g) if f(n,k) = O (g(n, k) logo(l)(n)poly(k)), wherek is a security parameter.



In this paper we provide several new results for secure ctatipn of approximations. Our first result is
an O(l)-communication protocol for approximating the Euclideéy) ¢listance between two vectors. This,
in particular, solves the open problem of [12]. Since distacomputation is a basic geometric primitive, we
believe that our result could lead to other algorithms fause approximations. Indeed, in [1] the authors
show how to approximate the distance using small space and/or short amount of comntionganitiating
a rich body of work on streaming algorithms.

In the second part of the paper, we look at secure computafiamear neighborfor a query pointy
(held by Alice) among: data pointsP (held by Bob) in{0, 1}¢. We improve upon known results [10, 13]
for this problem under various distance metrics, includipgset difference, and Hamming distance over
arbitrary alphabets. Our techniques also result in bettemaunication for theall-near neighborgroblem,
where Alice holdsn different query points, resolving an open question of [E8]jd yield a binary inner
product protocol with communicatiah+ O(k) in the common random string model.

Complexity Problem Prior work SFE
O(n+d) near neighbor undds, Hamming over{0, 1}, set difference [10] O(nd)
O(dU + n) near neighbor under distancgéz, b) = -7, fi(a:, b;), ai, b; € [U] [10] O(ndlogU)
[log d]d + O(k) Hamming distance [14] O(kd)
O(nd* 4 n?) all-near neighbors [13] O(n?d)

However, all of our protocols for the near neighbor probleswéhthe drawback of needirfg(n) bits
of communication, though the dependencedois often optimal. Thus, we focus on what we term the
approximate near neighbor problentor this we introduce a new definition of secure computatibap-
proximations for functions that return points (or sets ahgg) rather than values.

Approximate privacy. Let P;(q) be the set of points i within distance: from ¢. In thec-approximate
near neighbomroblem, the protocol is required to report a pointin (q), as long as’,(¢) is nonempty.
We say that a protocol solving this problemdsprivate (or justprivate if ¢ = c) if Bob learns nothing,
while Alice learns nothing except what can be deduced froens#tP.,.(¢). In our paper we always set
d=c

We believe this to be a natural definition of privacy in the teah of the approximate near neighbor
problem. First, observe that if we insist that Alice learmdyahe setP, (as opposed t&.,.), then the
problem degenerates to thgactnear neighbor problem. Indeed, even though the definitiarookctness
allows the protocol to output a poipt € P,. — P,, in general Alice cannot simulate this protocol given
only the setP,. Thus, in order to make use of the flexibility provided by tipp@ximate definition of the
problem, it seems necessary to relax the definition of pyieascwell.

Second, the above relaxation of privacy appears naturéieicontext of applications of near neighbor
algorithms. In most situations, the distance function iy @nheuristic approximation of the dis-similarity
between objects, and there is no clear rationale for a shampeb between objects that can or cannot be
revealed (still, it is important that the information leaklimited). Our model formalizes this intuition, and
our algorithmic results shows that it is possible to exptlo#t model to obtain more efficient algorithms.

Specifically, within this framework, we give@approximate near neighbor protocol with communica-
tion O(n1/2 + d) for any constant > 1. The protocol is based on dimensionality reduction tealmiqf
[24]. We show how the dependence @nan be made polylogarithmic if Alice just wants a coordinaita
point in ... We also give a protocol based on locality-sensitive hasfitsH) [23], with communication
O(n'/2+1/(29) 4 g), but significantly less work (though still polynomial).

Finally, proceeding along the lines of [20], we say the ptotdeaksb bits of informationif it can be
simulated giverb extra bits which may depend arbitrarily on the input. Witlsthefinition, we give a
protocol Withé(nl/?’ + d) communication leaking onlk bits, wherek is a security parameter.
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General vs specific solutions.As described above, this paper offers solutionsgecificcomputational
problems. In principle, a general “compiler-like” apprbdas in [32, 18]) would be preferable. However, it
appears unlikely that a compiler approach can be developie icontext ohpproximateproblems. Indeed,
there is no general method that, for a given problem, geeeiat efficient approximation algorithm (even
ignoring the privacy issue). This implies that a compilergbhave to start from a particular approxima-
tion to a given function. Unfortunately, as mentioned earlsuch approximation itself can leak too much
information.

This argument leads us to believe that, in context of appraté algorithms, designing efficient private
solutions to specific problems is the only possible approach

2 Preliminaries

Background on homomorphic encryption, oblivious tran§&F), and secure function evaluation (SFE) can
be found in appendix A.

We assume both parties are computationally bounded andrs@mst, meaning they follow the protocol
but may keep message histories in an attempt to learn marestpaescribed. In [18, 7, 28], it is shown how
to transform a semi-honest protocol into a protocol sequtheé malicious model. Further, [28] does this at
a communication blowup of at most a factor of p@ly. Therefore, we assume parties are semi-honest in
the remainder of the paper.

We briefly review the semi-honest model, referring the readd17, 25] for more details. Lef :
{0,1}* x {0,1}* — {0,1}* x {0,1}* be a function, the first element denotgdx;, z2) and the second
fa(x1,22). Letn be a two-party protocol for computingi. The views of players?, and P, during an
execution ofr(x, z9), denotedview] (z1, z2) andView] (z1, x2) respectively, are:

View] (21, 22) = (z1,71,M11,...,m1y), Views (21, 22) = (T2,72, M2 1,...,M2y),

wherer; is the random input angh; ; the messages received by playeespectively. The outputs d?;
and P, during an execution of(z1,x2) are denotedutput](z1,x2) andoutput](x,z2). We define
output”™(z1,x2) to be(output](z,z2), output](x,z2)). We say thatr privately computes a function
f if there exist PPT algorithm§;, S, for which fori € {1, 2} we have the following indistinguishability

{Si(xs, filwr, 22)), flz1,22)} = {View] (z1,z2), output™(z1, x2)}.

This simplifies tO{Si(wi, fl'(l’l, 1’2))} é {View?(acl, :L'g)} if either fl(l’lxg) = fg(xl, 1’2) or if f(wl, 1’2)
is deterministic or equals a specific value with probability negl(k, n), for k a security parameter.

We need a standard composition theorem [17] concerningerisubprotocols. Apracle-aided pro-
tocol (see [25]) is a protocol augmented with a pair of oracle tdpe®ach party and oracle-call steps.
In an oracle-call step parties write to their oracle tape tnedoracle responds to the requesting parties.
An oracle-aided protocol uses tloeacle-functionality f = (f1, f2) if the oracle responds to queny, y
with (f1(x,y), f2(x,y)), wherefi, fo denote first and second party’s output respectively. Anleraitled
protocolprivately reduceg to f if it privately computesy when using oracle-functionality.

