## Sketching as a Tool for Numerical Linear Algebra All Lectures

David Woodruff
IBM Almaden

## Massive data sets

## Examples

- Internet traffic logs
- Financial data
- etc.


## Algorithms

- Want nearly linear time or less
- Usually at the cost of a randomized approximation


## Regression analysis

## Regression

- Statistical method to study dependencies between variables in the presence of noise.


## Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.


## Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.
- Ohm's law V = R • I


## Example Regression

## Example



## Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example Regression
Example

- Ohm's law V = R • I
- Find linear function that best fits the data



## Regression analysis

## Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.


## Standard Setting

- One measured variable b
- A set of predictor variables $a_{1}, \ldots, a_{d}$
- Assumption:

$$
b=x_{0}+a_{1} x_{1}+\ldots+a_{d} x_{d}+\varepsilon
$$

- $\varepsilon$ is assumed to be noise and the $x_{i}$ are model parameters we want to learn
- Can assume $x_{0}=0$
- Now consider $n$ observations of $b$


## Regression analysis

Matrix form
Input: $n \times d$-matrix $A$ and a vector $b=\left(b_{1}, \ldots, b_{n}\right)$
n is the number of observations; d is the number of predictor variables

Output: $x^{*}$ so that $A x^{*}$ and $b$ are close

- Consider the over-constrained case, when $\mathrm{n} \gg \mathrm{d}$
- Can assume that A has full column rank


## Regression analysis

## Least Squares Method

- Find $x^{*}$ that minimizes $|A x-b|_{2}{ }^{2}=\Sigma\left(b_{i}-\left\langle A_{i^{*}}, x\right\rangle\right)^{2}$
- $A_{i^{*}}$ is i-th row of $A$
- Certain desirable statistical properties


## Regression analysis

## Geometry of regression

- We want to find an $x$ that minimizes $|A x-b|_{2}$
- The product $A x$ can be written as

$$
A_{*_{1}} x_{1}+A_{*_{2}} x_{2}+\ldots+A_{*_{d}} x_{d}
$$

where $A_{* i}$ is the $i$-th column of $A$

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of $A$ nearest to $b$ in $I_{2}$-norm


## Regression analysis

## Solving least squares regression via the normal equations

- How to find the solution $x$ to $\min _{x}|A x-b|_{2}$ ?
- Equivalent problem: $\min _{x}|A x-b|_{2}^{2}$
- Write $b=A x^{\prime}+b^{\prime}$, where $b^{\prime}$ orthogonal to columns of $A$
- Cost is $\left|A\left(x-x^{\prime}\right)\right|_{2}{ }^{2}+\left|b^{\prime}\right|_{2}^{2}$ by Pythagorean theorem
- Optimal solution $x$ if and only if $A^{\top}(A x-b)=A^{\top}\left(A x-A x^{\prime}\right)=0$
- Normal Equation: $A^{\top} A x=A^{\top} b$ for any optimal $x$
- $x=\left(A^{\top} A\right)^{-1} A^{\top} b$
- If the columns of A are not linearly independent, the MoorePenrose pseudoinverse gives a minimum norm solution $x$


## Moore-Penrose Pseudoinverse

## Singular Value Decomposition (SVD)

Any matrix $A=U \cdot \Sigma \cdot V^{T}$

- U has orthonormal columns
- $\Sigma$ is diagonal with non-increasing non-negative entries down the diagonal
- $\mathrm{V}^{\mathrm{T}}$ has orthonormal rows
- Pseudoinverse $A^{-}=\mathrm{V} \Sigma^{-1} \mathrm{U}^{\mathrm{T}}$
- Where $\Sigma^{-1}$ is a diagonal matrix with i-th diagonal entry equal to $1 / \Sigma_{i i}$ if $\Sigma_{i i}>0$ and is 0 otherwise
- $\min _{x}|A x-b|_{2}^{2}$ not unique when columns of $A$ are linearly independent, but $x=A^{-b} b$ has minimum norm


## Moore-Penrose Pseudoinverse

- Any optimal solution $x$ has the form $\mathrm{A}^{-} \mathrm{b}+$
$\left(I-V^{\prime} V^{\prime T}\right) \mathrm{z}$, where $\mathrm{V}^{\prime}$ corresponds to the rows i of $\mathrm{V}^{\mathrm{T}}$ for which $\Sigma_{i, i}>0$
- Why?
- Because $A\left(I-V^{\prime} V^{\prime T}\right) z=0$, so $A^{-} b+\left(I-V^{\prime} V^{\prime T}\right) z$ is a solution. This is a d-rank(A) dimensional affine space so it spans all optimal solutions
- Since $A^{-} b$ is in column span of $V^{\prime}$, by

Pythagorean theorem, $\left|A^{-} \mathrm{b}+\left(\mathrm{I}-\mathrm{V}^{\prime} \mathrm{V}^{\prime} \mathrm{T}\right) \mathrm{z}\right|_{2}^{2}=$ $\left|A^{-} \mathrm{b}\right|_{2}^{2}+\left|\left(\mathrm{I}-\mathrm{V}^{\prime} \mathrm{V}^{\prime T}\right) \mathrm{z}\right|_{2}^{2} \geq\left|\mathrm{A}^{-} \mathrm{b}\right|_{2}^{2}$

## Time Complexity

## Solving least squares regression via the normal equations

- Need to compute $x=A-b$
- Naively this takes nd ${ }^{2}$ time
- Can do $\mathrm{nd}^{1.376}$ using fast matrix multiplication
- But we want much better running time!


## Sketching to solve least squares regression

- How to find an approximate solution $x$ to $\min _{x}|A x-b|_{2}$ ?
- Goal: output x' for which $\left|A x^{‘}-b\right|_{2} \leq(1+\varepsilon) \min _{x}|A x-b|_{2}$ with high probability
- Draw S from a $\mathrm{k} \times \mathrm{n}$ random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution $x^{4}$ to $\min _{x^{x}}|(S A) x-(S b)|_{2}$
- $x^{\prime}=(S A)-S b$


## How to choose the right sketching matrix S?

- Recall: output the solution $x^{\prime}$ to $\min _{x^{\prime}}|(S A) x-(S b)|_{2}$
- Lots of matrices work
- $S$ is $d / \varepsilon^{2} \times n$ matrix of i.i.d. Normal random variables
- To see why this works, we introduce the notion of a subspace embedding



## Subspace Embeddings

- Let $\mathrm{k}=\mathrm{O}\left(\mathrm{d} / \varepsilon^{2}\right)$
- Let $S$ be a $k x n$ matrix of i.i.d. normal $N(0,1 / k)$ random variables
- For any fixed d-dimensional subspace, i.e., the column space of an $n x d$ matrix $A$
- W.h.p., for all $x$ in $R^{d},|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$
- Entire column space of $A$ is preserved


## Subspace Embeddings - A Proof

- Want to show $|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$ for all $x$
- Can assume columns of A are orthonormal (since we prove this for all $x$ )
- Claim: SA is a $\mathrm{k} x \mathrm{~d}$ matrix of i.i.d. $\mathrm{N}(0,1 / \mathrm{k})$ random variables
- First property: for two independent random variables $X$ and $Y$, with $X$ drawn from $N\left(0, a^{2}\right)$ and $Y$ drawn from $N\left(0, b^{2}\right)$, we have $X+Y$ is drawn from $N\left(0, a^{2}+b^{2}\right)$


## $\mathrm{X}+\mathrm{Y}$ is drawn from $\mathrm{N}\left(0, a^{2}+b^{2}\right)$

- Probability density function $f_{Z}$ of $Z=X+Y$ is convolution of probability density functions $f_{X}$ and $f_{Y}$
- $f_{Z}(z)=\int f_{Y}(z-x) f_{X}(x) d x$
- $f_{x}(x)=\frac{1}{a(2 \pi)^{5}} e^{-x^{2} / 2 a^{2}} \quad, f_{y}(y)=\frac{1}{b(2 \pi)^{5}} e^{-x^{2} / 2 b^{2}}$
- $f_{Z}(z)=\int \frac{1}{a(2 \pi)^{5}} e^{-(z-x)^{2} / 2 a^{2}} \frac{1}{b(2 \pi)^{5}} e^{-x^{2} / 2 b^{2}} d x$
$=\frac{1}{(2 \pi)^{.5}\left(a^{2}+b^{2}\right)^{5}} e^{-z^{2} / 2\left(a^{2}+b^{2}\right) \int \frac{\left(a^{2}+b^{2}\right)^{5}}{(2 \pi)^{5} a b}} e^{-\frac{\left(x-\frac{b^{2} z}{a^{2}+b^{2}}\right)^{2}}{2\left(\frac{(a b)^{2}}{a^{2}+b^{2}}\right)}} d x$


## $\mathrm{X}+\mathrm{Y}$ is drawn from $\mathrm{N}\left(0, a^{2}+b^{2}\right)$

$$
\text { Calculation: } e^{-\frac{(z-x)^{2}}{2 a^{2}}-\frac{x^{2}}{2 b^{2}}}=e^{-\frac{z^{2}}{2\left(a^{2}+b^{2}\right)}-\frac{\left(x-\frac{b^{2} z}{a^{2}+b^{2}}\right)^{2}}{2\left(\frac{(a b)^{2}}{a^{2}+b^{2}}\right)}}
$$



## Rotational Invariance

- Second property: if $u, v$ are vectors with $<u, v>=0$, then <g,u> and <g,v> are independent, where $g$ is a vector of i.i.d. $N(0,1 / k)$ random variables
- Why?
- If $g$ is an $n$-dimensional vector of i.i.d. $N(0,1)$ random variables, and $R$ is a fixed matrix, then the probability density function of Rg is

$$
f(x)=\frac{1}{\operatorname{det}\left(\mathrm{RR}^{\mathrm{T}}\right)(2 \pi)^{d / 2}} e^{-\frac{x^{T}\left(\mathrm{RR}^{\mathrm{T}}\right)^{-1} x}{2}}
$$

$-R^{T}$ is the covariance matrix

- For a rotation matrix R , the distribution of Rg and of $g$ are the same


## Orthogonal Implies Independent

- Want to show: if $u, v$ are vectors with $<u, v>=0$, then $<g, u>$ and $<g, v>$ are independent, where $g$ is a vector of i.i.d. $N(0,1 / k)$ random variables
- Choose a rotation R which sends u to $\alpha_{\mathrm{e}_{1}}$, and sends v to $\beta \mathrm{e}_{2}$
- $\left.\langle\mathrm{g}, \mathrm{u}\rangle=<\mathrm{gR}, \mathrm{R}^{\mathrm{T}} \mathrm{u}\right\rangle=<\mathrm{h}, \alpha \mathrm{e}_{1}>=\alpha \mathrm{h}_{1}$
- $\left.\left.\langle\mathrm{g}, \mathrm{v}\rangle=<\mathrm{gR}, \mathrm{R}^{\mathrm{T}} \mathrm{v}\right\rangle=<\mathrm{h}, \beta \mathrm{e}_{2}\right\rangle=\beta \mathrm{h}_{2}$ where $h$ is a vector of i.i.d. $N(0,1 / k)$ random variables
- Then $\mathrm{h}_{1}$ and $\mathrm{h}_{2}$ are independent by definition


## Where were we?

- Claim: SA is a $k x d$ matrix of i.i.d. $N(0,1 / k)$ random variables
- Proof: The rows of SA are independent
- Each row is: $<\mathrm{g}, \mathrm{A}_{1}>,<\mathrm{g}, \mathrm{A}_{2}>, \ldots,<\mathrm{g}, \mathrm{A}_{\mathrm{d}}>$
- First property implies the entries in each row are $N(0,1 / k)$ since the columns $A_{i}$ have unit norm
- Since the columns $A_{i}$ are orthonormal, the entries in a row are independent by our second property


## Back to Subspace Embeddings

- Want to show $|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$ for all $x$
- Can assume columns of A are orthonormal
- Can also assume $x$ is a unit vector
- SA is a $k x d$ matrix of i.i.d. $N(0,1 / k)$ random variables
- Consider any fixed unit vector $x \in R^{d}$
- $|S A x|_{2}^{2}=\sum_{i \in[k]}<g_{i}, x>^{2}$, where $g_{i}$ is $i$-th row of SA
- Each $<\mathrm{g}_{\mathrm{i}}, \mathrm{x}>^{2}$ is distributed as $\mathrm{N}\left(0, \frac{1}{\mathrm{k}}\right)^{2}$
- $\mathrm{E}\left[<\mathrm{g}_{\mathrm{i}}, \mathrm{x}>^{2}\right]=1 / k$, and so $\mathrm{E}\left[|S A x|_{2}^{2}\right]=1$

How concentrated is $|S A x|_{2}^{2}$ about its expectation?

## Johnson-Lindenstrauss Theorem

- Suppose $h_{1}, \ldots, h_{k}$ are i.i.d. $N(0,1)$ random variables
- Then $\mathrm{G}=\sum_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}^{2}$ is a $\chi^{2}$-random variable
- Apply known tail bounds to G :
- (Upper) $\operatorname{Pr}\left[\mathrm{G} \geq \mathrm{k}+2(\mathrm{kx})^{5}+2 \mathrm{x}\right] \leq \mathrm{e}^{-\mathrm{x}}$
- (Lower) $\operatorname{Pr}\left[\mathrm{G} \leq \mathrm{k}-2(\mathrm{kx})^{5}\right] \leq \mathrm{e}^{-\mathrm{x}}$
- If $x=\frac{\epsilon^{2} k}{16}$, then $\operatorname{Pr}[G \in k(1 \pm \epsilon)] \geq 1-2 e^{-\epsilon^{2} k / 16}$
- If $\mathrm{k}=\Theta\left(\epsilon^{-2} \log \left(\frac{1}{\delta}\right)\right)$, this probability is $1-\delta$
- $\operatorname{Pr}\left[|S A x|_{2}^{2} \in(1 \pm \epsilon)\right] \geq 1-2^{-\Theta(d)}$

This only holds for a fixed $x$, how to argue for all $x$ ?