Theorem 1 [17] If a function g is privately reducible to a functioffi, then the protocoy’ derived fromg by
replacing oracle calls tgf with a protocol for privately computing, privately computesg.

We now define théunctional privacyof an approximation as in [12]. For our approximation proisove
will have fl(way) = fQ(way) = f(x7y)



Definition 2 Let f(z, y) be a function, and lef (,y) be a randomized function. Théffz, y) is function-
ally private for f if there is an efficient simulato$ s.t. for everyz, y, we havef’(:n, Y) = S(f(z,y))-

A private approximatiorof f privately computes a randomized functigrthat is functionally private for.

Finally, we need the notion of a protocol for securely evahgaa circuitwith ROM In this setting, the
ith party has a tabl&; € ({0,1}")® defined by his inputs. The circuit, in addition to the usuakgais
equipped witHookup gatesvhich on inputs(s, j), outputR;[j].

Theorem 3 [28] If C'is a circuit with ROM, then it can be securely computed WHHC|T'(r, s)) commu-
nication, wherel'(r, s) is the communication df-out-of-s OT on words of size.

3 Private ¢, Approximation

Here we give a private approximation of thg distance. Alice is given a vectar € [M]", and Bob a

vectorb € [M]™. Note that||a — b||*> < Tha A2, In addition, parameters § andk are specified.

For simplicity, we assume that = Q(log(nM)). The goal is for both parties to compute an estinvate

such that E — ||z||?| < e||z|* with probability at leastt — 4, for = 44 — b. Further, we wan to be a

private approximation ofz||, as defined in section 2. As discussed there, wlog we assiargatties are
semi-honest. We set the paramefer= ©(k); this notation mean® = ck for a large enough constant
independent fronk, n, M, §, e. In our protocol we make the following cryptographic asstions.

1. There exists a PRG stretchingpolylog(n) bits ton bits secure againgtoly(n)-sized circuits.
2. There exists an OT scheme for communicatiraf » bits with communicatiompolylog(n).

At the end of the section we discuss the necessity and plhtysdf these assumptions. Our protocol relies
on the following fact and corollary.

Fact 4 [26] Let A be a random x n orthonormal matrix (i.e. A is picked from a distribution defined by
the Haar measure). Then thereds> 0 such that for any: € ®", anyi = 1...n, and anyt > 1,

Pr[|(Az);| > %t] < e,
Corollary 5 Suppose we sampl as in Fact 4 but instead generate our randomness ftomounding its
entries to the nearest multiple f ©(5). Then,

2
Vz € R, Pr[(1 - 27B)||z|? < |Az|? < |jz|? andV;(Az)? < @B] >1— neg(k,n)

Proof: If there were an infinite sequencexk [M]" for which this did not hold, a circuit witk hardwired
would contradict the pseudorandomnesg-of |

Protocol Overview: Before describing our protocol, it is instructive to look sgime natural approaches
and why they fail. We start with the easier case of approdmgaihe Hamming distance, and suppose the
parties share a common random string. Consider the folpwion-private protocol of [24] discussed in
[12]: Alice and Bob agree upon a randadilogn) x n binary matrix R where theith row consists oh
i.i.d. Bernoulli(3’) entries, where3 is a constant depending en Alice and Bob exchang®a, Rb, and



computeR(a — b) = Rz. Then||z| can be approximated by observing thaf(Ra); = (Rb);] ~ 1/2
if |z| > B7% andPr[(Ra); = (Rb);] ~ 1if ||z|| < 87" Let the output be. The communication is
O(log n), but it is not private since both parties led®a. Indeed, as mentioned in [12],df= 0 andb = ¢;,
then Rz equals theth column of R, which cannot be simulated without knowing

However, given onlyj|z||, it is possible to simulaté. Therefore, as pointed out in [12], one natural
approach to try to achieve privacy is to run an SFE with inggds Rb, and outputF. But this also fails,
since knowingFE together with the randomnegg may reveal additional information about the inputsEIlf
is a deterministic function oRa, Rb, and ifa = 0 andb = ¢;, Alice may be able to find from ¢ andR.

In [12], two private protocols which each han) communication for a worst-case choice of inputs,
were cleverly combined to overcome these problems and t@\ae)(,/n) communication. The first
protocol, High-Distance Estimator, works when||z|| > \/n. The idea is for the parties to obliviously
sample random coordinates ofand use these to estimate||. Since the sampling is oblivious, the views
depend only orjz||, and since it is random, the estimate is good provided we@kgén) samples.

The second protocol,ow-Distance Estimator, works when||z|| < /n. Roughly, the idea is for the
parties to perfectly hash their vectors iridg,/n) buckets so that at most one coordinafer which a; # b
lies in any given bucket. The parties then run an SFE withr tietkets as input, which can compue||
exactly by counting the number of buckets which differ.

Our protocol breaks thi®(y/n) communication barrier as follows. First, Alice and Bob agpon a
randomorthonormalmatrix A in R™*", and computeda and Ab. The point of this step is to uniformly
spread the mass of the difference veatamver then coordinates, as per Fact 4, while preserving the length.
Since we plan to sample random coordinatesiofto estimate|z||, it is crucial to spread out the mass of
||lz||, as otherwise we could not for instance, distinguisk: 0 from = = e;. The matrix multiplication can
be seen as an analogue to the perfect hashihgwiDistance Estimator, and the coordinate sampling as
an analogue to that iHigh-Distance Estimator.

To estimate||z|| from the samples, we need to be careful of a few things. Rinst,parties should
not learn the sampled valugdz);, since these can reveal too much information. Indeed,= 0, then
(Ax); = (Ab);, which is not private. To this end, the parties run a securiitiwith ROM (see section 2)
Aa and Ab, which privately obtains the samples.

Second, we need the circuit's output distributibrio depend only offjz||. It is not enough folE[E] =
|lz||?, since a polynomial number of samples fréfmay reveal non-simulatable information abettased
on E's higher moments. To this end, the circuit uses (He); to independently generate r.«gfrom a
Bernoulli distribution with success probability deperglionly on||z||. Hence,z; depends only offjz||.

Third, we need to ensure that the contain enough information to approximdte|. We do this by
maintaining a loop variabl@ which at any point in time is guaranteed to be an upper boungt:¢h with
overwhelming probability. Using Corollary 5, for gllit holds thaty défn(Am)?/(TB) < 1 for a parameter
B, so we can generate the from a Bernoullig) distribution. Sincel” is halved in each iteration, for some
iterationE[) _; z;] will be large enough to ensure thatis tightly concentrated.

We now describe the protocol in detail. et ©(B)(1/e?log(nM)log(1/8) + k). In the following,
if ¢ > 1, then the distribution Bernoulljf means Bernoulli().




£o-Approx (a, b):

1. Alice, Bob exchange a seed@fand generate a randorhas in Corollary 5
2. Setl' = Thax
3. Repeat:

(@) {Assertion:||z|> < T}
(b) A secure circuit with ROMAa, Ab computes the following
e Generate random coordinatgs. . ., i¢ and computd Az)? , ... (Az)3,

e Forj € [{], independently generatg from a Bernoull(n(A;n)?j/(TB)) distribution
(c) T=T/2

N

L Until Y, 2 > 5 orT < 1
. Outputt = ZLB 5" 2 as an estimate dfz||?

ol

Note that the protocol can be implementedi(il) rounds by parallelizing the secure circuit invocations.

Analysis: To show the correctness and privacy of our protocol, we sii#intthe following lemma.

Lemma 6 The probability that assertion 3a holds in every iteratidrstep 3 isl — neg(k,n). Moreover,
when the algorithm exits, with probability— neg(k,n) it holds thatE[} _, 2;] > ¢/(3B).

Proof: By Corollary 5,Pr4[(1—275)|z||? < ||Az|? < ||=||* andV;(Az)? < @B] = 1—neg(k,n), SO
we may condition on this occurring. [ifz||> = 0, thenPr[Az = 0] = 1 — neg(k,n), and thuPr[E = 0] =
1 — neg(k,n). Otherwise,|z||> > 1. Consider the smallegtfor which T},.... /2’ < ||z||?>. We show for
T = Tonaz/2 7" > ||z|* > 1 thatPr[}"; z; < £/(4B)] = neg(k,n). The assertion holds at the beginning
of the jth iteration by our choice of’. Thus,n(Az)? < TB for all i € [n]. So for allj, Pr[z; = 1] =
% > (1 -279)/(2B), and thusE[> ; z;] > ¢/(3B). By a Chernoff boundPr[}_; z; < ¢/(4B)] =
neg(k,n), so if everl’ = T, /2°~1, then this is the last iteration with overwhelming probipil |

Correctness: We showPr[|E—||z||?| < €] > 1—4. By Lemma 6, when the algorithm exits, with probability
1 —neg(k,n), E[}", z] > 3LB, so we assume this event occurs. By a Chernoff bound,

Prlzi:zi—E zZ:zZ] ZZ:ZZ] \;zzzé] §6—9(52§)<

By Lemma 6, assertion 3a holds, so that

| >

> SE
=

(-2 )l < TBBY 5 <o

SettingE = 2LE 3. z; (recall thatT is halved in step 3c) shows thBt[|E — ||z|? > €||z||*] < 6.

Privacy: We replace the secure circuit with ROM in step 3b/efApprox with an oracle (see section

2). We construct a single simulat&im, which givenA aof =2, satisfiesSim(A) = View?(a,b) and
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Sim(A) = Viewj(a,b), whereView] (a,b), View](a, b) are Alice, Bob’s real views respectively. This, in
particular, implies functional privacy. It will follow thals-Approx is a private approximation ah.

Sim (A):

1. Generate a random seed®f
2. Setl' = Thax
3. Repeat:

(a) Forj € [¢], independently generatg from a Bernoull{A/(T'B)) distribution
by T=1T/2

4.UntilY, 2 > S5 orT < 1

5. Outputt = 2LE 3~

With probability 1 — neg(k,n), the matrixA satisfies the property in Corollary 5, so we assume this event
occurs. In each iteration, the random variablesire independent in both the simulation and the protocol.
Further, the probabilities that = 1 in the simulated and real views differ only by a multiplie@tifactor of
(1—2"B)aslong ag” > A. But the probability that, in either view, we encounfex A is neg(k,n).

Complexity. Given our cryptographic assumptions, we @5{&) communication and(1) rounds.

Remark 7 Our cryptographic assumptions are fairly standard, andasino the ones in [12]. There the
authors make the weaker assumptions that PRGs stretehibigs ton bits and OT withn” communication
exist for any constany. In fact, the latter implies the former [21, 15]. If we wereitstead use these
assumptions, our communication would®én?), still greatly improving upon th€@(n'/2+7) communica-
tion of [12]. A candidate OT scheme satisfying our assurmgtican be based on tdeHiding Assumption
[6], and can be derived by applying the PIR to OT transforamatif [29] to the scheme in that paper.

Remark 8 For the special case of Hamming distance, we have an altermabtocol based on the follow-
ing idea. Roughly, both parties apply the perfect hashinip®tow-Distance Estimator protocol of [12]
for a logarithmic number of levelg, where thejth level containg)(27) buckets. To overcome th@(y/n)
barrier of [12], instead of exchanging the buckets, the Ebuiokets is randomly and obliviously sampled.
From the samples, an estimate/fa, b) is output. For some, 27 ~ A(a, b), so the estimate will be tightly
concentrated, and for reasons similarieApprox, will be simulatable. We omit the details, but note that
two advantages of this alternative protocol are that the timmplexity will beO(n) instead ofO(n?), and
that we don’t need the PRG, as we may usg-wise independence for the hashing.

4 Private near neighbor andc-approximate near neighbor problems

Here we consider the setting in which Alice has a pgirdnd Bob a set of. points P.

4.1 Private near neighbor problem

Suppose for some integéf, Alice hasq € [U]¢, Bob hasP = py,...,p, € [U]%, and Alice should learn
min; f(q, p;), wheref is some distance function. In [10] protocols far /2, Hamming distance ovér-ary
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alphabets, set difference, and arbitrary distance funstfda, b) = Zle fi(ai, b;) were proposed, using
an untrusted third party. We improve the communication eséhprotocols and remove the third party using
homomorphic encryption to implement polynomial evaluats in [13], and various hashing tricks.

In [13], the authors consider the private all-near neighljomoblem in which Alice has queries
qi,-..,q, € [U]* and wants alp; for which A(pi,q;) < t < d for somej and parametet. Our tech-
niques improve th€(n2d) communication of a generic SFE and #¢n (7)) communication of [13] for
this problem taD (nd? +n?). Finally, in the common random string model we achi@g d] + O(k) com-
munication for the (exact) Hamming distance, and an innedyxet protocol with + O(k) communication.

For the details of our schemes, see appendix B. We do not fattisem since they still suffer from an
(n) communication cost. We instead focus on how to privately@dmate these problems.

4.2 Private c-approximate near neighbor problem
Suppose; € {0,1}¢ andp; € {0,1}? for all i. Let P, = {p € P | A(p,q) < t}, andc > 1 be a constant.

Definition 9 A c-approximate NN protocol is correct if whenP, # (), Alice outputs a poinf(q, P) € P.,
with probability 1 — 2=%¥) It is private if in the computational sense, Bob learns imahwhile Alice
learns nothing except what follows frof,.. Formally, Alice’s privacy is implied by an efficient simida
Sim for which(q, P, f(q, P)) = (q, P, Sim(1™, P.., q)) for poly(d, n, k)-time machines.