## Net for Sphere

- Consider the sphere $\mathrm{S}^{\mathrm{d}-1}$
- Subset $N$ is a $\gamma$-net if for all $x \in S^{d-1}$, there is a $y \in N$, such that $|x-y|_{2} \leq \gamma$
- Greedy construction of N
- While there is a point $x \in S^{d-1}$ of distance larger than $\gamma$ from every point in N , include x in N
- The sphere of radius $\gamma / 2$ around every point in N is contained in the sphere of radius $1+\gamma / 2$ around $0^{d}$
- Further, all such spheres are disjoint
- Ratio of volume of d-dimensional sphere of radius $1+\gamma / 2$ to dimensional sphere of radius $\gamma$ is $(1+\gamma / 2)^{\mathrm{d}} /(\gamma / 2)^{\mathrm{d}}$, so $|\mathrm{N}| \leq(1+\gamma / 2)^{\mathrm{d}} /(\gamma / 2)^{\mathrm{d}}$


## Net for Subspace

- Let $M=\{A x \mid x$ in $N\}$, so $|M| \leq(1+\gamma / 2)^{d} /(\gamma / 2)^{d}$
- Claim: For every x in $\mathrm{S}^{\mathrm{d}-1}$, there is a y in M for which $|A x-y|_{2} \leq \gamma$
- Proof: Let $x^{\prime}$ in $S^{d-1}$ be such that $\left|x-x^{\prime}\right|_{2} \leq \gamma$ Then $\left|A x-A x^{\prime}\right|_{2}=\left|x-x^{\prime}\right|_{2} \leq \gamma$, using that the columns of $A$ are orthonormal. Set $y=A x^{\prime}$


## Net Argument

- For a fixed unit $x, \operatorname{Pr}\left[|S A x|_{2}^{2} \in(1 \pm \epsilon)\right] \geq 1-2^{-\Theta(d)}$
- For a fixed pair of unit $x, x^{\prime},|S A x|_{2}^{2},\left|S A x^{\prime}\right|_{2}^{2},\left|S A\left(x-x^{\prime}\right)\right|_{2}^{2}$ are all $1 \pm \epsilon$ with probability $1-2^{-\Theta(d)}$
- $\left|S A\left(x-x^{\prime}\right)\right|_{2}^{2}=|S A x|_{2}^{2}+\left|S A x^{\prime}\right|_{2}^{2}-2<S A x, S A x^{\prime}>$
- $\left|A\left(x-x^{\prime}\right)\right|_{2}^{2}=|A x|_{2}^{2}+\left|A x^{\prime}\right|_{2}^{2}-2<A x, A x^{\prime}>$
- So $\operatorname{Pr}\left[<A x, A x^{\prime}>=<S A x, S A x^{\prime}> \pm 0(\epsilon)\right]=1-2^{-\Theta(d)}$
- Choose a $1 / 2$-net $M=\{A x \mid x$ in $N\}$ of size $5^{d}$
- By a union bound, for all pairs y , $\mathrm{y}^{\prime}$ in M ,

$$
<\mathrm{y}, \mathrm{y}^{\prime}>=<\mathrm{Sy}, \mathrm{Sy}^{\prime}> \pm \mathrm{O}(\epsilon)
$$

- Condition on this event
- By linearity, if this holds for $\mathrm{y}, \mathrm{y}^{\prime}$ in M , for $\alpha \mathrm{y}, \beta \mathrm{y}^{\prime}$ we have

$$
<\alpha y, \beta y^{\prime}>=\alpha \beta<S y, S^{\prime}> \pm O(\epsilon \alpha \beta)
$$

## Finishing the Net Argument

- Let $y=A x$ for an arbitrary $x \in S^{d-1}$
- Let $y_{1} \in M$ be such that $\left|y-y_{1}\right|_{2} \leq \gamma$
- Let $\alpha$ be such that $\left|\alpha\left(y-y_{1}\right)\right|_{2}=1$
$-\alpha \geq 1 / \gamma$ (could be infinite)
- Let $y_{2}^{\prime} \in M$ be such that $\left|\alpha\left(y-y_{1}\right)-y_{2}{ }^{\prime}\right|_{2} \leq \gamma$
- Then $\left|y-y_{1}-\frac{y_{2}{ }^{\prime}}{\alpha}\right|_{2} \leq \frac{\gamma}{\alpha} \leq \gamma^{2}$
- Set $y_{2}=\frac{y_{2}^{\prime}}{\alpha}$. Repeat, obtaining $y_{1}, y_{2}, y_{3}, \ldots$ such that for all integers i ,

$$
\left|y-y_{1}-y_{2}-\ldots-y_{i}\right|_{2} \leq \gamma^{i}
$$

- Implies $\left|y_{i}\right|_{2} \leq \gamma^{i-1}+\gamma^{\mathrm{i}} \leq 2 \gamma^{\mathrm{i}-1}$


## Finishing the Net Argument

- Have $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$ such that $\mathrm{y}=\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$ and $\left|\mathrm{y}_{\mathrm{i}}\right|_{2} \leq 2 \gamma^{\mathrm{i}-1}$
- $|S y|_{2}^{2}=\left|S \sum_{i} y_{i}\right|_{2}^{2}$

$$
\begin{aligned}
& =\sum_{\mathrm{i}}\left|S y_{\mathrm{i}}\right|_{2}^{2}+2 \sum_{\mathrm{i}, \mathrm{j}}<S y_{\mathrm{i}}, S y_{\mathrm{j}}> \\
& =\sum_{\mathrm{i}}\left|y_{\mathrm{i}}\right|_{2}^{2}+2 \sum_{\mathrm{i}, \mathrm{j}}<\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}> \pm \mathrm{O}(\epsilon) \sum_{\mathrm{i}, \mathrm{j}}\left|y_{\mathrm{i}}\right|_{2}\left|\mathrm{y}_{\mathrm{j}}\right|_{2} \\
& =\left|\sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right|_{2}^{2} \pm 0(\epsilon) \\
& =|\mathrm{y}|_{2}^{2} \pm \mathrm{O}(\epsilon) \\
& =1 \pm \mathrm{O}(\epsilon)
\end{aligned}
$$

- Since this held for an arbitrary $y=A x$ for unit $x$, by linearity it follows that for all $x,|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}$


## Back to Regression

- We showed that $S$ is a subspace embedding, that is, simultaneously for all $x$,

$$
|S A x|_{2}=(1 \pm \varepsilon)|A x|_{2}
$$

What does this have to do with regression?

## Subspace Embeddings for Regression

- Want $x$ so that $|A x-b|_{2} \leq(1+\varepsilon)$ min $_{y}|A y-b|_{2}$
- Consider subspace $L$ spanned by columns of $A$ together with b
- Then for all y in $\mathrm{L},|\mathrm{Sy}|_{2}=(1 \pm \varepsilon)|y|_{2}$
- Hence, $|S(A x-b)|_{2}=(1 \pm \varepsilon)|A x-b|_{2}$ for all $x$
- Solve $\operatorname{argmin}_{y}|(S A) y-(S b)|_{2}$
- Given SA, Sb, can solve in poly(d/ $\varepsilon$ ) time

Only problem is computing SA takes $O\left(n d^{2}\right)$ time

## How to choose the right sketching matrix S ? [S]

- $S$ is a Subsampled Randomized Hadamard Transform
- $S=P * H^{*} D$
- $D$ is a diagonal matrix with $+1,-1$ on diagonals
- H is the Hadamard transform
- P just chooses a random (small) subset of rows of H*D
- S*A can be computed in O(nd log n) time

Why does it work?

Why does this work?

- We can again assume columns of A are orthonormal
- It suffices to show $|S A x|_{2}^{2}=|P H D A x|_{2}^{2}=1 \pm \epsilon$ for all $x$
- HD is a rotation matrix, so $|\operatorname{HDAx}|_{2}^{2}=|A x|_{2}^{2}=1$ for any $x$
- Notation: let $y=A x$
- Flattening Lemma: For any fixed $y$,

$$
\operatorname{Pr}\left[|\mathrm{HDy}|_{\infty} \geq \mathrm{C} \frac{\log \cdot{ }^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}\right] \leq \frac{\delta}{2 \mathrm{~d}}
$$

## Proving the Flattening Lemma

- Flattening Lemma: $\operatorname{Pr}\left[|\mathrm{HDy}|_{\infty} \geq \mathrm{C} \frac{\log ^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}\right] \leq \frac{\delta}{2 \mathrm{~d}}$
- Let $\mathrm{C}>0$ be a constant. We will show for a fixed i in [ n ],

$$
\operatorname{Pr}\left[\left|(\mathrm{HDy})_{\mathrm{i}}\right| \geq \mathrm{C} \frac{\log ^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}\right] \leq \frac{\delta}{2 \mathrm{nd}}
$$

- If we show this, we can apply a union bound over all i
- $\left|(H D y)_{i}\right|=\sum_{j} H_{i, j} D_{j, j} y_{j}$
- (Azuma-Hoeffding) $\operatorname{Pr}\left[\left|\sum_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}}\right|>\mathrm{t}\right] \leq 2 \mathrm{e}^{-\left(\frac{\mathrm{t}^{2}}{2 \sum_{\mathrm{j}} \beta_{j}^{2}}\right)}$, where $\left|\mathrm{Z}_{\mathrm{j}}\right| \leq \beta_{\mathrm{j}}$ with probability 1
- $\mathrm{Z}_{\mathrm{j}}=\mathrm{H}_{\mathrm{i}, \mathrm{j}} \mathrm{D}_{\mathrm{j}, \mathrm{j}} \mathrm{y}_{\mathrm{j}}$ has 0 mean
- $\left|Z_{j}\right| \leq \frac{\left|y_{j}\right|}{n^{5}}=\beta_{j}$ with probability 1
- $\sum_{j} \beta_{j}^{2}=\frac{1}{n}$
$=\operatorname{Pr}\left[\left|\sum_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}}\right|>\frac{\mathrm{C} \log \cdot 5\left(\frac{\mathrm{nd}}{\delta}\right)}{\mathrm{n}^{5}}\right] \leq 2 \mathrm{e}^{-\frac{\mathrm{C}^{2} \log \left(\frac{\mathrm{nd}}{\delta}\right)}{2}} \leq \frac{\delta}{2 \mathrm{nd}}$


## Consequence of the Flattening Lemma

- Recall columns of A are orthonormal
- HDA has orthonormal columns
- Flattening Lemma implies $\left|\mathrm{HDAe}_{\mathrm{i}}\right|_{\infty} \leq \mathrm{C} \frac{\log \cdot 5 \mathrm{nd} / \delta}{\mathrm{n}^{5}}$ with probability $1-\frac{\delta}{2 d}$ for a fixed $\mathrm{i} \in[\mathrm{d}]$
- With probability $1-\frac{\delta}{2},\left|e_{j} H D A e_{i}\right| \leq C \frac{\log ^{.5} n d / \delta}{n^{5}}$ for all $\mathrm{i}, \mathrm{j}$
- Given this, $\left|\mathrm{e}_{\mathrm{j}} \mathrm{HDA}\right|_{2} \leq \mathrm{C} \frac{\mathrm{d}^{5} \log .^{5} \mathrm{nd} / \delta}{\mathrm{n}^{5}}$ for all j
(Can be optimized further)


## Matrix Chernoff Bound

- Let $X_{1}, \ldots, X_{s}$ be independent copies of a symmetric random matrix $X \in R^{\mathrm{dxd}}$ with $\mathrm{E}[\mathrm{X}]=0,|\mathrm{X}|_{2} \leq \gamma$, and $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2} \leq \sigma^{2}$. Let $\mathrm{W}=\frac{1}{\mathrm{~s}} \sum_{\mathrm{i} \in[\mathrm{s}]} \mathrm{X}_{\mathrm{i}}$. For any $\epsilon>0$,

$$
\begin{gathered}
\operatorname{Pr}\left[|\mathrm{W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{s} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)} \\
\left(\text { here }|\mathrm{W}|_{2}=\sup |\mathrm{Wx}|_{2} /|\mathrm{x}|_{2}\right)
\end{gathered}
$$

- Let $V=H D A$, and recall $V$ has orthonormal columns
- Suppose $P$ in the $S=P H D$ definition samples uniformly with replacement. If row i is sampled in the j -th sample, then $\mathrm{P}_{\mathrm{j}, \mathrm{i}}=\mathrm{n}$, and is 0 otherwise
- Let $\mathrm{Y}_{\mathrm{i}}$ be the i-th sampled row of $\mathrm{V}=\mathrm{HDA}$
- Let $X_{i}=I_{d}-n \cdot Y_{i}^{T} Y_{i}$
- $E\left[X_{i}\right]=I_{d}-n \cdot \sum_{j}\left(\frac{1}{n}\right) V_{j}^{T} V_{j}=I_{d}-V^{T} V=0^{d}$
- $\left|X_{i}\right|_{2} \leq\left|I_{d}\right|_{2}+n \cdot \max \left|e_{j} H D A\right|_{2}^{2}=1+n \cdot C^{2} \log \left(\frac{n d}{\delta}\right) \cdot \frac{d}{n}=\Theta\left(d \log \left(\frac{n d}{\delta}\right)\right)$


## Matrix Chernoff Bound

- Recall: let $Y_{i}$ be the i-th sampled row of $V=H D A$
- Let $X_{i}=I_{d}-n \cdot Y_{i}^{T} Y_{i}$
- $E\left[X^{T} X+I_{d}\right]=I_{d}+I_{d}-2 n E\left[Y_{i}^{T} Y_{i}\right]+n^{2} E\left[Y_{i}^{T} Y_{i} Y_{i}^{T} Y_{i}\right]$

$$
=2 I_{d}-2 I_{d}+n^{2} \sum_{i}\left(\frac{1}{n}\right) \cdot v_{i}^{T} v_{i} v_{i}^{T} v_{i}=n \sum_{i} v_{i}^{T} v_{i} \cdot\left|v_{i}\right|_{2}^{2}
$$

- Define $Z=n \sum_{i} v_{i}^{T} v_{i} C^{2} \log \left(\frac{n d}{\delta}\right) \cdot \frac{d}{n}=C^{2} \operatorname{dlog}\left(\frac{n d}{\delta}\right) I_{d}$
- Note that $E\left[X^{T} X+I_{d}\right]$ and $Z$ are real symmetric, with non-negative eigenvalues
- Claim: for all vectors $y$, we have: $y^{T} E\left[X^{T} X+I_{d}\right] y \leq y^{T} Z y$
- Proof: $y^{T} E\left[X^{T} X+I_{d}\right] y=n \sum_{i} y^{T} v_{i}^{T} v_{i} y\left|v_{i}\right|_{2}^{2}=n \sum_{i}\left\langle v_{i}, y\right\rangle^{2}\left|v_{i}\right|_{2}^{2}$ and

$$
\mathrm{y}^{\mathrm{T}} \mathrm{Zy}=\mathrm{n} \sum_{\mathrm{i}} \mathrm{y}^{\mathrm{T}} \mathrm{v}_{\mathrm{i}}^{\mathrm{T}} \mathrm{v}_{\mathrm{i}} \mathrm{y} \mathrm{C}^{2} \log \left(\frac{\mathrm{nd}}{\delta}\right) \cdot \frac{\mathrm{d}}{\mathrm{n}}=\mathrm{d} \sum_{\mathrm{i}}<\mathrm{v}_{\mathrm{i}}, \mathrm{y}>^{2} \mathrm{C}^{2} \log \left(\frac{\mathrm{nd}}{\delta}\right)
$$

- Hence, $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2} \leq\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]+\mathrm{I}_{\mathrm{d}}\right|_{2}+\left|\mathrm{I}_{\mathrm{d}}\right|_{2}=\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}+\mathrm{I}_{\mathrm{d}}\right]\right|_{2}+1$

$$
\leq|\mathrm{Z}|_{2}+1 \leq \mathrm{C}^{2} \mathrm{~d} \log \left(\frac{\mathrm{nd}}{\delta}\right)+1
$$

- Hence, $\left|E\left[X^{T} X\right]\right|_{2}=0\left(d \log \left(\frac{n d}{\delta}\right)\right)$


## Matrix Chernoff Bound

- Hence, $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2}=0\left(\mathrm{~d} \log \left(\frac{\mathrm{nd}}{\delta}\right)\right)$
- Recall: (Matrix Chernoff) Let $X_{1}, \ldots, X_{s}$ be independent copies of a symmetric random matrix $\mathrm{X} \in \mathrm{R}^{\mathrm{dxd}}$ with $\mathrm{E}[\mathrm{X}]=0,|\mathrm{X}|_{2} \leq \gamma$, and $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2} \leq$ $\sigma^{2}$. Let $\mathrm{W}=\frac{1}{\mathrm{~s}} \sum_{\mathrm{i} \in[\mathrm{s}]} \mathrm{X}_{\mathrm{i}}$. For any $\epsilon>0, \operatorname{Pr}\left[|\mathrm{~W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{s} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)}$

$$
\operatorname{Pr}\left[\mid \mathrm{I}_{\mathrm{d}}-\left.(\text { PHDA })^{\mathrm{T}}(\text { PHDA })\right|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{s} \epsilon^{2} /\left(\Theta\left(\mathrm{d} \log \left(\frac{\mathrm{nd}}{\delta}\right)\right)\right.}
$$

- Set $\mathrm{s}=\mathrm{d} \log \left(\frac{\mathrm{nd}}{\delta}\right) \frac{\log \left(\frac{\mathrm{d}}{\delta}\right)}{\epsilon^{2}}$, to make this probability less than $\frac{\delta}{2}$


## SRHT Wrapup

- Have shown $\mid I_{d}-\left.(\text { PHDA })^{T}($ PHDA $)\right|_{2}<\epsilon$ using Matrix Chernoff Bound and with $\mathrm{s}=\mathrm{d} \log \left(\frac{\mathrm{nd}}{\delta}\right) \frac{\log \left(\frac{\mathrm{d}}{\delta}\right)}{\epsilon^{2}}$ samples
- Implies for every unit vector $x$,

$$
|1-| \text { PHDAx }\left.\right|_{2} ^{2}|=| x^{\mathrm{T}} \mathrm{x}-\mathrm{x}^{\mathrm{T}}(\text { PHDA })^{\mathrm{T}}(\text { PHDA }) \mathrm{x} \mid<\epsilon,
$$

so $\mid$ PHDAx $\left.\right|_{2} ^{2} \in 1 \pm \epsilon$ for all unit vectors $x$

- Considering the column span of A adjoined with b, we can again solve the regression problem
- The time for regression is now only $\mathrm{O}(\mathrm{nd} \log \mathrm{n})+$ poly $\left(\frac{d \log (n)}{\epsilon}\right)$. Nearly optimal in matrix dimensions ( $n \gg d$ )


## Faster Subspace Embeddings S [CW,MM,NN]

- CountSketch matrix
- Define $\mathrm{k} \times \mathrm{n}$ matrix S , for $\mathrm{k}=\mathrm{O}\left(\mathrm{d}^{2} / \varepsilon^{2}\right)$
- $S$ is really sparse: single randomly chosen non-zero entry per column


$$
\begin{array}{llllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0-1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$



- $n n z(A)$ is number of non-zero entries of $A$


## Simple Proof [Nguyen]

- Can assume columns of A are orthonormal
- Suffices to show $\mid \operatorname{SAx}_{2}=1 \pm \varepsilon$ for all unit $x$
- For regression, apply $S$ to [A, b]
- $S A$ is a $2 d^{2} / \varepsilon^{2} x d$ matrix
- Suffices to show $\left|A^{\top} S^{\top} S A-\|_{2} \leq\left|A^{\top} S^{\top} S A-I\right|_{F} \leq \varepsilon\right.$
- Matrix product result shown below:

$$
\operatorname{Pr}\left[\left|C S^{\top} S D-C D\right|_{F}^{2} \leq\left.[6 /(\delta(\# \text { rows of } S))]{ }^{*}\left|\mathrm{C}_{\mathrm{F}}{ }^{2}\right| \mathrm{D}\right|_{\mathrm{F}}{ }^{2}\right] \geq 1-\delta
$$

- Set $C=A^{\top}$ and $D=A$.
- Then $|A|^{2}=d$ and (\# rows of $S$ ) $=6 d^{2} /\left(\delta \varepsilon^{2}\right)$


## Matrix Product Result [Kane, Nelson]

- Show: $\operatorname{Pr}\left[\left|C S^{\top} S D-C D\right|_{F}{ }^{2} \leq[6 /(\delta(\#\right.$ rows of $\left.S))]{ }^{*}|C|_{F}{ }^{2}|D|_{F}{ }^{2}\right] \geq 1-\delta$
- (JL Property) A distribution on matrices $\mathrm{S} \in \mathrm{R}^{\mathrm{kx}}$ has the $(\epsilon, \delta, \ell)$ - JL moment property if for all $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ with $|\mathrm{x}|_{2}=1$,

$$
\left.\mathrm{E}_{\mathrm{S}}| | \mathrm{SX}\right|_{2} ^{2}-\left.1\right|^{l} \leq \epsilon^{\ell} \cdot \delta
$$

- (From vectors to matrices) For $\epsilon, \delta \in\left(0, \frac{1}{2}\right)$, let $D$ be a distribution on matrices $S$ with $k$ rows and $n$ columns that satisfies the ( $\epsilon, \delta, \ell$ )-JL moment property for some $\ell \geq 2$. Then for A , B matrices with n rows,

$$
\operatorname{Pr}_{\mathrm{S}}\left[\left|\mathrm{~A}^{\mathrm{T}} S^{\mathrm{T}} \mathrm{SB}-\mathrm{A}^{\mathrm{T}} \mathrm{~B}\right|_{\mathrm{F}} \geq 3 \in|\mathrm{~A}|_{\mathrm{F}}|\mathrm{~B}|_{\mathrm{F}}\right] \leq \delta
$$

## From Vectors to Matrices

- (From vectors to matrices) For $\epsilon, \delta \in\left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the ( $\epsilon, \delta, \ell$ )-JL moment property for some $\ell \geq 2$. Then for $A, B$ matrices with $n$ rows,

$$
\operatorname{Pr}_{\mathrm{S}}\left[\left|\mathrm{~A}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{SB}-\mathrm{A}^{\mathrm{T}} \mathrm{~B}\right|_{\mathrm{F}} \geq 3 \epsilon|\mathrm{~A}|_{\mathrm{F}}|\mathrm{~B}|_{\mathrm{F}}\right] \leq \delta
$$

- Proof: For a random scalar $X$, let $|X|_{p}=\left(E|X|^{p}\right)^{1 / p}$
- Sometimes consider $X=|T|_{F}$ for a random matrix $T$
- $\left||T|_{\mathrm{F}}\right|_{\mathrm{p}}=\left(\mathrm{E}\left[|\mathrm{T}|_{\mathrm{F}}^{\mathrm{p}}\right]\right)^{1 / \mathrm{p}}$
- Can show $|.|_{p}$ is a norm if $p \geq 1$
- Minkowski's Inequality: $|\mathrm{X}+\mathrm{Y}|_{\mathrm{p}} \leq|\mathrm{X}|_{\mathrm{p}}+|\mathrm{Y}|_{\mathrm{p}}$
- For unit vectors $x, y$, we will bound $|\langle S x, S y\rangle-\langle x, y\rangle|_{e}$


## Minkowski's Inequality

- Minkowski's Inequality: $|\mathrm{X}+\mathrm{Y}|_{\mathrm{p}} \leq|\mathrm{X}|_{\mathrm{p}}+|\mathrm{Y}|_{\mathrm{p}}$
- Proof:
- If $|X|_{p},|Y|_{p}$ are finite, then so is $|X+Y|_{p}$. Why?
- $f(x)=x^{p}$ is convex for $p \geq 1$, so for any fixed $x, y$ :

$$
\begin{gathered}
|.5 x+.5 y|^{\mathrm{p}} \leq\left.|.5| \mathrm{x}|+.5| \mathrm{y}\right|^{\mathrm{p}} \leq .5|\mathrm{x}|^{\mathrm{p}}+.5|\mathrm{y}|^{\mathrm{p}}, \text { so } \\
|\mathrm{x}+\mathrm{y}|^{\mathrm{p}} \leq 2^{\mathrm{p}-1}\left(|\mathrm{x}|^{\mathrm{p}}+|\mathrm{y}|^{\mathrm{p}}\right)
\end{gathered}
$$

- So, $\mathrm{E}\left[|\mathrm{X}+\mathrm{Y}|_{\mathrm{p}}^{\mathrm{p}}\right] \leq \mathrm{E}\left[2^{\mathrm{p}-1}\left(|\mathrm{X}|_{\mathrm{p}}^{\mathrm{p}}+|\mathrm{Y}|_{\mathrm{p}}^{\mathrm{p}}\right)\right]$
- $|X+Y|_{p}^{p}=\int|x+y|^{p} d \mu$

$$
\begin{aligned}
& =\int|x+y| \cdot|x+y|^{p-1} d \mu \\
& \leq\left.\int(|x|+|y|)\right|^{x}+\left.y\right|^{p-1} d \mu \\
& =\int|x||x+y|^{p-1} d \mu+\int|y||x+y|^{p-1} d \mu \\
& \leq\left(\left(\int|x|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int|y|^{p} d \mu\right)^{\frac{1}{p}}\right)\left(\int|x+y|^{(p-1)\left(\frac{p}{p-1}\right)} d \mu\right)^{\frac{p-1}{p}} \\
& =\left(|X|_{p}+|Y|_{p}\right)|X+Y|_{p}^{p-1}
\end{aligned}
$$

## From Vectors to Matrices

- For unit vectors $x, y,|\langle S x, S y\rangle-\langle x, y\rangle|_{e}$

$$
\begin{aligned}
& =\frac{1}{2}\left|\left(|S \mathrm{x}|_{2}^{2}-1\right)+\left(|S y|_{2}^{2}-1\right)-\left(|\mathrm{S}(\mathrm{x}-\mathrm{y})|_{2}^{2}-|\mathrm{x}-\mathrm{y}|_{2}^{2}\right)\right|_{\ell} \\
& \leq \frac{1}{2}\left(\left.| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|_{\ell}+\left||S y|_{2}^{2}-1\right|_{\ell}+\left||\mathrm{S}(\mathrm{x}-\mathrm{y})|_{2}^{2}-|\mathrm{x}-\mathrm{y}|_{2}^{2}\right|_{\ell}\right) \\
& \leq \frac{1}{2}\left(\epsilon \cdot \delta^{\frac{1}{\ell}}+\epsilon \cdot \delta^{\frac{1}{\ell}}+|\mathrm{x}-\mathrm{y}|_{2}^{2} \epsilon \cdot \delta^{\frac{1}{\ell}}\right) \\
& \leq 3 \epsilon \cdot \delta^{\frac{1}{\ell}}
\end{aligned}
$$

- By linearity, for arbitrary $x, y, \frac{|\langle S x, S y\rangle-\langle x, y\rangle|_{e}}{|x|_{2}|y|_{2}} \leq 3 \epsilon \cdot \delta^{\frac{1}{\ell}}$
- Suppose $A$ has $d$ columns and $B$ has e columns. Let the columns of $A$ be $A_{1}, \ldots, A_{d}$ and the columns of $B$ be $B_{1}, \ldots, B_{e}$
- Define $\mathrm{X}_{\mathrm{i}, \mathrm{j}}=\frac{1}{\left|\mathrm{~A}_{\mathrm{i}}\right|_{2}\left|\mathrm{~B}_{\mathrm{j}}\right|_{2}} \cdot\left(\left\langle\mathrm{SA}_{\mathrm{i}}, \mathrm{SB}_{\mathrm{j}}\right\rangle-\left\langle\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}\right\rangle\right)$
- $\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{2}=\sum_{i} \sum_{j}\left|A_{i}\right|_{2}^{2} \cdot\left|B_{j}\right|_{2}^{2} X_{i, j}^{2}$


## From Vectors to Matrices

- Have shown: for arbitrary $\mathrm{x}, \mathrm{y}, \frac{|\langle\mathrm{Sx}, \mathrm{Sy}\rangle-\langle\mathrm{x}, \mathrm{y}\rangle|_{e}}{|\mathrm{x}|_{2}|\mathrm{y}|_{2}} \leq 3 \epsilon \cdot \delta^{\frac{1}{\ell}}$
- For $X_{i, j}=\frac{1}{\left|A_{i}\right|_{2}\left|B_{j}\right|_{2}} \cdot\left(\left\langle\mathrm{SA}_{\mathrm{i}}, \mathrm{SB}_{\mathrm{j}}\right\rangle-\left\langle\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}\right\rangle\right):\left|\mathrm{A}^{\mathrm{T}} \mathrm{S}^{\mathrm{T}} \mathrm{SB}-\mathrm{A}^{\mathrm{T}} \mathrm{B}\right|_{\mathrm{F}}^{2}=\sum_{\mathrm{i}} \sum_{\mathrm{j}}\left|\mathrm{A}_{\mathrm{i}}\right|_{2}^{2} \cdot\left|\mathrm{~B}_{\mathrm{j}}\right|_{2}^{2} \mathrm{X}_{\mathrm{i}, \mathrm{j}}^{2}$
- $\left|\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{2}\right|_{\ell / 2}=\left.\left.\left|\sum_{i} \sum_{j}\right| A_{i}\right|_{2} ^{2} \cdot\left|B_{j}\right|_{2}^{2} X_{i, j}^{2}\right|_{\ell / 2}$

$$
\begin{aligned}
& \leq \sum_{\mathrm{i}} \sum_{\mathrm{j}}\left|\mathrm{~A}_{\mathrm{i}}\right|_{2}^{2} \cdot\left|\mathrm{~B}_{\mathrm{j}}\right|_{2}^{2}\left|\mathrm{X}_{\mathrm{i}, \mathrm{j}}^{2}\right|_{\ell / 2} \\
& =\sum_{\mathrm{i}} \sum_{\mathrm{j}}\left|\mathrm{~A}_{\mathrm{i}}\right|_{2}^{2} \cdot\left|\mathrm{~B}_{\mathrm{j}}\right|_{2}^{2}\left|\mathrm{X}_{\mathrm{i}, \mathrm{j}}\right|_{\ell}^{2} \\
& \leq\left(3 \in \delta^{\frac{1}{\ell}}\right)^{2} \sum_{\mathrm{i}} \sum_{\mathrm{j}}\left|\mathrm{~A}_{\mathrm{i}}\right|_{2}^{2}\left|\mathrm{~B}_{\mathrm{j}}\right|_{2}^{2} \\
& =\left(3 \epsilon \delta^{\frac{1}{\ell}}\right)^{2}|\mathrm{~A}|_{\mathrm{F}}^{2}|\mathrm{~B}|_{\mathrm{F}}^{2}
\end{aligned}
$$