Following [20], we say the protocdéaksb bits of informationif there is a deterministic “hint” function
h: {0,1}(»+Dd _ £0 1} such that the distribution&;, P, f(q, P)) and (g, P, Sim(1", P.,,q, h(P,q)))

are indistinguishable. As motivated in section 1, we belithese to be natural extensions of private approx-
imations in [12, 20] from values to sets of values.

We give a private-approximate NN protocol with communicati@l(\/ﬁ + d) and ac-approximate NN
protocol with communicatio) (n'/? + d) which leaksk bits of information. Both protocols are based on
dimensionality reduction in the hypercube [24]. There sl®wn that for arO(log n) x d matrix A with
entries i.i.d. Bernoulli{/d), there is anr = 7(r, cr) such that for allp, ¢ € {0,1}, the following event
holds with probability at least — 1/poly(n)

If A(p,q) <r, thenA(Ap, Aq) < 7, andifA(p,q) > cr, thenA(Ap, Aq) > 7.

Here, arithmetic occurs ifl,. We use this idea in the following helper proto@mReduce(r, B, g, P).
Let A be a random matrix as described above. et {p € P | A(Ap, Aq) < 7}. If |S| > B, replaceS
with the lexicographically firsB elements ofS. DimReduce outputs random shares 8t

DimReduce(r, B, q, P):
1. Bob performs the following computation

e Generate a matrid as above, and initializé to an empty list.

e Foreactw € {0,1}°0°¢") et L(v) be the firstB p; for which A(Ap;,v) < 7.
2. A secure circuit with ROM. performs the following computation on inpQt, A),

e ComputeAq.

e Lookup Agin L to obtainS. If |S| < B, padS so that allS have the same length.
e Output random shares!, S?) of S so thatS = S* @ S2.




It is an easy exercise to show the correctness and privaldynoiReduce.

Remark 10 As stated, the communication@(dB). The dependence ahcan be improved t@)(d + B)
using homomorphic encryption. Roughly, Alice serfdgy ), . .., E(gq) to Bob, who setd.(v) to be the
first B different E(A(p;, q)) for which A(Ap;,v) < 7. Note thatE(A(p;, q)) is efficiently computable,
and has siz&(1) < d.

It will be useful to define the following evert(ry, 2, P) with 7y < ro. Suppose we ruDimReduce
independently: times with matricesd;. ThenH(r1, 2, P) is the event that at leasy/2 different: satisfy

vp S P?“17 A(Alpa Alq) S T(rlaTZ) andvp S P \ P?“Qﬂ A(Alp7 Alq) > T(T1’T2)'
The next lemma follows from the properties of theand standard Chernoff bounds:

Lemma 11 Pr[H(ry, 7o, P)] = 1 — 274k),

4.3 c-approximate NN protocol

Protocol Overview:Our protocol is based on the following intuition. Whgh...| is large, a simple solution
is to run a secure function evaluation with Alice’s poinas input, together with a random samgté of
roughly ak/|P..| fraction of Bob’s pointsP. The circuit returns a random point éf' N P,,., which is
non-empty with overwhelming probability. The communioatisO(n/|P.,|).

On the other hand, whée®,,.| is small, if Alice and Bob rumDimReduce(r(r, cr), | P.r|, g, P) indepen-
dently k£ times, then with overwhelming probability), € U;S;, whereS; denotes the (randomly shared)
output in theith execution. A secure function evaluation can then tak@énrandom shares of thg and
output a random point af,.. The communication of this schemeGg| P.,|).

Our protocol combines these two protocols to achié\g/n) communication, by sampling roughly
ann—'/2 fraction of Bob’s points in the first protocol, and by invogiDimReduce with paramete3 =
O(\/ﬁ) in the second protocol. This approach is similar in spiritiie “high distance / low distance”
approach used to privately approximate the Hamming distamfl2].

c-Approx (g, P}

=

. SetB = O(y/n).

2. Independently rubimReduce(7(r, cr), B, q, P) k times, generating sharés?, 52).
3. Bob finds a random subsEt of P of size B.

4. A secure circuit performs the following computation oputsg, S}, 52, P'.

e ComputeS; = S} & S? for all i.

e Let f(q, P) be arandom point fron®.,, N P’ # ( if it is non-empty,

e Else letf(q, P) be a random point fron®. N U;S; if it is non-empty, else set(q, P) = 0.
e Output(f(q, P),null).

Using the ideas in Remark 10, the communicatio®g + B), since the SFE has siz&( B). Let F be the
event that”’ N P, # 0, and putd = H(r, cr, P).



Correctness: SupposeP, is nonempty. The probability of correctness is just the probability we don't
output(. Thuss > Pr[F| + Pr[~F]| Pr[f(q, P) # 0 | ~F].

Case|P..| > v/n: For sufficiently largeB, we haves > Pr[F] = 1 — 2~ %*),

Case|P.,| < /n: It suffices to showPr[f(q, P) # 0 | =F] = 1 — 27%*). But this probability is at least
Pr(f(q, P) # 0 | H,—~F] Pr[H], and if H occurs, therf (¢, P) # (. By Lemma 11Pr[H] = 1 — 279(),

Privacy Note that Bob gets no output, so Alice’s privacy follows frahe composition of oDimRe-
duce and the secure circuit protocol of step 5. Similarly, if wa canstruct a simulatasim with inputs
1™, P.,, q so that the distributionsq, P, f(q, P)) and{(q, P, Sim(1"™, P,,,q)) are statistically close, Bob’s
privacy will follow by that of DimReduce and the secure circuit protocol of step 5.

Sim (1™, P.,, q):

1. SetB = O(n'/?).
2. With probability1 — (”‘5"') (g)_l, output a random element &f.,.,
3. Else output a random element@f.

Let X denote the output ofim(1", P..,q). It suffices to show that for each € P, |Pr[f(q,P) =
p] — Pr[X = p]| = 2-%*)  since this also impliesPr[f (¢, P) = 0] — Pr[X = 0]| = 2-°%), We have

Pr(f(q,P)=p] = Pr[f(q,P)=
= Pr[F||P.,|"' + Pr[-F|Pr[f(¢,P) = p | H,~F] % 9~ Qk)

—p,f]—FPI‘[f(q,P):p,—!f]

where we have used Lemma 11. SiféF] = 1 — ("~IF=rl) (1)~ we have
| Pr(f(q, P) = p] = Pr[X = p]| < Pr[=F] [Pr[f(q, P) = p | H,~F] = d(p € P)|P| | + 27"
If |Pyr| > /n, thenPr[-F] = 2=%K) If |P,,| < /n, thenPr[f(q, P) = p | H,~F] = d(p € P,)|P:|~".

Extensions: The way the current problem is stated, there istHd) lower bound. In appendix C we
sketch how, if Alice just wants to learn some coordinate oélment ofP.,., this dependence can be made
polylogarithmic. We also have a similar protocol based arality-sensitive hashing (LSH), which only
achieves@(nl/2+1/(20) + d) communication, but has much smaller time complexity (thostil polyno-
mial). More precisely, the work of the LSH scheme:&), whereas the work af-Approx is n0(1/(c=1)%),
which is polynomial only for constant See Appendix D for the details.

4.4 c-approximate NN protocol leaking & bits

Protocol Overview:We consider three ball®, C P,. C P.., wherec — b,b — 1 € ©(1). We start by
trying to use dimensionality reduction to separ&efrom P \ P,,., and to output a random point &f.. If
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this fails, we try to sample and output a random poinPpf. If this also fails, then it will likely hold that
n!'/3 < |Py| < |Pe| < n?3. We then sample down the pointstby a factor ofn.~!/3, obtaining P with
survworstr, P., of Pyry Per respectively. It will now likely hold that we can use dimemsality reduction
to separateP,, from P \ P., to obtain and output a random point 8f.. The hint function will encode
the probability, to the nearest multiple ®f*, that the first dimensionality reduction fails, which mayae
non-negligible function of” \ P.,. This hint will be enough to simulate the entire protocol.

c-ApproxWithHelp (q, P}

1. SetB = O(n'/3).

Independently ruDimReduce(r(r, br), B, ¢, P) k times, generating sharés}, S?).
Bob finds random subsef¥, P of P of respective size® andn?/3.

Independently rudimReduce((br, cr), B, q, P) k times, generating sharés?, 5?).

A secure circuit performs the following computation opuitsq, S*, S2, P, S}, 52,

17 LAt 2R}

o bk N

e ComputeS; = S} @ S? andS; = S} @ S? for all .

If for most i, |.S;| < B, let f(q, P) be a random point i, N U;S;, or @ if it is empty.

Else if P.. N P’ # 0, let f(q, P) be a random point i, N P’.

Else letf(q, P) be a random point itF,. N U;S; if it is non-empty, otherwise seft(q, P) = 0.
Output(f(q, P),null).

The protocol can be implemented in polynomial time with caminationO(B + d) = O(n'/? + d).

To prove correctness and privacy, we introduce some natatiet £; be the event that the majority of
the |S;| are less thaiB3, and¢&, the event thal. C U;S;. Let F be the event thaP’ N P.. # (. LetG, be
the event thal < P, < P., < B andg, the event thaP,, C U;S;. Finally, letH; = H(r,br, P) and
Ha = H(br, cr, P). Note thatPr[H,], Pr[H,] arel — 2=2(k) by Lemma 11. We need two lemmas:

Lemma 12 Pr[&; | &] =1 — 27%k),
Proof: If H; and&; occur, then there is anfor which P, C S;, so&; occurs. |
Lemma 13 Pr[G, | Gi] = 1 — 279,
Proof: If Hy and&, occur, then the majority of the; containP,,., soG, occurs. [

Correctness: We may assum®, # (). The probabilitys of correctness is just the probability the algorithm
doesn't returr). SinceF, £;, andG; are independent,

s> Pl‘[gl] PI‘[(?Q | 81] + Pr[ﬂgl](Pr[}"] + Pr[_'f] Pr[gl] Pl‘[gg | gl])

Case|P,,| < B: H, implies&; since|P,,| < B, and using Lemma 12,> Pr[&1] Pr[&; | £] = 1-279(),

Case|P,,| > B: SincePr[& | &] = 1 — 27Kk by Lemma 12, we just need to show tHai[F] +
Pr[~F] Pr[G1] Pr[Gs | Gi] = 1—-27%(®) If | P..| > n?/3, it suffices to showPr[F] = 1—2-*%), This holds

11



for large enoughB = O(n'/3). Otherwise, ifP..| < n?/3, then it suffices to showr[G,] Pr[Gy | Gi] =
1-2-94), By assumptionB < |Py,| < | P.| < n?/3. Therefore, for large enough, Pr|g] = 1—2-%0),
and thus by Lemma 1®r[G,| Pr[G, | G1] = 1 — 279,

Privacy: Note that Bob gets no output, so Alice’s privacy follows frohe composition oDimReduce
and the secure circuit protocol of step 5. Similarly, if weha@onstruct a simulatofim with inputs
1", Per, q, h(P,.r, q) so that the distributionsq, P, f(q, P)) and(q, P, Sim(1"™, P.,,q, h(P..,q))) are sta-
tistically close, Bob's privacy will follow by that obimReduce and the secure circuit of step 5.

We define the hint functio(P.,, q) to output the nearest multiple af** to Pr[&;]. In the analysis
we may assume thatim knowsPr[&;| exactly, since its output distribution in this case will hatistically
close to its real output distribution.

Sim (1", Per, ¢, Pr[&1]):

1. SetB = O(n'/3).

2. With probabiityPr[&; ], output a random element &f., or output( if P, = 0.
3. Else with probabilityl — ("‘}5”') (g)_l, output a random element &.,.,

4. Else output a random elementiy..

Let X denote the output o§im (1", P.,, ¢, Pr[&]). It suffices to show that for eaghc P,
| Pr[f(q, P) = p] — Pr[X = p]| = 27%K),

since then we havgPr[f(q, P) = 0] — Pr[X = 0]| = 2-%(*), Using the independence &, &;,G;, and
Lemmas 12, 13, we bouriélr[f (¢, P) = p] as follows

Pr[f(q, P) = p] = Pr[&1, f(q, P) = p] + Pr[=&1, f(q, P) = p]
Pri&y] Pr(f(q, P) = p| &261] £ 27 + Pr[-& | Pr[F| Pr(f(q, P) = p | F, ~&1]

[
[
+ Pr[=&]Pr[=F|Pr[f(q,P) =p | ~F,—~&]
= Prl&]|P|6(p € Py) £ 270k ) + Pr[=&] Pr[F]|P., |
+  Pr[=&] Pr[~F] Pr(Gi] Pr([f(q, P) = p | G1Go=F & ] + 27 W)
+  Pr[=&] Pr[~F] Pr[~Gi] Pr[f(q, P) = p | ~G1~F~&1]
= Pr[&]|P| 7 6(p € P.) + Pr[=& | Pr[F]| Py |~ + Pr[=&1] Pr[~F] Pr[G1]| Py | 10(p € Py,)
+ Pr[=&] Pr[~F] Pr[-Gi] Pr(f(q, P) = p | ~&1-F~G] + 27 2F).