- Since $E\left[\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{\ell}\right]=\left|\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{2}\right|_{\frac{\ell}{2}}^{l / 2} \quad$, by Markov's inequality,
- $\operatorname{Pr}\left[\left|\mathrm{A}^{\mathrm{T}} \mathrm{S}^{\mathrm{T}} \mathrm{SB}-\mathrm{A}^{\mathrm{T}} \mathrm{B}\right|_{\mathrm{F}}>3 \epsilon|\mathrm{~A}|_{\mathrm{F}}|\mathrm{B}|_{\mathrm{F}}\right] \leq\left(\frac{1}{3 \epsilon|\mathrm{~A}|_{\mathrm{F}}|\mathrm{B}|_{\mathrm{F}}}\right)^{\ell} \mathrm{E}\left[\left|\mathrm{A}^{\mathrm{T}} \mathrm{S}^{\mathrm{T}} \mathrm{SB}-\mathrm{A}^{\mathrm{T}} \mathrm{B}\right|_{\mathrm{F}}^{\ell}\right] \leq \delta$


## Result for Vectors

" Show: $\operatorname{Pr}\left[\left|\mathrm{CS}^{\top} S \mathrm{~S}-\mathrm{CD}\right|_{F}{ }^{2} \leq[6 /(\delta(\#\right.$ rows of S$\left.))]{ }^{*}\left|\mathrm{Cl}_{F}{ }^{2}\right| \mathrm{Dl}_{\mathrm{F}}{ }^{2}\right] \geq 1-\delta$

- (JL Property) A distribution on matrices $S \in \mathrm{R}^{\mathrm{kx}}$ has the $(\epsilon, \delta, \ell)$-JL moment property if for all $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ with $|\mathrm{x}|_{2}=1$,

$$
\left.\mathrm{E}_{S}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{\ell} \leq \epsilon^{\ell} \cdot \delta
$$

- (From vectors to matrices) For $\epsilon, \delta \in\left(0, \frac{1}{2}\right)$, let $D$ be a distribution on matrices $S$ with k rows and n columns that satisfies the ( $\epsilon, \delta, \ell$ )-JL moment property for some $\ell \geq 2$. Then for A , B matrices with n rows,

$$
\operatorname{Pr}_{\mathrm{S}}\left[\left|\mathrm{~A}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{SB}-\mathrm{A}^{\mathrm{T}} \mathrm{~B}\right|_{\mathrm{F}} \geq 3 \epsilon|\mathrm{~A}|_{\mathrm{F}}|\mathrm{~B}|_{\mathrm{F}}\right] \leq \delta
$$

- Just need to show that the CountSketch matrix S satisfies JL property and bound the number $k$ of rows


## CountSketch Satisfies the JL Property

- (JL Property) A distribution on matrices $\mathrm{S} \in \mathrm{R}^{\mathrm{kx}} \mathrm{n}$ has the $(\epsilon, \delta, \ell)$-JL moment property if for all $x \in R^{n}$ with $|x|_{2}=1$,

$$
\left.\mathrm{E}_{S}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{\ell} \leq \epsilon^{\ell} \cdot \delta
$$

- We show this property holds with $\ell=2$. First, let us consider $\ell=1$
- For CountSketch matrix S, let
- $\mathrm{h}:[\mathrm{n}]->[\mathrm{k}]$ be a 2 -wise independent hash function
- $\sigma:[n] \rightarrow\{-1,1\}$ be a 4 -wise independent hash function
- Let $\delta(\mathrm{E})=1$ if event E holds, and $\delta(\mathrm{E})=0$ otherwise
- $E\left[|S x|_{2}^{2}\right]=\sum_{j \in[k]} E\left[\left(\sum_{i \in[n]} \delta(h(i)=j) \sigma_{i} X_{i}\right)^{2}\right]$

$$
=\sum_{\mathrm{j} \in[\mathrm{k}]} \sum_{\mathrm{i} 1, \mathrm{i} 2 \in[\mathrm{n}]} \mathrm{E}\left[\delta(\mathrm{~h}(\mathrm{i} 1)=\mathrm{j}) \delta(\mathrm{h}(\mathrm{i} 2)=\mathrm{j}) \sigma_{\mathrm{i} 1} \sigma_{\mathrm{i} 2}\right] \mathrm{x}_{\mathrm{i} 1} \mathrm{x}_{\mathrm{i} 2}
$$

$$
=\sum_{j \in[k]} \sum_{i \in[n]} E\left[\delta(h(i)=j)^{2}\right] x_{i}^{2}
$$

$$
=\left(\frac{1}{\mathrm{k}}\right) \sum_{\mathrm{j} \in[\mathrm{k}]} \sum_{\mathrm{i} \in[\mathrm{n}]} \mathrm{x}_{\mathrm{i}}^{2}=|\mathrm{x}|_{2}^{2}
$$

## CountSketch Satisfies the JL Property

- $E\left[|S x|_{2}^{4}\right]=E\left[\sum_{j \in[k]} \sum_{\mathrm{j}^{\prime} \in[\mathrm{k}]} \quad\left(\sum_{\mathrm{i} \in[\mathrm{n}]} \delta(\mathrm{h}(\mathrm{i})=\mathrm{j}) \sigma_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}\left(\sum_{\mathrm{i} \in \in[\mathrm{n}]} \delta\left(\mathrm{h}\left(\mathrm{i}^{\prime}\right)=\mathrm{j}^{\prime}\right) \sigma_{\mathrm{i}^{\prime}, \mathrm{X}_{\mathrm{i}}}\right)^{2}\right]=$ $\sum_{\mathrm{j}_{1} \mathrm{j}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{i}_{4}} \mathrm{E}\left[\sigma_{\mathrm{i} 1} \sigma_{\mathrm{i} 2} \sigma_{\mathrm{i} 3} \sigma_{\mathrm{i} 4} \delta\left(\mathrm{~h}\left(\mathrm{i}_{1}\right)=\mathrm{j}_{1}\right) \delta\left(\mathrm{h}\left(\mathrm{i}_{2}\right)=\mathrm{j}_{1}\right) \delta\left(\mathrm{h}\left(\mathrm{i}_{3}\right)=\mathrm{j}_{2}\right) \delta\left(\mathrm{h}\left(\mathrm{i}_{4}=\mathrm{j}_{2}\right)\right)\right] \mathrm{x}_{\mathrm{i} 1} \mathrm{x}_{\mathrm{i} 2} \mathrm{x}_{\mathrm{i} 3} \mathrm{x}_{\mathrm{i} 4}$
- We must be able to partition $\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{i}_{4}\right\}$ into equal pairs
- Suppose $\mathrm{i}_{1}=\mathrm{i}_{2}=\mathrm{i}_{3}=\mathrm{i}_{4}$. Then necessarily $\mathrm{j}_{1}=\mathrm{j}_{2}$. Obtain $\sum_{\mathrm{j}} \frac{1}{\mathrm{k}} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{4}=|\mathrm{x}|_{4}^{4}$
- Suppose $i_{1}=i_{2}$ and $i_{3}=i_{4}$ but $i_{1} \neq i_{3}$. Then get $\sum_{\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{i}_{1}, \mathrm{i}_{3}} \frac{1}{\mathrm{k}^{2}} \mathrm{x}_{\mathrm{i}_{1}}^{2} \mathrm{x}_{\mathrm{i}_{3}}^{2}=|\mathrm{x}|_{2}^{4}-|\mathrm{x}|_{4}^{4}$
- Suppose $i_{1}=i_{3}$ and $i_{2}=i_{4}$ but $i_{1} \neq i_{2}$. Then necessarily $j_{1}=j_{2}$. Obtain $\sum_{j} \frac{1}{k^{2}} \sum_{i_{1}, i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq \frac{1}{k}|x|_{2}^{4}$. Obtain same bound if $i_{1}=i_{4}$ and $i_{2}=i_{3}$.
- Hence, $\mathrm{E}\left[|S \mathrm{Sx}|_{2}^{4}\right] \in\left[|\mathrm{x}|_{2}^{4},|\mathrm{x}|_{2}^{4}\left(1+\frac{2}{\mathrm{k}}\right)\right]=\left[1,1+\frac{2}{\mathrm{k}}\right]$
- So, $\left.\mathrm{E}_{\mathrm{S}}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{2} \leq\left(1+\frac{2}{\mathrm{k}}\right)-2+1=\frac{2}{\mathrm{k}}$. Setting $\mathrm{k}=\frac{2}{\epsilon^{2} \delta}$ finishes the proof


## Where are we?

- (JL Property) A distribution on matrices $S \in \mathrm{R}^{\mathrm{kx}} \mathrm{n}$ has the $(\epsilon, \delta, \ell)$-JL moment property if for all $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ with $|\mathrm{x}|_{2}=1$,

$$
\left.\mathrm{E}_{\mathrm{S}}| | \mathrm{Sx}\right|_{2} ^{2}-\left.1\right|^{\ell} \leq \epsilon^{\ell} \cdot \delta
$$

- (From vectors to matrices) For $\epsilon, \delta \in\left(0, \frac{1}{2}\right)$, let $D$ be a distribution on matrices $S$ with $k$ rows and $n$ columns that satisfies the ( $\epsilon, \delta, \ell$ )-JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$
\underset{S}{\operatorname{Pr}}\left[\left|A^{T} S^{T} S B-A^{T} B\right|_{F}^{2} \geq 3 \epsilon^{2}|A|_{F}^{2}|B|_{F}^{2}\right] \leq \delta
$$

- We showed CountSketch has the JL property with $\ell=2$, and $\mathrm{k}=\frac{2}{\epsilon^{2} \delta}$
- Matrix product result we wanted was:
$\operatorname{Pr}\left[\left|C S^{\top} S D-C D\right|_{F}{ }^{2} \leq(6 /(\delta \mathrm{k})){ }^{*}|C|_{F}{ }^{2}|\mathrm{D}|_{\mathrm{F}}{ }^{2}\right] \geq 1-\delta$
- We are now done with the proof CountSketch is a subspace embedding


## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression


## Affine Embeddings

- Want to solve $\min _{X}|A X-B|_{F}^{2}, A$ is tall and thin with $d$ columns, but $B$ has a large number of columns
- Can’t directly apply subspace embeddings
- Let's try to show $|S A X-S B|_{F}=(1 \pm \epsilon)|A X-B|_{F}$ for all $X$ and see what properties we need of $S$
- Can assume A has orthonormal columns
- Let $B^{*}=A X^{*}-B$, where $X^{*}$ is the optimum
- $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}=\left|S A\left(X-X^{*}\right)+S\left(A X^{*}-B\right)\right|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}$

$$
=\left|S \mathrm{SA}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2}+2 \operatorname{tr}\left[\left(\mathrm{X}-\mathrm{X}^{*}\right)^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{SB} \mathrm{~B}^{*}\right]\left(\text { use }|\mathrm{C}+\mathrm{D}|_{\mathrm{F}}^{2}=|\mathrm{C}|_{\mathrm{F}}^{2}+|\mathrm{D}|_{\mathrm{F}}^{2}+2 \operatorname{Tr}\left(\mathrm{C}^{\mathrm{T}} \mathrm{D}\right)\right)
$$

$$
\in\left|S A\left(X-X^{*}\right)\right|_{\mathrm{F}}^{2} \pm 2\left|X-X^{*}\right|_{\mathrm{F}}\left|\mathrm{~A}^{\mathrm{T}} \mathrm{~S}^{\mathrm{T}} \mathrm{SB}^{*}\right|_{\mathrm{F}}\left(\text { use } \operatorname{tr}(\mathrm{CD}) \leq|\mathrm{C}|_{\mathrm{F}}|\mathrm{D}|_{\mathrm{F}}\right)
$$

$$
\in\left|S A\left(X-X^{*}\right)\right|_{\mathrm{F}}^{2} \pm 2 \epsilon\left|\mathrm{X}-\mathrm{X}^{*}\right|_{\mathrm{F}}\left|\mathrm{~B}^{*}\right|_{\mathrm{F}} \quad \text { (if we have approx. matrix product) }
$$

$$
\in\left|A\left(X-X^{*}\right)\right|_{F}^{2} \pm \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}^{2}+2\left|X-X^{*}\right|_{F}\left|\mathrm{~B}^{*}\right|\right) \text { (subspace embedding for } \mathrm{A}^{53} \text { ) }
$$

## Affine Embeddings

- We have $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2} \in\left|A\left(X-X^{*}\right)\right|_{F}^{2} \pm \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}^{2}+2\left|X-X^{*}\right| F\left|B^{*}\right|\right)$
- Normal equations imply that

$$
|\mathrm{AX}-\mathrm{B}|_{\mathrm{F}}^{2}=\left|\mathrm{A}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}^{2}+\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}
$$

= $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}-\left(|A X-B|_{F}^{2}-\left|B^{*}\right|_{F}^{2}\right)$
$\in \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}^{2}+2\left|X-X^{*}\right|_{F}\left|B^{*}\right|_{F}\right)$
$\in \pm \epsilon\left(\left|A\left(X-X^{*}\right)\right|_{F}+\left|B^{*}\right|_{F}\right)^{2}$
$\in \pm 2 \epsilon\left(\left|\mathrm{~A}\left(\mathrm{X}-\mathrm{X}^{*}\right)\right|_{\mathrm{F}}{ }^{2}+\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}\right)$
$= \pm 2 \epsilon|\mathrm{AX}-\mathrm{B}|_{\mathrm{F}}^{2}$

- $\left|S B^{*}\right|_{F}^{2}=(1 \pm \epsilon)\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$ (this holds with constant probability)


## Affine Embeddings

- Know: $|S(A X-B)|_{F}^{2}-\left|S B^{*}\right|_{F}^{2}-\left(|A X-B|_{F}^{2}-\left|B^{*}\right|_{F}^{2}\right) \in$ $\pm 2 \epsilon|A X-B|_{F}^{2}$
- Know: $\left|\mathrm{SB}^{*}\right|_{\mathrm{F}}^{2}=(1 \pm \epsilon)\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$
- $|S(A X-B)|_{F}^{2}=(1 \pm 2 \epsilon)|A X-B|_{F}^{2}+\epsilon\left|B^{*}\right|_{F}^{2}$
$=(1 \pm 3 \epsilon)|A X-B|_{F}^{2}$
- Completes proof of affine embedding!


## Affine Embeddings: Missing Proofs

- Claim: $|A+B|_{F}^{2}=|A|_{F}^{2}+|B|_{F}^{2}+2 \operatorname{Tr}\left(A^{T} B\right)$
- Proof: $|A+B|_{F}^{2}=\sum_{i}\left|A_{i}+B_{i}\right|_{2}^{2}$

$$
\begin{aligned}
& =\sum_{\mathrm{i}}\left|\mathrm{~A}_{\mathrm{i}}\right|_{2}^{2}+\sum_{\mathrm{i}}\left|\mathrm{~B}_{\mathrm{i}}\right|_{2}^{2}+2\left\langle\mathrm{~A}_{\mathrm{i}}, \mathrm{~B}_{\mathrm{i}}\right\rangle \\
& =|\mathrm{A}|_{\mathrm{F}}^{2}+|\mathrm{B}|_{\mathrm{F}}^{2}+2 \operatorname{Tr}\left(\mathrm{~A}^{T} \mathrm{~B}\right)
\end{aligned}
$$

## Affine Embeddings: Missing Proofs

- Claim: $\operatorname{Tr}(\mathrm{AB}) \leq|\mathrm{A}|_{\mathrm{F}}|\mathrm{B}| \mathrm{F}$
- Proof: $\operatorname{Tr}(A B)=\sum_{i}\left\langle A^{i}, B_{i}\right\rangle$ for rows $A^{i}$ and columns $B_{i}$
$\leq \sum_{\mathrm{i}}\left|\mathrm{A}^{\mathrm{i}}\right|_{2}\left|\mathrm{~B}_{\mathrm{i}}\right|_{2}$ by Cauchy-Schwarz for each i

$$
\begin{aligned}
& \leq\left(\sum_{\mathrm{i}}\left|\mathrm{~A}^{\mathrm{i}}\right|_{2}^{2}\right)^{\frac{1}{2}}\left(\sum_{\mathrm{i}}\left|\mathrm{~B}_{\mathrm{i}}\right|_{2}^{2}\right)^{\frac{1}{2}} \text { another Cauchy-Schwarz } \\
& =|\mathrm{A}|_{\mathrm{F}}|\mathrm{~B}|_{\mathrm{F}}
\end{aligned}
$$

## Affine Embeddings: Homework Proof

- Claim: $\left|\mathrm{SB}^{*}\right|_{F}^{2}=(1 \pm \epsilon)\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$ with constant probability if CountSketch matrix $S$ has $k=O\left(\frac{1}{\epsilon^{2}}\right)$ rows
- Proof:
- $\left|\mathrm{SB}^{*}\right|_{\mathrm{F}}^{2}=\sum_{\mathrm{i}}\left|\mathrm{SB}_{\mathrm{i}}^{*}\right|_{2}^{2}$
- By our analysis for CountSketch and linearity of expectation, $\mathrm{E}\left[|\mathrm{SB}|_{\mathrm{F}}^{*}\right]=\sum_{\mathrm{i}} \mathrm{E}\left[\left|S \mathrm{~B}_{\mathrm{i}}^{*}\right|_{2}^{2}\right]=\left|\mathrm{B}^{*}\right|_{\mathrm{F}}^{2}$
- $\mathrm{E}\left[\left|\mathrm{SB}^{*}\right|_{\mathrm{F}}^{4}\right]=\sum_{\mathrm{i}, \mathrm{j}} \mathrm{E}\left[\left|\mathrm{SB}_{\mathrm{i}}^{*}\right|_{2}^{2}\left|\mathrm{SB}_{\mathrm{j}}^{*}\right|_{2}^{2}\right]$
- By our CountSketch analysis, $\left.\mathrm{E}\left[\left|\mathrm{SB}_{\mathrm{i}}^{*}\right|_{2}^{4}\right]\right] \leq\left|\mathrm{B}_{\mathrm{i}}^{*}\right|_{2}^{4}\left(1+\frac{2}{\mathrm{k}}\right)$
- For cross terms see Lemma 40 in [CW13]


## Low rank approximation

- A is an $n x d$ matrix
- Think of $n$ points in $R^{d}$
- E.g., A is a customer-product matrix
- $\mathrm{A}_{\mathrm{i}, \mathrm{j}}=$ how many times customer i purchased item j
- A is typically well-approximated by low rank matrix
- E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
- Easy to store, data more interpretable


## What is a good low rank approximation?

Singular Value Decomposition (SVD)
Any matrix $A=U \cdot \Sigma \cdot V$

- U has orthonormal columns
- $\Sigma$ is diagonal with non-increasing positive entries down the diagonal
- V has orthonormal rows
- Rank-k approximation: $A_{k}=U_{k} \cdot \Sigma_{k} \cdot V_{k}$
- rows of $\mathrm{V}_{\mathrm{k}}$ are the top $k$ principal components

$$
\left(\begin{array}{l}
\mathbf{A} \\
\end{array}\right)=\left(\begin{array}{l} 
\\
\mathbf{U}_{k}
\end{array}\right)\left(\Sigma_{k}\right)\left(\begin{array}{ll}
\mathbf{V _ { k }}
\end{array}\right)+\left(\begin{array}{l}
\mathbf{E}
\end{array}\right)
$$

## What is a good low rank approximation?

$$
\begin{aligned}
& A_{k}=\operatorname{argmin}_{\text {rank k matrices } B}|A-B|_{F} \\
& \left(|C|_{F}=\left(\Sigma_{i, j} C_{i, j}\right)^{1 / 2}\right)
\end{aligned}
$$

Computing $A_{k}$ exactly is expensive

$$
\left(\begin{array}{l}
\mathbf{A} \\
\end{array}\right)=\left(\mathbf{U}_{k}\right)\left(\Sigma_{k}\right)\left(\begin{array}{ll} 
& \mathbf{V}_{k}
\end{array}\right)+\left(\begin{array}{l}
\mathbf{E}
\end{array}\right)
$$

## Low rank approximation

- Goal: output a rank $k$ matrix $A^{\prime}$, so that

$$
\left|A-A^{\prime}\right|_{F} \leq(1+\varepsilon)\left|A-A_{k}\right|_{F}
$$

- Can do this in nnz(A) + (n+d)*poly(k/ع) time [S,CW]
- $n n z(A)$ is number of non-zero entries of $A$


## Solution to low-rank approximation [S]

- Given n x d input matrix A
- Compute $S^{*} A$ using a random matrix $S$ with $k / \varepsilon \ll n$ rows. S*A takes random linear combinations of rows of $A$


SA

- Project rows of A onto SA, then find best rank-k approximation to points inside of SA.


## What is the matrix $S$ ?

- S can be ak/z x n matrix of i.i.d. normal random variables
- [S] S can be a k/e x n Fast Johnson Lindenstrauss Matrix
- Uses Fast Fourier Transform
- [CW] S can be a poly(k/E) x n CountSketch matrix

S.A can be computed in nnz(A) time


## Why do these Matrices Work?

- Consider the regression problem $\min _{\mathrm{X}}\left|\mathrm{A}_{\mathrm{k}} \mathrm{X}-\mathrm{A}\right|_{\mathrm{F}}$
- Let $S$ be an affine embedding
- Then $\left|S A_{k} X-S A\right|_{F}=(1 \pm \epsilon)\left|A_{k} X-A\right|_{F}$ for all $X$
- By normal equations, $\underset{\mathrm{X}}{\operatorname{argmin}}\left|\mathrm{SA}_{\mathrm{k}} \mathrm{X}-\mathrm{SA}\right|_{\mathrm{F}}=\left(\mathrm{SA}_{\mathrm{k}}\right)^{-} \mathrm{SA}$
- So, $\left|A_{k}\left(S A_{k}\right)^{-} S A-A\right|_{F} \leq(1+\epsilon)\left|A_{k}-A\right|_{F}$
- But $A_{k}\left(S A_{k}\right)^{-} S A$ is a rank-k matrix in the row span of $S A$ !
- Let's formalize why the algorithm works now...


## Why do these Matrices Work?

- $\min _{\operatorname{rank}-\mathrm{k} X}|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2} \leq\left|\mathrm{A}_{\mathrm{k}}\left(\mathrm{SA}_{\mathrm{k}}\right)^{-} \mathrm{SA}-\mathrm{A}\right|_{\mathrm{F}}^{2} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{-} \mathrm{k}\right|_{\mathrm{F}}^{2}$
- By the normal equations,

$$
|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2}=\left|\mathrm{XSA}-\mathrm{A}(\mathrm{SA})^{-} \mathrm{SA}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}(\mathrm{SA})^{-} \mathrm{SA}-\mathrm{A}\right|_{\mathrm{F}}^{2}
$$

- Hence,

$$
\min _{\operatorname{rank}-\mathrm{kX}}|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2}=\left|\mathrm{A}(\mathrm{SA})^{-} \mathrm{SA}-\mathrm{A}\right|_{\mathrm{F}}^{2}+\min _{\operatorname{rank}-\mathrm{kX}}\left|\mathrm{XSA}-\mathrm{A}(\mathrm{SA})^{-} \mathrm{SA}\right|_{\mathrm{F}}^{2}
$$

- Can write $S A=U \Sigma V^{T}$ in its SVD
- Then, $\min _{\text {rank-k } X}\left|X S A-A(S A)^{-} S A\right|_{F}^{2}=\min _{\text {rank-k } X}\left|X U \Sigma-A(S A)^{-} U \Sigma\right|_{F}^{2}$

$$
=\min _{\text {rank }-\mathrm{K}}\left|\mathrm{Y}-\mathrm{A}(\mathrm{SA})^{-} U \Sigma\right|_{\mathrm{F}}^{2}
$$

- Hence, we can just compute the SVD of A(SA)-U
- But how do we compute $\mathrm{A}(\mathrm{SA})^{-} \mathrm{U} \Sigma$ quickly?


## Caveat: projecting the points onto SA is slow

- Current algorithm:

1. Compute S*A
2. Project each of the rows onto $S^{*} A$
3. Find best rank-k approximation of projected points inside of rowspace of S*A

- Bottleneck is step 2

$$
\min _{\text {rank-kx }}|X(S A) R-A R|_{F}^{2}
$$

Can solve with affine embeddings
" [CW] Approximate the projection

- Fast algorithm for approximate regression

$$
\min _{\text {rank-kx }}|X(S A)-A|_{F}^{2}
$$

- Want nnz(A) + (n+d)*poly(k/ع) time


## Using Affine Embeddings

- We know we can just output $\arg _{\operatorname{rank}-\mathrm{k} X} \min |\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2}$
- Choose an affine embedding $R$ :

$$
|\mathrm{XSAR}-\mathrm{AR}|_{\mathrm{F}}^{2}=(1 \pm \epsilon)|\mathrm{XSA}-\mathrm{A}|_{\mathrm{F}}^{2} \text { for all } \mathrm{X}
$$

- Note: we can compute AR and SAR in nnz(A) time
- Can just solve $\min _{\text {rank-k }}|X S A R-A R|_{F}^{2}$
- $\min _{\operatorname{rank-k} \mathrm{X}}|\mathrm{XSAR}-\mathrm{AR}|_{\mathrm{F}}^{2}=\left|\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})-\mathrm{AR}\right|_{\mathrm{F}}^{2}+\min _{\operatorname{rank-kX}}\left|\mathrm{XSAR}-\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})\right|_{\mathrm{F}}^{2}$
- Compute $\min _{\text {rank }-\mathrm{k} Y}\left|\mathrm{Y}-\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})\right|_{\mathrm{F}}^{2}$ using SVD which is ( $\left.\mathrm{n}+\mathrm{d}\right)$ poly $\left(\frac{\mathrm{k}}{\epsilon}\right)$ time
- Necessarily, $Y=$ XSAR for some $X$. Output $Y(S A R)^{-}$SA in factored form. We're done!


## Low Rank Approximation Summary

1. Compute SA
2. Compute SAR and AR
3. Compute $\min _{\operatorname{rank}-\mathrm{k} Y}\left|\mathrm{Y}-\mathrm{AR}(\mathrm{SAR})^{-}(\mathrm{SAR})\right|_{\mathrm{F}}^{2}$ using SVD
4. Output $\mathrm{Y}(\mathrm{SAR})^{-}$SA in factored form

Overall time: $n n z(A)+(n+d) p o l y(k / \varepsilon)$

## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression


## High Precision Regression

- Goal: output $x^{\text {f }}$ for which $\left|A x^{\prime}-b\right|_{2} \leq(1+\varepsilon) \min _{x}|A x-b|_{2}$ with high probability
- Our algorithms all have running time poly(d/ $\varepsilon$ )
- Goal: Sometimes we want running time poly(d)* $\log (1 / \varepsilon)$
- Want to make A well-conditioned
- $\kappa(\mathrm{A})=\sup _{|\mathrm{x}|_{2}=1}|A x|_{2} / \inf _{|\mathrm{x}|_{2}=1}|A x|_{2}$
- Lots of algorithms' time complexity depends on $\kappa(\mathrm{A})$
- Use sketching to reduce $\kappa(\mathrm{A})$ to $\mathrm{O}(1)$ !


## Small QR Decomposition

- Let $S$ be a $\left(1+\epsilon_{0}\right)$ - subspace embedding for $A$
- Compute SA
- Compute QR -factorization, $\mathrm{SA}=\mathrm{QR}^{-1}$
- Claim: $\kappa(\mathrm{AR})=\frac{\left(1+\epsilon_{0}\right)}{1-\epsilon_{0}}$
- For all unit $\mathrm{x},\left(1-\epsilon_{0}\right)|\operatorname{ARx}|_{2} \leq|\operatorname{SAR~x}|_{2}=1$
- For all unit $x,\left(1+\epsilon_{0}\right)|A R x|_{2} \geq|S A R x|_{2}=1$
- So $\kappa(\mathrm{AR})=\sup _{|\mathrm{x}|_{2}=1}|\mathrm{ARx}|_{2} / \inf _{|\mathrm{x}|_{2}=1}|\mathrm{ARx}|_{2} \leq \frac{1+\epsilon_{0}}{1-\epsilon_{0}}$


## Finding a Constant Factor Solution

- Let $S$ be a $1+\epsilon_{0}$ - subspace embedding for AR
- Solve $\mathrm{x}_{0}=\underset{\mathrm{x}}{\operatorname{argmin}}|\operatorname{SARx}-\mathrm{Sb}|_{2}$
- Time to compute R and $\mathrm{x}_{0}$ is $\mathrm{nnz}(\mathrm{A})+\operatorname{poly}(\mathrm{d})$ for constant $\epsilon_{0}$
- $\mathrm{x}_{\mathrm{m}+1} \leftarrow \mathrm{x}_{\mathrm{m}}+\mathrm{R}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}\left(\mathrm{b}-\mathrm{AR} \mathrm{x}_{\mathrm{m}}\right)$
- $\operatorname{AR}\left(x_{m+1}-x^{*}\right)=\operatorname{AR}\left(x_{m}+R^{T} A^{T}\left(b-A R x_{m}\right)-x^{*}\right)$

$$
=\left(A R-A R R^{T} A^{T} A R\right)\left(x_{m}-x^{*}\right)
$$

$$
=\mathrm{U}\left(\Sigma-\Sigma^{3}\right) V^{\mathrm{T}}\left(\mathrm{x}_{\mathrm{m}}-\mathrm{x}^{*}\right),
$$

where $A R=U \Sigma V^{T}$ is the SVD of $A R$

- $\left|\operatorname{AR}\left(x_{m+1}-x^{*}\right)\right|_{2}=\left|\left(\Sigma-\Sigma^{3}\right) V^{T}\left(x_{m}-x^{*}\right)\right|_{2}=0\left(\epsilon_{0}\right)\left|\operatorname{AR}\left(x_{m}-x^{*}\right)\right|_{2}$
- $\left|A R x_{m}-b\right|^{2}{ }_{2}=\left|\operatorname{AR}\left(x_{m}-x^{*}\right)\right|_{2}^{2}+\left|A R x^{*}-b\right|_{2}^{2}$


## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- M-Estimator regression


## Leverage Score Sampling

- This is another subspace embedding, but it is based on sampling!
- If A has sparse rows, then SA has sparse rows!
- Let $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ be an $\mathrm{n} \times \mathrm{d}$ matrix with rank d , written in its SVD
- Define the i-th leverage score $\ell(\mathrm{i})$ of A to be $\left|\mathrm{U}_{\mathrm{i}, *}\right|_{2}^{2}$
- What is $\sum_{\mathrm{i}} \ell(\mathrm{i})$ ?
- Let $\left(q_{1}, \ldots, q_{n}\right)$ be a distribution with $q_{i} \geq \frac{\beta e(\mathrm{i})}{\mathrm{d}}$, where $\beta$ is a parameter
- Define sampling matrix $\mathrm{S}=\mathrm{D} \cdot \Omega^{\mathrm{T}}$, where D is kxk and $\Omega$ is $\mathrm{n} \times \mathrm{k}$
= $\Omega$ is a sampling matrix, and $D$ is a rescaling matrix
- For each column j of $\Omega, \mathrm{D}$, independently, and with replacement, pick a row index i in $[\mathrm{n}]$ with probability $\mathrm{q}_{\mathrm{i}}$, and set $\Omega_{\mathrm{i}, \mathrm{j}}=1$ and $\mathrm{D}_{\mathrm{j}, \mathrm{j}}=1 /\left(\mathrm{q}_{\mathrm{i}} \mathrm{k}\right)^{5}$


## Leverage Score Sampling

- Note: leverage scores do not depend on choice of orthonormal basis $U$ for columns of $A$
- Indeed, let U and U' be two such orthonormal bases
- Claim: $\left|\mathrm{e}_{\mathrm{i}} \mathrm{U}\right|_{2}^{2}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{U}^{\prime}\right|_{2}^{2}$ for all i
- Proof: Since both $U$ and $U$ ' have column space equal to that of $A$, we have $U=U^{\prime} Z$ for change of basis matrix $Z$
- Since $U$ and $U$ ' each have orthonormal columns, $Z$ is a rotation matrix (orthonormal rows and columns)
- Then $\left|\mathrm{e}_{\mathrm{i}} U\right|_{2}^{2}=\left|\mathrm{e}_{\mathrm{i}} U^{\prime} Z\right|_{2}^{2}=\left|\mathrm{e}_{\mathrm{i}} U^{\prime}\right|_{2}^{2}$


## Leverage Score Sampling gives a Subspace Embedding

- Want to show for $S=\mathrm{D} \cdot \Omega^{\mathrm{T}}$, that $|\mathrm{SAx}|_{2}^{2}=(1 \pm \epsilon)|\mathrm{Ax}|_{2}^{2}$ for all x
- Writing $A=U \Sigma V^{T}$ in its SVD, this is equivalent to showing $|S U y|_{2}^{2}=(1 \pm \epsilon)|U y|_{2}^{2}=(1 \pm \epsilon)|y|_{2}^{2}$ for all $y$
- As usual, we can just show with high probability, $\left|\mathrm{U}^{\mathrm{T}} \mathrm{S}^{\mathrm{T}} \mathrm{SU}-\mathrm{I}\right|_{2} \leq \epsilon$
- How can we analyze $U^{T} S^{T} S U$ ?
- (Matrix Chernoff) Let $X_{1}, \ldots, X_{k}$ be independent copies of a symmetric random matrix $\mathrm{X} \in \mathrm{R}^{\mathrm{dxd}}$ with $\mathrm{E}[\mathrm{X}]=0,|\mathrm{X}|_{2} \leq \gamma$, and $\left|\mathrm{E}\left[\mathrm{X}^{\mathrm{T}} \mathrm{X}\right]\right|_{2} \leq \sigma^{2}$. Let $\mathrm{W}=$ $\frac{1}{k} \sum_{j \in[k]} X_{j}$. For any $\epsilon>0$,

$$
\operatorname{Pr}\left[|\mathrm{W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{k} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)}
$$

(here $|W|_{2}=\sup \frac{|\mathrm{Wx}|_{2}}{|\mathrm{x}|_{2}}$. Since W is symmetric, $|\mathrm{W}|_{2}=\sup _{|\mathrm{x}|_{2}=1} \mathrm{x}^{\mathrm{T}} \mathrm{Wx}$.)

## Leverage Score Sampling gives a Subspace Embedding

- Let $i(j)$ denote the index of the row of $U$ sampled in the $j$-th trial
- Let $X_{j}=I_{d}-\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the $j$-th sampled row of $U$
- The $X_{j}$ are independent copies of a symmetric matrix random variable
- $E\left[X_{j}\right]=I_{d}-\sum_{i} q_{i}\left(\frac{U_{i}^{T} U_{i}}{q_{i}}\right)=I_{d}-I_{d}=0^{d}$
- $\left|X_{j}\right|_{2} \leq\left|I_{d}\right|_{2}+\frac{\left|U_{i(j)}^{T} U_{i(j)}\right|_{2}}{q_{i(j)}} \leq 1+\max _{\mathrm{i}} \frac{\left|\mathrm{U}_{\mathrm{i}}\right|_{2}^{2}}{q_{\mathrm{i}}} \leq 1+\frac{\mathrm{d}}{\beta}$
- $E\left[X^{T} X\right]=I_{d}-2 E\left[\frac{U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}}\right]+E\left[\frac{U_{i(j)}^{T} U_{i(j)} U_{i(j)}^{T} U_{i(j)}}{q_{i(j)}^{2}}\right]$

$$
=\sum_{i} \frac{U_{i}^{T} U_{i} U_{i}^{T} U_{i}}{q(i)}-I_{d} \leq\left(\frac{d}{\beta}\right) \sum_{i} U_{i}^{T} U_{i}-I_{d} \leq\left(\frac{d}{\beta}-1\right) I_{d},
$$

where $A \leq B$ means $x^{T} A x \leq x^{T} B x$ for all $x$

- Hence, $\left|E\left[X^{T} X\right]\right|_{2} \leq \frac{d}{\beta}-1$


## Applying the Matrix Chernoff Bound

- (Matrix Chernoff) Let $X_{1}, \ldots, X_{k}$ be independent copies of a symmetric random matrix $X \in R^{d x d}$ with $E[X]=0,|X|_{2} \leq \gamma$, and $\left|E\left[X^{T} X\right]\right|_{2} \leq \sigma^{2}$. Let $W=$ $\frac{1}{k} \sum_{j \in[k]} X_{j}$. For any $\epsilon>0$,

$$
\operatorname{Pr}\left[|\mathrm{W}|_{2}>\epsilon\right] \leq 2 \mathrm{~d} \cdot \mathrm{e}^{-\mathrm{k} \epsilon^{2} /\left(\sigma^{2}+\frac{\gamma \epsilon}{3}\right)}
$$

$$
\text { (here }|W|_{2}=\sup \frac{|\mathrm{Wx}|_{2}}{|\mathrm{x}|_{2}} . \text { Since } W \text { is symmetric, }|\mathrm{W}|_{2}=\sup _{|\mathrm{x}|_{2}=1} \mathrm{x}^{T} W \mathrm{x} . \text { ) }
$$

- $\gamma=1+\frac{\mathrm{d}}{\beta}$, and $\sigma^{2}=\frac{\mathrm{d}}{\beta}-1$
- $X_{j}=I_{d}-\frac{U_{i(j)}^{T} U_{i(j)}}{\mathrm{C}_{\mathrm{i}(\mathrm{j})}}$, and recall how we generated $\mathrm{S}=\mathrm{D} \cdot \Omega^{T}$ : For each column jof $\Omega, \mathrm{D}$, independently, and with replacement, pick a row index i in [ n ] with probability $\mathrm{q}_{\mathrm{i}}$, and set $\Omega_{\mathrm{i}, \mathrm{j}}=1$ and $\mathrm{D}_{\mathrm{j}, \mathrm{j}}=1 /\left(\mathrm{q}_{\mathrm{i}} \mathrm{k}\right)^{\cdot 5}$
- Implies W $=\mathrm{I}_{\mathrm{d}}-\mathrm{U}^{\mathrm{T}} \mathrm{S}^{\mathrm{T}} \mathrm{SU}$
- $\operatorname{Pr}\left[\left|I_{d}-U^{T} S^{T} S U\right|_{2}>\epsilon\right] \leq 2 d \cdot e^{-k \epsilon^{2} \Theta\left(\frac{\beta}{d}\right)}$. Set $k=\Theta\left(\frac{d \log d}{\beta \epsilon^{2}}\right)$ and we're done.


## Fast Computation of Leverage Scores

- Naively, need to do an SVD to compute leverage scores
- Suppose we compute SA for a subspace embedding S
- Let $S A=\mathrm{QR}^{-1}$ be such that Q has orthonormal columns
- Set $\ell_{\mathrm{i}}^{\prime}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{AR}\right|_{2}^{2}$
- Since $A R$ has the same column span of $A, A R=U T{ }^{-1}$
- $(1-\epsilon)|\operatorname{ARx}|_{2} \leq|\operatorname{SARx}|_{2}=|x|_{2}$
- $(1+\epsilon)|\operatorname{ARx}|_{2} \geq|\operatorname{SARx}|_{2}=|\mathrm{x}|_{2}$
- $(1 \pm O(\epsilon))|\mathrm{x}|_{2}=|A R x|_{2}=\left|\mathrm{UT}^{-1} \mathrm{x}\right|_{2}=\left|\mathrm{T}^{-1} \mathrm{x}\right|_{2}$,
- $\ell_{\mathrm{i}}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{ART}\right|_{2}^{2}=(1 \pm \mathrm{O}(\epsilon))\left|\mathrm{e}_{\mathrm{i}} \mathrm{AR}\right|_{2}^{2}=(1 \pm O(\epsilon)) \ell_{\mathrm{i}}{ }^{\prime}$
- But how do we compute AR? We want nnz(A) time


## Fast Computation of Leverage Scores

- $\quad \ell_{\mathrm{i}}=(1 \pm 0(\epsilon)) \ell_{\mathrm{i}}^{\prime}$
- Suffices to set this $\epsilon$ to be a constant
- Set $\ell_{\mathrm{i}}^{\prime}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{AR}\right|_{2}^{2}$
- This takes too long
- Let G be adx $\mathrm{O}(\log \mathrm{n})$ matrix of i.i.d. normal random variables
- For any vector $z, \operatorname{Pr}\left[|z G|_{2}^{2}=\left(1 \pm \frac{1}{2}\right)|z|^{2}\right] \geq 1-\frac{1}{n^{2}}$
- Instead set $\ell_{\mathrm{i}}^{\prime}=\left|\mathrm{e}_{\mathrm{i}} \mathrm{ARG}\right|_{2}^{2}$.
- Can compute in $\left(n n z(A)+d^{2}\right) \log n$ time
- Can solve regression in nnz(A) $\log n+\operatorname{poly}(d(\log n) / \varepsilon)$ time


## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression


## Distributed low rank approximation

- We have fast algorithms for low rank approximation, but can they be made to work in a distributed setting?
- Matrix A distributed among s servers
- For $\mathrm{t}=1, \ldots, \mathrm{~s}$, we get a customer-product matrix from the $t$-th shop stored in server $t$. Server t's $^{\text {matrix }}=\mathrm{A}^{\mathrm{t}}$
- Customer-product matrix $A=A^{1}+A^{2}+\ldots+A^{s}$
- Model is called the arbitrary partition model
- More general than the row-partition model in which each customer shops in only one shop


## The Communication Model



Server 1
Server 2
Server s

- Each player talks only to a Coordinator via 2-way communication
- Can simulate arbitrary point-to-point communication up to factor of 2 (and an additive O (log s) factor per message)


## Communication cost of low rank approximation

- Input: $\mathrm{n} \times \mathrm{d}$ matrix A stored on s servers
- Server thas nxd matrix $A^{t}$
- $A=A^{1}+A^{2}+\ldots+A^{s}$
- Assume entries of $A^{t}$ are $O(\log (n d))$-bit integers
- Output: Each server outputs the same k-dimensional space $W$
- $C=A^{1} P_{W}+A^{2} P_{W}+\ldots+A^{s} \mathrm{P}_{\mathrm{W}}$, where $\mathrm{P}_{\mathrm{W}}$ is the projection onto W
- $|A-C|_{F} \leq(1+\varepsilon)\left|A-A_{k}\right|_{F}$
- Application: k-means clustering
- Resources: Minimize total communication and computation. Also want $O(1)$ rounds and input sparsity time


## Work on Distributed Low Rank Approximation

- [FSS]: First protocol for the row-partition model.
- O(sdk/ع) real numbers of communication
- Don't analyze bit complexity (can be large)
- SVD Running time, see also [BKLW]
- [KVW]: O(skd/ $\varepsilon$ ) communication in arbitrary partition model
- [BWZ]: O(skd) + poly(sk/ع) words of communication in arbitrary partition model. Input sparsity time
- Matching $\Omega$ (skd) words of communication lower bound
- Variants: kernel low rank approximation [BLSWX], low rank approximation of an implicit matrix [WZ], sparsity [BWZ]


## Outline of Distributed Protocols

- [FSS] protocol
" [KVW] protocol
- [BWZ] protocol


## Constructing a Coreset [FSS]

- Let $A=U \Sigma V^{T}$ be its SVD
- Let $\mathrm{m}=\mathrm{k}+\mathrm{k} / \epsilon$
- Let $\Sigma_{\mathrm{m}}$ agree with $\Sigma$ on the first m diagonal entries, and be 0 otherwise
- Claim: For all projection matrices $\mathrm{Y}=\mathrm{I}-\mathrm{X}$ onto (d-k)-dimensional subspaces,

$$
\begin{gathered}
\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}=(1 \pm \epsilon)|\mathrm{AY}|_{\mathrm{F}}^{2}+\mathrm{c} \\
\text { where } \mathrm{c}=\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2} \text { does not depend on } \mathrm{Y}
\end{gathered}
$$

- We can think of $S$ as $U_{m}^{T}$ so that $S A=U_{m}^{T} U \Sigma V^{T}=\Sigma_{m} V^{T}$ is a sketch