On the other hand, sinder[F] = 1 — ("~ 1F]) (g)_l, we have

Pr[X = p| = Pr[€1]|P| " 3(p € Py) + P[] Pr[F]|Por| ™" + Pr[~&1] Pr[~F]| Py | ~'6(p € Py,
so that

| Pr[f(q, P) = p] — Pr[X = p|| < Pr[~&] Pr[~F]| Pr[~Gi] Pr[f(q, P) = p | ~E1~F~Gy] + 274H),

If |Py.| < B, Pr[=&] = 27®) If |P..| > n?/3, Pr[-F] = 27K), OtherwiseB < |Py,| < |P.,| < n?/?,
and as shown for correctned;[~G;] = 2~%*), which shows Pr[f(q, P) = p| — Pr[X = p]| = 24k,

12
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A Cryptographic Tools

We write neg(k, n) to denote an arbitrary negligible function kfn, that is a function which shrinks faster
than any inverse polynomial im, k.

14



A.1 Homomorphic Encryption

An encryption schemd; : (G1,+) — (Ga, -) is homomorphic if for allz, b € G1, E(a+b) = E(a)-E(b).
For more background on this primitive see, for example, 219,

We make use of the Paillier homomorphic encryption scher@gifBsome of our protocols and so we
briefly repeat it here:

1. Initialize: Choose two primeg; andg and setN = p - g. Let A = lem(p — 1,q — 1). Let the public
key PK = (N, g) where the order of is a multiple of N. Let the secret key§ K = \.

2. Encrypt: Given a messagé/ € Zy, choose a random value € Z3,. The encryption of\/ is,
E(M) = gM2NmodN?2.

3. Decrypt: Let L(u) = (“&1), whereu is congruent td modulo N.To recoverM from E(M) calcu-

late, %mod N.

In [30] it's shown that the Paillier encryption scheme’s semic security is equivalent to the Decisional
Composite Residuosity Assumption. The following shows aorarphy:

E(My) - E(M3) = (¢M 21N modN?) - (M2 modN?) = g™+ M2(120)N modN? = E(M; + My).

A.2 Oblivious Transfer and SPIR

Oblivious transfer is equivalent to the notion of symmetilicprivate information retrieval (SPIR), where
the latter usually refers to communication-efficient inmpéntations of the former. SPIR was introduced
in [16]. With each invocation of a SPIR protocol a user leagractly one bit of a binary database while
giving the server no information about which bit was leatri@@ rely on single-server SPIR schemes in our
protocols. Such schemes necessarily offer computaticaihler than unconditional, security [9]. Applying
the transformation of [29] to the PIR scheme of [6] give SPtRstructions withO(n) server work and
O(1) communication.

One issue is that in some of our schemes, we actually perfdrmar@ecordsrather than on bits. Itis a
simple matter to convert a binary OT scheme into an OT schemmeamrds by running invocations of the
binary scheme in parallel, wheres the record size. This gives us a 1-roufiti;) communication(nr)
server work OT protocol on records of size The dependence ancan be improved using techniques of

(8].
A.3 Secure Function Evaluation

In [18, 32] it is shown how two parties holdings inputsandy can privately evaluate any circuit with
communicatiorO(k(|C| + |z| + |y|)), wherek is a security parameter. In [5] it is shown how to do this in
one round for the semi-honest case we consider. The timelegitypis the same as the communication.
We use such protocols as black boxes in our protocols.

B Private Near Neighbor and All-Near Neighbors

B.1 Private near neighbor for /, and Hamming distance

Alice hasq < [U]%, and Bob a set of pointB = py, ..., p, in [U]%. Alice should output argmird _; [pi,; —
qj|*. The protocol is easily modified to return tpgrealizing the minimum. We assume a semantically
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secure homomorphic encryption schefeuch as Paillier encryption (see appendix A), that the ngessa
domain is isomorphic t@.,, for somem, and thatn is large enough so that arithmetic is actually o¥er

Exact-¢»(q, P):

1. Alice generate$PK, SK) for E and send K, E(q1), ..., E(qq) to Bob
2. For alli, Bob computes (by himself; = E({q, p;)) andv; = ||p;||
3. A secure circuit with inputg, SK, {z;};, and{v; }; computes

e (q,pi) = Dgk(z;) forall i
e Return argmin(v; — 2(q, p;))

Using the homomorphy of’ and theO(n)-sized circuit in step 3, we make the communicatiofm + d)
rather than th&(nd) of a generic SFE. The correctness is easy to verify. Usingréime 1 and the semantic
security ofZ, privacy is just as easy to show. We note a natural extensiéndistances: Alice sends

{E(qh)}7 {E(Qi1Qi2)}’ LR {E(qh e qip71)}7
whereiy, ... ,i,_1 range over all ofid]. The communication i€ (n + d?~'), which is interesting for
d = O(nl/(p—Z))_
B.2 Private near neighbor for generic distance functions

Now Alice wantsmin; f(q, p;) for an arbitraryf (a, b) = Zle fi(a;, b;). We use homomorphic encryption
to implement polynomial evaluation as in [13].

Exact-Generidg, P):

1. Alice creates! degreetU — 1) polynomialss; by interpolating froms;(u) = f;(p;,u) forallu € [U]
2. Alice generatesPK, SK) for E and sends the encrypted coefficients of thand PK to Bob

3. Bob computes (by himself) = E(3_; s;(pi,;)) = E(f (g, pi)) for all 4

4. A secure circuit with input§ K, { z; }; outputs argmipDs k (z;)

The proofs are similar to those of the previous section aedanitted. The communication hereﬁ’$dU +
n), improving theO(ndU) communication of [10]. A special case of the result in secBo4 improves this
to O(d? + n) in casef (a, b) is Hamming distance and > d.

B.3 Private near neighbor forn =1

We now show how Alice, holding € {0,1}¢, and Bob, holdingp € {0,1}¢ for some primed, can
privately computeA(q, p) with communicationd[log d| + O(k). This extends to solve the private near
neighbor problem for, = 1 with communicatior2d[log d] + O(k). The communication outperforms the
©(dk) communication of SFE.
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We assume both parties have access to the same uniformlgmastdng. We need a homomorphic en-
cryption whose message domain can be decoupled from itsitygearameter. Recall in Paillier encryption
that if encryptions aré bits long, messages are abady® bits long. For low communication we want the
domain to be very small, that is, roughlyelements instead @f/2. To do this, we use a Benaloh encryption
schemeF [4], which is homomorphic and semantically secure assurtiiagrime residuousity assumption.
The message domaing; while encryptions are of size.

Exact-1(q, p):

1. Alice generat¢ PK, SK) for E, and send$’ K to Bob

Both parties interpretthe common random string asd encryptionsE|(z;)

Alice obtains the; by decrypting, and sends Bab= ¢; — z; mod d for all i

Bob computes (by himselfj(z; + ¢;) = E(g;) and E(XL, (pi + (—1)P"q:)) = E(A(p, q))
Bob rerandomizes thB(A(p, q))

Alice outputsDsk (E(A(p, q))) = Az, y)

© 0k wN

The correctness of the protocol is straightforward. The @perty for security is that iR is uniformly
random, then for any’K, SK, the E(z,), ..., E(zq) are independent uniformly random encryptions of
random elements, ..., z; € [d].

To see complexityl[log d| +o(d), the list ofs;'s that Alice sends has lengthlog d|. Also, E(A(q,p))
has lengtht, the security parameter, which can be seftfor anye > 0. Similar techniques givé + O (k)
communication for private inner product, using GM-encrypi19].

B.4 Private All-Near Neighbors

We consider the setting of [13], in which Alice and Bob h&ye= q1,...,q, € [U]?andP = py,...,p, €
[U]¢ respectively, and Alice wants all; for which A(g;, p;) <t < d for somei € [n] and parametet. We
assume a semantically secure homomorphic encryption seReand OT withpolylog(n) communication.
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All-Near (Q, P):

1. The parties randomly permute their points
2. Alice generates parametéiBK, SK) of E and sends Bol K
3. Forl=1,...,k,

e The parties choose a pairwise independent hash funktidt/] — [2d]

Fori € [n], Alice computest; = h(z;), whereh is applied coordinate-wise

Replace each entryof eachz; with a length2d unit vector withrth bit 1 iff z; ; = r

Bob formsg; similarly

Alice sends the coordinate-wise encryption of each vecoeéch coordinate of eadh
e Bob computes (by himself); ;; = E(A(z;,7;)) foralli,j € [n]

4. A secure circuit with inputS K, Z; ; ; computes
[ ) Zi,j = minl DSK(Zi,j,l)
e OutputZ = {j | Jis.t. Z; ; > d — t} to Alice

5. Perform OT on records of sizkfor Alice to retrieveY = {y; | j € Z}

Theorem 14 The above is a private all-near neighbors protocol with camivationO(nd? + n?).

Proof: We first argue correctness, which means sholing™ = {y; | Ji s.t. A(g;, p;) < t}] = 1-279%%),
We show fori, j € [n], Pr[A(qi, pj) = n— Z; ;] = 1 —27%k), By a union bound, for any,

Pr[D(Z; ;) =n — Algi,pj)] > T/2T = 1/2.

ButD(Z; ;) > n—A(gi, pj) Since hashing only increases the number of agreements, Fusin; D(Z; ;) >
n — A(gi,p;)] < 279, so thatZ; ; = n — A(g;, p;) with the required probability.

For privacy, since the output assumes a specific value withanility 1 — 2~%(*) we just need to show
each party’s view is simulatable. As usual, we replace the &kt OT by oracles. Alice’s output from the
SFE is a list of random indices, and her output from the OT rspnetocol output. Hence, her simulator
just outputs a list ofY'| random indices. Bob’s simulator choosesandom hash functions arti?nk
encryptions of) underFE. By the semantic security df and theorem 1, the protocol is secure.

To see that the communication@¥nd? 4 n?), in each oft executions, Alice send3(n.d?) encryptions.
Bob then input$)(n?) encryptions to the SFE, which can be implemented with ah:iocflsizeé(n2). Step
5 of the protocol can be done witﬁ(nd) communication using the best OT schemes (see [8,6]). H

Remark 15 A simple modification of the protocol gives the promige@i? + n) communication for Ham-
ming distance in the setting of [10] for any.

Remark 16 The protocol can be adapted to gi@éd + n) communication for set difference. In this case
Alice has a single vectag. The idea is that Alice, Bob can hash their entries dowdoalues using

h as in the protocol, and now Alice can homomorphically encepd send the coefficients of a degree-
(2d — 1) polynomialpol, wherepol is such thapol(t) = 0if t € {r | Jis.t.r = h(g;)} andpol(t) = 1
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otherwise. Bob can evaluag! on each (hashed) coordinate of eaghand useE’s homomorphy to
computeE(f(G,p;)), f denoting set difference. We then repeat thismes over different: and take a
maximum in the SFE. Since coordinate order is immateriasémifference, we achieveé(n + d) instead
of O(n + d?) communication.

Although we have improved the communication of [13], one mvayry about the work the parties need to
perform. We have the following optimization:

Theorem 17 The protocol can be implemented with total wérkn2d?c—*), wherec ~ 2.376 is the expo-
nent of matrix multiplication.

Proof: The work is dominated by step 3, in which Bob needs to computeyptions of all pairwise
Hamming distances. To reduce the work, we think of what Adierds as an encrypteck > matrix M, and
that Bob has @ x n matrix M, and needs an encryptéd; A>. It is shown in [3] that even the best known
matrix multiplication algorithm still works if one of the rtr&ces is homomorphically encrypted. Thus Bob
can perform(n/d?)? fast multiplications ofi?> x d? matrices, requiring)((n/d?)?(d?)") = O(n?d*>—*)
work, which improves upon th@(n2d?) work of a naive implementation. |

C Reducing the dependence od for private c-approximate NN

Here we sketch how the communication of the protocol of eacti3 can be reduced @(n'/2+polylog(d))
if Alice just wants to privately learn some coordinate of soatement off,.,.

Proof Sketch: The idea is to perform an approximation to the Hamming distanstead of using the
E(A(pi, q)) in the current protocol (see, e.imReduce, and the following remark). The approximation
we use is that given in [24], namely, the parties will agreerupandom matricesl; for some subset of

in [n], and from theA;p; and A;q will determine (1 + ¢) approximations to thé\(p;, ¢) with probability

1 —27%. We don’t need private approximations since the partiesnati learn these values, but rather, they
will input the A;p;, A;q into a secure circuit which makes decisions based on thggexmations.

More precisely, Bob sampleB of his vectorsp;, and in parallel agrees upds matricesA; and feeds
the A;p; into a secure circuit. Alice feeds in thgq. Letc > 1+ 8¢. The circuit looks for an approximation
of at mostr(1 + 6¢). If such a value exists, the circuit gives Alice the corregping index. Observe that
if [Py (144¢)] > /1, then with probabilityl — 27k an index is returned to an element/,., and that this
distribution is simulatable. So assunte.; 4| < v/n.

The parties proceed by performing a varianbahReduce(r(r, r(1+44¢)), B, ¢, P), with the important
difference being that the output no longer consists of shafrthe £(A(p;, q)). Instead, for each entdy(v),
Bob pretends he is running the approximation of [24] withcAls pointg. That is, the parties agree @h
different matrices4; and Bob computes!;p for eachp € L(v). A secure circuit obtains these products,
and computes the approximations. It outputs an index to doranelement with approximation at most
r(1 + 2¢). If P, is nonempty, such an index will exist with probability— 2~*. Also, the probability that
an index to an element outside Bf(; 4 is returned is less tha2r *, and so the distribution of the index
returned is simulatable.