## Constructing a Coreset

- Claim: For all projection matrices $Y=1-X$ onto ( $n-k$ )-dimensional subspaces,

$$
\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\mathrm{c}=(1 \pm \epsilon)|\mathrm{AY}|_{\mathrm{F}}^{2}
$$

where $c=\left|A-A_{m}\right|_{F}^{2}$ does not depend on $Y$

- Proof: $|A Y|_{F}^{2}=\left|U \Sigma_{\mathrm{m}} V^{T} Y\right|_{F}^{2}+\left|\mathrm{U}\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}$

$$
\leq\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}=\left|\Sigma_{\mathrm{m}} \mathrm{~V}^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\mathrm{c}
$$

$$
\text { Also, } \begin{aligned}
& \left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{Y}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}-|\mathrm{AY}|_{\mathrm{F}}^{2} \\
& =\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}}\right|_{\mathrm{F}}^{2}-\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{X}\right|_{\mathrm{F}}^{2}+\left|\mathrm{A}-\mathrm{A}_{\mathrm{m}}\right|_{\mathrm{F}}^{2}-|\mathrm{A}|_{\mathrm{F}}^{2}+|\mathrm{AX}|_{\mathrm{F}}^{2} \\
& =|\mathrm{AX}|_{\mathrm{F}}^{2}-\left|\Sigma_{\mathrm{m}} V^{\mathrm{T}} \mathrm{X}\right|_{\mathrm{F}}^{2} \\
= & \left|\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T} X}\right|_{\mathrm{F}}^{2} \\
& \leq\left|\left(\Sigma-\Sigma_{\mathrm{m}}\right) \mathrm{V}^{\mathrm{T}}\right|_{2}^{2} \cdot|\mathrm{X}|_{\mathrm{F}}^{2} \\
& \leq \sigma_{\mathrm{m}+1}^{2} \mathrm{k} \leq \epsilon \sigma_{\mathrm{m}+1}^{2}(\mathrm{~m}-\mathrm{k}) \leq \epsilon \sum_{\mathrm{i} \in\{\mathrm{k}+1, \ldots, \mathrm{~m}+1\}} \sigma_{\mathrm{i}}^{2} \leq \epsilon\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}
\end{aligned}
$$

## Unions of Coresets

- Suppose we have matrices $\mathrm{A}^{1}, \ldots, \mathrm{~A}^{\mathrm{s}}$ and construct $\Sigma_{\mathrm{m}}^{1} \mathrm{~V}^{\mathrm{T}, 1}, \Sigma_{\mathrm{m}}^{2} \mathrm{~V}^{\mathrm{T}, 2}, \ldots, \Sigma_{\mathrm{m}}^{\mathrm{s}} \mathrm{V}^{\mathrm{T}, \mathrm{s}}$ as in the previous slide, together with $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{s}}$
- Then $\sum_{i}\left|\Sigma_{m}^{i} V^{T, i} Y\right|_{F}^{2}+c_{i}=(1 \pm \epsilon)|A Y|_{F}^{2}$, where $A$ is the matrix formed by concatenating the rows of $A^{1}, \ldots, A^{s}$
- Let B be the matrix obtained by concatenating the rows of $\Sigma_{\mathrm{m}}^{1} \mathrm{~V}^{\mathrm{T}, 1}, \Sigma_{\mathrm{m}}^{2} \mathrm{~V}^{\mathrm{T}, 2}, \ldots, \Sigma_{\mathrm{m}}^{\mathrm{s}} \mathrm{V}^{\mathrm{T}, \mathrm{s}}$
- Suppose we compute $B=U \Sigma V^{T}$ and compute $\Sigma_{m} V^{T}$ and $\left|B-B_{m}\right|_{F}^{2}$
- Then $\left|\Sigma_{m} V^{T} Y\right|_{F}^{2}+c+\sum_{i} c_{i}=(1 \pm \epsilon)|B Y|_{F}^{2}+\sum_{i} c_{i}=(1 \pm O(\epsilon))|A Y|_{F}^{2}$
- So $\Sigma_{m} V^{T}$ and the constant $\mathrm{c}+\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}$ are a coreset for A


## [FSS] Row-Partition Protocol



- Server t sends the top $\mathrm{k} / \varepsilon+\mathrm{k}$ principal components of $\mathrm{P}^{\mathrm{t}}$, scaled by the top $\mathrm{k} / \varepsilon+\mathrm{k}$ singular values $\Sigma^{\mathrm{t}}$, together with $c^{t}$
- Coordinator returns top $k$ principal components of $\left[\Sigma^{1} V^{1} ; \Sigma^{2} V^{2} ; \ldots ; \Sigma^{s} V^{s}\right]$


## [FSS] Row-Partition Protocol

[KVW] protocol will handle 2,3 , and 4

## Problems:

1. $\mathrm{sdk} / \varepsilon$ real numbers of communication
2. bit complexity can be large
3. running time for SVDs [BLKW]
4. doesn't work in arbitrary partition model

This is an SVD-based protocol. Maybe our random matrix techniques can improve communication just like they improved computation?

## [KVW] Arbitrary Partition Model Protocol

- Inspired by the sketching algorithm presented earlier
- Let $S$ be one of the $\mathrm{k} / \varepsilon \times \mathrm{n}$ random matrices discussed
- S can be generated pseudorandomly from small seed
- Coordinator sends small seed for $S$ to all servers
- Server t computes SA ${ }^{t}$ and sends it to Coordinator
- Coordinator sends $\Sigma_{\mathrm{t}=1} \mathrm{~s} \mathrm{SA}^{\mathrm{t}}=\mathrm{SA}$ to all servers
- There is a good k-dimensional subspace inside of SA. If we knew it, t-th server could output projection of $A^{t}$ onto it


## [KVW] Arbitrary Partition Model Protocol

## Problems:

- Can't output projection of $A^{t}$ onto SA since the rank is too large
- Could communicate this projection to the coordinator who could find a k-dimensional space, but communication depends on $n$


## [KVW] Arbitrary Partition Model Protocol


[KVW] protocol

- Phase 1:
- Learn the row space of SA


$$
\operatorname{cost} \leq(1+\varepsilon)\left|A-A_{k}\right| F
$$

## [KVW] protocol

- Phase 2:
- Find an approximately optimal space W inside of SA


$$
\operatorname{cost} \leq(1+\varepsilon)^{2}\left|A-A_{k}\right|_{F}
$$

## [BWZ] Protocol

- Main Problem: communication is $\mathrm{O}(\mathrm{skd} / \varepsilon)+\operatorname{poly}(\mathrm{sk} / \varepsilon)$
" We want O(skd) + poly(sk/ع) communication!
- Idea: use projection-cost preserving sketches [CEMMP]
- Let A be an nx d matrix
- If $S$ is a random $k / \varepsilon^{2} \times n$ matrix, then there is a constant $c \geq 0$ so that for all k -dimensional projection matrices P :

$$
|\mathrm{SA}(\mathrm{I}-\mathrm{P})|_{\mathrm{F}}+\mathrm{c}=(1 \pm \epsilon)|\mathrm{A}(\mathrm{I}-\mathrm{P})|_{\mathrm{F}}
$$ left singular vectors of SA

- Let $S$ be a $k / \varepsilon^{2} \times n$ projection-cost preserving sketch
- Let T be a $\mathrm{d} \mathrm{xk} / \varepsilon^{2}$ projection-cost preserving sketch
- Server t sends SA ${ }^{\mathrm{t}} \mathrm{T}$ to Coordinator
- Coordinator sends back SAT $=\sum_{\mathrm{t}} \mathrm{SA}^{\mathrm{t}} \mathrm{T}$ to servers
- Each server computes $k / \varepsilon^{2} \times k$ matrix $U$ of top $k$ left singular vectors of SAT

Thus, $U^{T}$ SA looks like top $k$ right singular vectors of SA

- Server t sends $U^{T} S A^{t}$ to Coordinator
- Coordinator returns the space $\mathrm{U}^{\mathrm{T}} \mathrm{SA}=\sum_{\mathrm{t}} \mathrm{U}^{\mathrm{T}} \mathrm{SA}^{\mathrm{t}}$ to output


## Top $k$ right singular vectors of SA work because $S$ is a projectioncost preserving sketch!

## [BWZ] Analysis

- Let $W$ be the row span of $U^{T} S A$, and $P$ be the projection onto $W$
- Want to show $|\mathrm{A}-\mathrm{AP}|_{\mathrm{F}} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}$
- Since T is a projection-cost preserving sketch,
(*) $\quad|S A-S A P|_{F} \leq\left|S A-U U^{T} S A\right|_{F}+c_{1} \leq(1+\epsilon)\left|S A-[S A]_{k}\right|_{F}$
- Since $S$ is a projection-cost preserving sketch, there is a scalar c > 0 , so that for all $k$-dimensional projection matrices $Q$,

$$
|S A-S A Q|_{F}+c=(1 \pm \epsilon)|A-A Q|_{F}
$$

- Add c to both sides of $\left({ }^{*}\right)$ to conclude $|\mathrm{A}-\mathrm{AP}|_{\mathrm{F}} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F} 100}$


## Conclusions for Distributed Low Rank Approximation

- [BWZ] Optimal O(sdk) + poly(sk/ع) communication protocol for low rank approximation in arbitrary partition model
- Handle bit complexity by adding noise
- Input sparsity time
- 2 rounds, which is optimal [W]
- Optimal data stream algorithms improves [CW, L, GP]
- Communication of other optimization problems?
- Computing the rank of an $\mathrm{n} \times \mathrm{n}$ matrix over the reals
- Linear Programming
- Graph problems: Matching
- etc.


## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator Regression


## Robust Regression

## Method of least absolute deviation ( $\mathrm{I}_{1}$-regression)

- Find $x^{*}$ that minimizes $|A x-b|_{1}=\Sigma\left|b_{i}-<A_{i^{*}}, x>\right|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming


## Solving $I_{1}$-regression via Linear Programming

- Minimize $(1, \ldots, 1) \cdot\left(\alpha^{+}+\alpha^{-}\right)$
- Subject to:

$$
\begin{aligned}
\mathrm{Ax}+\alpha^{+}-\alpha^{-} & =\mathrm{b} \\
\alpha^{+}, \alpha^{-} & \geq 0
\end{aligned}
$$

- Generic linear programming gives poly(nd) time
- Want much faster time using sketching!


## Well-Conditioned Bases

- For an $n \times d$ matrix $A$, can choose an $n \times d$ matrix $U$ with orthonormal columns for which $A=U W$, and $|U x|_{2}=|x|_{2}$ for all $x$
- Can we find a $U$ for which $A=U W$ and $|U x|_{1} \approx|x|_{1}$ for all $x$ ?
- Let $A=Q W$ where $Q$ has full column rank, and define $|z|_{\mathrm{Q}, 1}=|\mathrm{Qz}|_{1}$
- $|z|_{Q, 1}$ is a norm
- Let $C=\left\{z \in R^{d}:|z|_{Q, 1} \leq 1\right\}$ be the unit ball of $|\cdot|_{Q, 1}$
- C is a convex set which is symmetric about the origin
- Lowner-John Theorem: can find an ellipsoid E such that: $\mathrm{E} \subseteq \mathrm{C} \subseteq \sqrt{\mathrm{d}} \mathrm{E}$, where $E=\left\{z \in R^{d}: z^{T} F z \leq 1\right\}$
- $\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{.5} \leq|\mathrm{z}|_{\mathrm{Q}, 1} \leq \sqrt{\mathrm{d}}\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{-5}$
- $F=G G^{T}$ since $F$ defines an ellipsoid
- Define $U=Q^{-1}$


## Well-Conditioned Bases

- Recall $U=Q^{-1}$ where

$$
\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{.5} \leq|\mathrm{z}|_{\mathrm{Q}, 1} \leq \sqrt{\mathrm{d}}\left(\mathrm{z}^{\mathrm{T}} \mathrm{Fz}\right)^{.5} \text { and } \mathrm{F}=\mathrm{GG}^{\mathrm{T}}
$$

- $|\mathrm{Ux}|_{1}=\left|\mathrm{QG}^{-1} \mathrm{x}\right|_{1}=|\mathrm{Qz}|_{1}=|\mathrm{z}|_{\mathrm{Q}, 1}$ where $\mathrm{z}=\mathrm{G}^{-1} \mathrm{x}$
- $z^{T} F z=\left(x^{T}\left(G^{-1}\right)^{T} G^{T} G\left(G^{-1}\right) x\right)=x^{T} x=|x|_{2}^{2}$
- So $|\mathrm{x}|_{2} \leq|\mathrm{Ux}|_{1} \leq \sqrt{\mathrm{d}}|\mathrm{x}|_{2}$
- So $\frac{|\mathrm{x}|_{1}}{\sqrt{\mathrm{~d}}} \leq|\mathrm{x}|_{2} \leq|\mathrm{Ux}|_{1} \leq \sqrt{\mathrm{d}}|\mathrm{x}|_{2} \leq \sqrt{\mathrm{d}}|\mathrm{x}|_{1}$


## Net for $\ell_{1}-$ Ball

- Consider the unit $\ell_{1}$-ball $B=\left\{x \in R^{d}:|x|_{1}=1\right\}$
- Subset $N$ is a $\gamma$-net if for all $x \in B$, there is a $y \in N$, such that $|x-y|_{1} \leq \gamma$
- Greedy construction of N
- While there is a point $\mathrm{x} \in \mathrm{B}$ of distance larger than $\gamma$ from every point in $N$, include $x$ in $N$
- The $\ell_{1}$-ball of radius $\gamma / 2$ around every point in $N$ is contained in the $\ell_{1}$-ball of radius $1+\gamma / 2$ around $0^{d}$
- Further, all such ball are disjoint
- Ratio of volume of d-dimensional similar polytopes of radius $1+\gamma / 2$ to radius $\gamma / 2$ is $(1+\gamma / 2)^{d} /(\gamma / 2)^{d}$, so $|\mathrm{N}| \leq(1+\gamma / 2)^{\mathrm{d}} /(\gamma / 2)^{\mathrm{d}}$


## Net for $\ell_{1}$ - Subspace

- Let A = UW for a well-conditioned basis U
- $|\mathrm{x}|_{1} \leq|\mathrm{Ux}|_{1} \leq \mathrm{d}|\mathrm{x}|_{1}$ for all x
- Let N be a $(\gamma / \mathrm{d})$-net for the unit $\ell_{1}$-ball B
- Let $M=\{U x \mid x$ in $N\}$, so $|M| \leq(1+\gamma /(2 d))^{d} /(\gamma /(2 d))^{d}$
- Claim: For every x in B , there is a y in M for which $|\mathrm{Ax}-\mathrm{y}|_{1} \leq \gamma$
- Proof: Let $x^{\prime}$ in B be such that $\left|x-x^{\prime}\right|_{1} \leq \gamma / d$ Then $\left|A x-A x^{\prime}\right|_{1} \leq d\left|x-x^{\prime}\right|_{1} \leq \gamma$, using the well-conditioned basis property. Set $y=A x^{\prime}$
- $|\mathrm{M}| \leq\left(\frac{\mathrm{d}}{\mathrm{y}}\right)^{\mathrm{O}(\mathrm{d})}$


## Rough Algorithm Overview



## Rough Algorithm Overview



Will focus on showing how to quickly compute

1. A poly(d)-approximation
2. A well-conditioned basis

## Sketching Theorem

## Theorem

- There is a probability space over ( $\mathrm{d} \log \mathrm{d}$ ) $\times \mathrm{n}$ matrices $R$ such that for any $n \times d$ matrix $A$, with probability at least 99/100 we have for all $x$ :

$$
|A x|_{1} \leq|R A x|_{1} \leq d \log d \cdot|A x|_{1}
$$

## Embedding

- is linear
- is independent of $A$
- preserves lengths of an infinite number of vectors


## Application of Sketching Theorem

## Computing a d(log d)-approximation

- Compute RA and Rb
- Solve $x^{\prime}=\operatorname{argmin}_{x}|R A x-R b|_{1}$
- Main theorem applied to A•b implies x' is a d log dapproximation
- RA, Rb have d log d rows, so can solve $\mathrm{I}_{1}$-regression efficiently