Finally, given the index of some element &),., the parties perform OT and Alice obtains the desired
coordinate, The communication is n@(y/7). O
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D Private c-approximate NN based on locality sensitive hashing

We give an alternative privateapproximate NN protocol, with slightly more communicatithan that in
section 4.2, but less work (though still polynomial). It iased on locality sensitive hashing (LSH) [23].
The fact we need is that there is a family of functighs {0,1}% — {0,1}°() such that each € G has
description size) (1), andg is such that for alp, ¢ € {0,1}¢,

Prlg(p) =9(9) =© (n—A(pvq)/cr>

Recall that Alice has a point € {0,1}¢ and Bob has: points P C {0,1}¢. For correctness, Alice
should learn a point of,,. provided P, # (). For privacy, her view should be simulatable given oRly.

Our protocol is similar to that in section 4.2. Whih, | is large, one can run a secure function evaluation
with Alice’s pointq as input, together with a random sampleof roughly ak/|P...| fraction of Bob’s points
P. The circuit returns a random point & N P, which is non-empty with probabiity — 2-2*), The
communication ig)(n/|Pe,|).

On the other hand, wheP.,| is small, if Alice and Bob exchange functiopsindependentlyO(n /<)
times, then with overwhelming probabili, C U;S;, wheresS; denotes the subset of Bob’s poiptsvith
g:(p) = gi(q). Using a secure ciruit with ROM, we can obtain these $gtsind output a random point of
P,. The communication i€ (n'/¢| P,.|).

Our protocol balances these approaches to acliiwe/>*+1/(2)) communication.

There are a few technicalities dodged by this intuitions&ieven though the parties exchar@e:!/¢)
different g;, and can thus guarantee that eads in someS; with probability 1 — 2=%*) it may be that
whenevenp € S;, many points fromP \ P, also land inS;, so thatS; is very large. Even though we only
expect| P \ P..|O(1/n) = O(1) points fromP \ P., in S;, sincePr[p € S;] = ©(n~1/°) is small,p may
only be inS; whenS; is large. Because the size of tlig affects the communication of our protocol, we
cannot always afford for the ROM to receive the whSjgsometimes we will truncate it). However, in the
analysis, we show that the averasjeis small, and this will be enough to get by with low communiiat

Second, we need to extend the notion of a lookup gate givegciios 2. Instead of just mapping inputs
(i,7) to outputR;[j], thejth entry in theith party’'s ROM, we also allowy to be a key, so that the output is
the record inR; keyed byj. This can be done efficiently using [8], and Theorem 3 is ungkd, assuming
the length of the keys i©(1).
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LSH (g, P):

1. SetB = O(n!/2t1/29) andC = O(n/).
2. Bob finds a random subsgt of P of size B .
3. Fori =1tok,

(a) Alice and Bob agree upati randomg; ; € G.

(b) Bob creates a ROM with entriesL(v) containing the pointg for which g(p) = v.

(c) A secure circuit with ROM. performs the following computation on inplf, {g; ; }),
e Computey; ; = g; ;(¢) for eachy.

e Lookup theL(v; ;) one by one for the different; ; until the communication ex
ceedsiB. Ifitis less, make dummy queries so that it is exadtly.

e Output shares}, S? so thatS] @ S? is the (possibly truncated) set of sét&; ).

4. A secure circuit with input$”’, S}, 52

e Compute the sef; = S} & S? = U, L(v;) for all i.

e Let f(q, P) be random inP.. N P’ if it is non-empty.

e Else letf(q, P) be random inP, N U;S; if it is non-empty, else sef(q, P) = 0.
e Output(f(q, P),null).

The communication i@(dB). By using homomorphic encryption, one can reduce the degreredond, as
per remark 10. Lef be the event thaP, C U;S;, and letF be the event thaP,.. N P’ is non-empty.

Correctness: SupposeP, # (). The probabilitys of correctness is just the probability we don’t output
(. Thuss > Pr[F] + Pr[~F] Pr[f(q, P) # 0 | =F].

Case|P,,.| > n!/2-1/(9): For sufficiently largeB, we haves > Pr[F] = 1 — 2~ %*),

Case|P..| < n'/?=1/(): It is enough to showPr[f(q, P) # 0 | -F] = 1 —2=%%), Fixi. Put

Y =3, |L(vi;)|, where|L(v; ;)| denotes the number of points I{v; ;). The expected number of points
in P\ P.. that are inL(v; ;) is at mostn - O(1/n) = O(1). Since|P..| < n'/27Y/2) E[L(v; ;)] <
n!/2=1/(2) 1 O(1). ThusE[Y] < B/3 for large enoughB, soPr[Y > B] < 1/3 by Markov's inequality.
Thus, with probabilityl — 2—2(%) for at least half of the, .S; is not truncated in step 3c. Moreover, for large
enoughB, anyi, and anyp € P, Pr[p € S;] = 1 — 2~k for large enoughC. By a few union bounds
then,Pr[P. C U;S;] = Pr[f] = 1 — 27%(*), Thus,

Pr(f(q, P) # 0 | =F] > Pr[f(q. P) # 0, & | ~F] = Pr[f(q,P) #0 | €, ~F] Pr[e] = 1 — 27"

Privacy: Note that Bob gets no output, so Alice’s privacy follows fridmat of the secure circuit protocol. We
construct a simulato$im (1™, P.,, ¢) so that the distribution§;, P, f(q, P)) and{(q, P, Sim (1™, P,,,q)) are
statistically close. Bob’s privacy then follows by the camsjtion with the secure circuit protocol.
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Sim (1™, P,,., q):

1. SetB = O(n!/?+1/(29)),
2. With probabiity1 — ("~}F=r) (%) ™", output a random element &,
3. Else output a random elementef.

Let X denote the output ofim(1", P..,q). It suffices to show that for each € P, |Pr[f(q,P) =
p] — Pr[X = p]| = 2-%®), since this also implieSPr[f (¢, P) = 0] — Pr[X = (]| = 2~ %(*), We have

Pr(f(¢,P)=p| = Pr[f(q,P)=p,F|+Pr[f(q,P)=p,~F|
= Pr[F]|Pu|"" +Pr[f(q, P) = p,~ 7]

Note thatPr[F] = 1 — ("~}F=rl) (1) ™", Therefore,
| Pr[f(q, P) = p] = Pr[X = pl| = Pr[=F]| Pr[f(q,P) = p | ~F] = 6(p € P)| | '],

If |P..| > n'/271/(2) this is2~%*), since therPr[-F] = 2~%*), Otherwise|P.,.| < n'/2-1/(2¢) ‘and as
shown in the proof of correctness, we hag€] = Pr[P, C U;S;] = 1 — 2~%k), Thus

Pr(f(q, P) =p | ~F| = Pr[f(q,P) = p| & ~F]Pr[€] £ 2% = §(p € P,)|P,| 7 £ 279K,

which completes the proof.
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