## Application of Sketching Theorem

## Computing a well-conditioned basis

1. Compute RA
2. Compute W so that RAW is orthonormal (in the $\mathrm{I}_{2}$-sense)
3. Output U = AW
$\mathrm{U}=\mathrm{AW}$ is well-conditioned because
$|A W x|_{1} \leq|R A W x|_{1} \leq(d \log d)^{1 / 2}|R A W x|_{2}=(d \log d)^{1 / 2}|x|_{2} \leq(d \log d)^{1 / 2}|x|_{1}$ and
$|A W x|_{1} \geq|R A W x|_{1} /(d \log d) \geq|R A W x|_{2} /(d \log d)=|x|_{2} /(d \log d) \geq|x|_{1} /\left(d^{3 / 2} \log d\right)_{14}$

## Sketching Theorem

## Theorem:

- There is a probability space over ( $\mathrm{d} \log \mathrm{d}$ ) $\times \mathrm{n}$ matrices R such that for any $\mathrm{n} \times \mathrm{d}$ matrix A, with probability at least $99 / 100$ we have for all x :

$$
|A x|_{1} \leq|R A x|_{1} \leq d \log d \cdot|A x|_{1}
$$

## A dense R that works:

The entries of $R$ are i.i.d. Cauchy random variables, scaled by $1 /(\mathrm{d} \log \mathrm{d})$

## Cauchy Random Variables

- $\operatorname{pdf}(z)=1 /\left(\pi\left(1+z^{2}\right)\right)$ for $z$ in $(-\infty, \infty)$
- Undefined expectation and infinite variance
- 1-stable:

- If $z_{1}, z_{2}, \ldots, z_{n}$ are i.i.d. Cauchy, then for $a \in R^{n}$,

$$
a_{1} \cdot z_{1}+a_{2} \cdot z_{2}+\ldots+a_{n} \cdot z_{n} \sim|a|_{1} \cdot z, \text { where } z \text { is Cauchy }
$$

- Can generate as the ratio of two standard normal random variables


## Proof of Sketching Theorem

- By 1-stability,
- For all rows $r$ of $R$,
- <r, Ax> = |Ax| $\cdot Z /(d \log d)$, where $Z$ is a Cauchy

- $R A x=\left(|A x|_{1} \cdot Z_{1}, \ldots,|A x|_{1} \cdot Z_{d \log d}\right) /(d \log d)$, where $Z_{1}, \ldots, Z_{d \log d}$ are i.i.d. Cauchy
- $|R A x|_{1}=|A x|_{1} \sum_{j}\left|Z_{j}\right| /(d \log d)$
- The $\left|Z_{j}\right|$ are half-Cauchy
- $\quad \sum_{j}\left|Z_{j}\right|=\Omega(d \log d)$ with probability 1-exp(-d log d) by Chernoff
- But the $\left|Z_{j}\right|$ are heavy-tailed...


## Proof of Sketching Theorem

- $\sum_{\mathrm{j}}\left|\mathrm{Z}_{\mathrm{j}}\right|$ is heavy-tailed, so $|\mathrm{RAx}|_{1}=|A x|_{1} \sum_{\mathrm{j}}\left|\mathrm{Z}_{\mathrm{j}}\right| /(\mathrm{d}$ log d) may be large
- Each $\left|Z_{j}\right|$ has c.d.f. asymptotic to $1-\Theta(1 / z)$ for $z$ in $[0, \infty)$
- There exists a well-conditioned basis of A
- Suppose w.l.o.g. the basis vectors are $A_{*_{1}}, \ldots, A_{*_{d}}$
- $\left|R_{*}^{*}\right|_{1}=\left|A_{*}\right| 1 \cdot \sum_{j}\left|Z_{i, j}\right|(d \log d)$
- Let $\mathrm{E}_{\mathrm{i}, \mathrm{j}}$ be the event that $\left|\mathrm{Z}_{\mathrm{i}, \mathrm{j}}\right| \leq \mathrm{d}^{3}$
- Define $\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime}=\left|\mathrm{Z}_{\mathrm{i}, \mathrm{j}}\right|$ if $\left|\mathrm{Z}_{\mathrm{i}, \mathrm{j}}\right| \leq \mathrm{d}^{3}$, and $\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime}=\mathrm{d}^{3}$ otherwise
= $E\left[Z_{i, j} \mid E_{i, j}\right]=E\left[Z_{i, j}^{\prime} \mid E_{i, j}\right]=O(\log d)$
- Let E be the event that for all $\mathrm{i}, \mathrm{j}, \mathrm{E}_{\mathrm{i}, \mathrm{j}}$ occurs
- $\operatorname{Pr}[\mathrm{E}] \geq 1-\frac{\log \mathrm{d}}{\mathrm{d}}$
- What is $\mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right]$ ?


## Proof of Sketching Theorem

- What is $\mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right]$ ?
- $E\left[Z_{i, j}^{\prime} \mid E_{i, j}\right]=E\left[Z_{i, j}^{\prime} \mid E_{i, j}, E\right] \operatorname{Pr}\left[E \mid E_{i, j}\right]+E\left[Z_{i, j}^{\prime} \mid E_{i, j} \neg E\right] \operatorname{Pr}\left[\neg E \mid E_{i, j}\right]$

$$
\begin{aligned}
& \geq \mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}_{\mathrm{i}, \mathrm{j}}, \mathrm{E}\right] \operatorname{Pr}\left[\mathrm{E} \mid \mathrm{E}_{\mathrm{i}, \mathrm{j}}\right] \\
& \\
& =\mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right] \cdot\left(\frac{\operatorname{Pr}\left[\mathrm{E}_{\mathrm{i}, \mathrm{j}} \mathrm{E}\right] \operatorname{Pr}[\mathrm{E}]}{\operatorname{Pr}\left[\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right]}\right) \\
& \geq \mathrm{E}\left[\mathrm{Z}_{\mathrm{i}, \mathrm{j}}^{\prime} \mid \mathrm{E}\right] \cdot\left(1-\frac{\log \mathrm{d}}{\mathrm{~d}}\right)
\end{aligned}
$$

- So, $E\left[Z_{i, j}^{\prime} \mid E\right]=O(\log d)$
- $\left|R_{A_{*}}\right|_{1}=\left|A_{*}\right|_{1} \cdot \sum_{i, j}\left|Z_{i, j}\right| /(d \log d)$
- With constant probability, $\sum_{i}\left|\operatorname{RA}_{* i}\right|_{1}=\mathrm{O}(\log d) \sum_{i}\left|A_{* i}\right|_{1}$


## Proof of Sketching Theorem

- With constant probability, $\sum_{i}\left|\mathrm{RA}_{* i}\right|_{1}=\mathrm{O}(\log \mathrm{d}) \sum_{\mathrm{i}}\left|\mathrm{A}_{*_{i}}\right|_{1}$
- Recall $A_{*_{1}}, \ldots, A_{*_{d}}$ is a well-conditioned basis, and we showed the existence of such a basis earlier
- We will use the Auerbach basis which always exists:
- For all $x,|x|_{\infty} \leq|A x|_{1}$
- $\sum_{i}\left|\mathrm{~A}_{*_{i}}\right| 1=\mathrm{d}$
- $\quad \sum_{i}\left|\mathrm{RA}_{\star}\right|_{1}=\mathrm{O}(\mathrm{d} \log \mathrm{d})$
- For all $\mathrm{x},|\mathrm{RAx}|_{1} \leq \sum_{\mathrm{i}}\left|\mathrm{RA}_{*_{\mathrm{i}}} \mathrm{x}_{\mathrm{i}}\right| \leq|\mathrm{x}|_{\infty} \sum_{\mathrm{i}}\left|\mathrm{RA}_{*}\right|_{1}$
$=|x|_{\infty} O(d \log d)$
$=O(d \log d)|A x|_{1}$


## Where are we?

- Suffices to show for all $x$ with $|x|_{1}=1$, that $|A x|_{1} \leq|R A x|_{1} \leq d \log d \cdot|A x|_{1}$
- We know
- (1) there is a $\gamma$-net $M$, with $|M| \leq\left(\frac{d}{\gamma}\right)^{O(d)}$, of the set $\left\{A x\right.$ such that $\left.|x|_{1}=1\right\}$
- (2) for any fixed $x,|R A x|_{1} \geq|A x|_{1}$ with probability $1-\exp (-d \log d)$
- (3) for all $x,|R A x|_{1}=O(d \log d)|A x|_{1}$
- Set $\gamma=1 /\left(d^{3} \log d\right)$ so $|M| \leq d^{O(d)}$
- By a union bound, for all y in $\mathrm{M},|\mathrm{Ry}|_{1} \geq|\mathrm{y}|_{1}$
- Let x with $|\mathrm{x}|_{1}=1$ be arbitrary. Let y in M satisfy $|A x-y|_{1} \leq \gamma=1 /\left(d^{3} \log d\right)$
- $|R A x|_{1} \geq|R y|_{1}-|R(A x-y)|_{1}$
$\geq|y|_{1}-O(d \log d)|A x-y|_{1}$
$\geq|y|_{1}-O(d \log d) \gamma$
$\geq|y|_{1}-0\left(\frac{1}{d^{2}}\right)$
$\geq|y|_{1} / 2 \quad$ (why?)


## Sketching to solve $\mathrm{I}_{1}$-regression [CW, MM]

- Most expensive operation is computing $R^{*} A$ where $R$ is the matrix of i.i.d. Cauchy random variables
- All other operations are in the "smaller space"
- Can speed this up by choosing $R$ as follows:



## Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose $R$ as follows
- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables



## Course Outline

- Subspace embeddings and least squares regression
- Gaussian matrices
- Subsampled Randomized Hadamard Transform
- CountSketch
- Affine embeddings
- Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator Regression


## Robust Regression Fitness Measures

Example: Method of least absolute deviation (I, -regression)

- Find $x^{*}$ that minimizes $|A x-b|_{1}=\Sigma\left|b_{i}-<A_{i^{*}}, x>\right|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming
- Can solve in $n n z(A)+\operatorname{poly}(\mathrm{d} / \varepsilon)$ time using sketching

What about the many other fitness measures used in practice?

## M-Estimators

- Measure function
$-\mathrm{M}: \mathrm{R}->\mathrm{R}^{0}$
$-M(x)=M(-x), M(0)=0$
$-M$ is non-decreasing in $|x|$
- $|\mathrm{y}|_{\mathrm{M}}=\sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{M}\left(\mathrm{y}_{\mathrm{i}}\right)$
- Solve $\min _{x}|A x-b|_{M}$
- Least squares and $\mathrm{L}_{1}$-regression are special cases


## Huber Loss Function

$$
\begin{aligned}
& M(x)=x^{2} /(2 c) \text { for }|x| \leq c \\
& M(x)=|x|-c / 2 \text { for }|x|>c
\end{aligned}
$$

Enjoys smoothness properties of $\mathrm{I}_{2} 2$ and robustness properties of $\mathrm{I}_{1}$


## Other Examples

- $L_{1}-L_{2}$

$$
M(x)=2\left(\left(1+x^{2} / 2\right)^{1 / 2}-1\right)
$$

- Fair estimator

$$
M(x)=c^{2}[|x| / c-\log (1+|x| / c)]
$$

- Tukey estimator

$$
\begin{aligned}
M(x) & =c^{2} / 6\left(1-\left[1-(x / c)^{2}\right]^{3}\right) & & \text { if }|x| \leq c \\
& =c^{2} / 6 & & \text { if }|x|>c
\end{aligned}
$$

## Nicen matinn

- An M-Estimator is nice if it has at least linear growth and at most quadratic growth
- There is $C_{M}>0$ so that for all $a$, $a^{\prime}$ with $|a| \geq\left|a^{\prime}\right|>0$,

$$
\left|a / a^{\prime}\right|^{2} \geq M(a) / M\left(a^{\prime}\right) \geq C_{M}\left|a / a^{\prime}\right|
$$

- Any convex $M$ satisfies the linear lower bound (why?)

$$
M\left(a^{\prime}\right)=M\left(\left(\frac{a^{\prime}}{a}\right) \cdot a+\left(1-\frac{a^{\prime}}{a}\right) \cdot 0\right) \leq\left(\frac{a^{\prime}}{a}\right) M(a)+\left(1-\frac{a^{\prime}}{a}\right) M(0)=\left(\frac{a^{\prime}}{a}\right) M(a)
$$

- Any sketchable $M$ satisfies the quadratic upper bound
- sketchable => there is a distribution on $k \times n$ matrices $S$ for which $|S x|_{M}$ $=\Theta\left(|x|_{M}\right)$ with good probability and $k$ is slow-growing function of $n$


## Nice M-Estimator Theorem

[Nice M-Estimators] O(nnz(A)) + poly(d log n) time algorithm to output $x$ ' so that for any constant $C>1$, with probability $99 \%$ :

$$
\left|A x^{\prime}-\mathrm{b}\right|_{\mathrm{M}} \leq \mathrm{C} \min _{\mathrm{x}}|\mathrm{Ax}-\mathrm{b}|_{\mathrm{M}}
$$

## Remarks:

- For convex nice M-estimators can solve with convex programming, but slow - poly(nd) time
- Our sketch is "universal"


## M-Sketch



- Si are independent CountSketch matrices with poly(d) rows
- $D^{i}$ is $n \times n$ diagonal and uniformly samples a $1 /(d \log n)^{i}$ fraction of the $n$ rows
-The same M-Sketch works for all nice M-estimators!

$$
x^{\prime}=\operatorname{argmin}_{x}|T A x-T b|_{w, M}
$$

- many analyses of this data structure don't work since they reduce the problem to a nonconvex problem
- Sketch used for estimating frequency moments [Indyk, W] and earthmover distance
[Verbin, Zhang]


## M-Sketch Intuition

- For a given $\mathrm{y}=\mathrm{Ax}-\mathrm{b}$, consider $|\mathrm{Ty}|_{\mathrm{w}, \mathrm{m}}=\Sigma_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \mathrm{M}\left((\mathrm{Ty})_{\mathrm{i}}\right)$
- [Contraction] $|T y|_{w, M} \geq 1 / 2|y|_{M}$ with probability $1-\exp (-\mathrm{d} \log \mathrm{n})$
- [Dilation] $|T y|_{w, M} \leq 2|y|_{M}$ with probability $99 \%$
- Contraction allows for a net argument (no scale-invariance!)
- Show that $\left|y^{*}\right|_{2}$ is within a factor poly(n) of $\min _{x}|A x-b|_{2}$
- Dilation implies the optimal $\mathrm{y}^{*}$ does not dilate much
- Proof: try to estimate contribution to $|\mathrm{y}|_{M}$ at all scales
- E.g., if $y=(n, 1,1, \ldots, 1)$ with a total of $n-1$ 1s, then $|y|_{1}=n+(n-1)^{*} 1$
- When estimating a given scale, use the fact that smaller stuff cancels each other out in a bucket and gives its 2-norm

