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Massive data sets

Examples

� Internet traffic logs

� Financial data

� etc.

Algorithms

� Want nearly linear time or less 

� Usually at the cost of a randomized approximation
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Regression analysis

Regression

� Statistical method to study dependencies between 

variables in the presence of noise.
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Regression analysis

Linear Regression

� Statistical method to study linear dependencies 

between variables in the presence of noise.
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Regression analysis

Linear Regression

� Statistical method to study linear dependencies 

between variables in the presence of noise.

Example

� Ohm's law V = R · I 
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Regression analysis

Linear Regression

� Statistical method to study linear dependencies 

between variables in the presence of noise.

Example

� Ohm's law V = R · I 

� Find linear function that 

best fits the data
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Regression analysis

Linear Regression

� Statistical method to study linear dependencies between 

variables in the presence of noise.

Standard Setting

� One measured variable b

� A set of predictor variables a  ,3, a

� Assumption:

b  = x  + a   x  + 3 + a    x   + ε

� ε is assumed to be noise and the xi are model 

parameters we want to learn

� Can assume x0 = 0

� Now consider n observations of b

1 d

1

1

d

d0
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Regression analysis

Matrix form

Input:  n×d-matrix A and a vector b=(b1,3, bn)

n is the number of observations; d is the number of  

predictor variables

Output: x* so that Ax* and b are close

� Consider the over-constrained case, when n À d

� Can assume that A has full column rank
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Regression analysis

Least Squares Method

� Find x* that minimizes |Ax-b|2
2 = Σ (bi – <Ai*, x>)²

� Ai* is i-th row of A

� Certain desirable statistical properties
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Regression analysis

Geometry of regression

� We want to find an x that minimizes |Ax-b|2

� The product Ax can be written as

A*1x1 + A*2x2 + ... + A*dxd

where A*i is the i-th column of A

� This is a linear d-dimensional subspace 

� The problem is equivalent to computing the point of the 

column space of A nearest to b in l2-norm
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Regression analysis

Solving least squares regression via the normal equations

� How to find the solution x to minx |Ax-b|2 ?

� Equivalent problem: minx |Ax-b |2
2

� Write b = Ax’ + b’, where b’ orthogonal to columns of A

� Cost is |A(x-x’)|2
2 + |b’|2

2 by Pythagorean theorem

� Optimal solution x if and only if AT(Ax-b) = AT(Ax-Ax’) = 0

� Normal Equation: ATAx = ATb for any optimal x

� x = (ATA)-1 AT b 

� If the columns of A are not linearly independent, the Moore-

Penrose pseudoinverse gives a minimum norm solution x
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Moore-Penrose Pseudoinverse
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Moore-Penrose Pseudoinverse

• Any optimal solution x has the form A�b +
I − V′V′	 z,	where V’ corresponds to the rows i of 

V	 for which Σ�,�	 > 0
• Why?

• Because A I − V′V′	 z = 0, so A�b + I − V′V′	 z
is  a solution. This is a d-rank(A) dimensional 

affine space so it spans all optimal solutions

• Since A�b is in column span of V’, by 

Pythagorean theorem, |A�b + I − V′V′	 z|�� =
A�b �� + |(I − V�V�	)z|�� ≥ A�b ��
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Time Complexity

Solving least squares regression via the normal equations

� Need to compute x = A-b 

� Naively this takes nd� time

� Can do nd�.��� using fast matrix multiplication

� But we want much better running time!



15

Sketching to solve least squares regression

� How to find an approximate solution x to minx |Ax-b|2 ?

� Goal: output x‘ for which |Ax‘-b|2 · (1+ε) minx |Ax-b|2
with high probability

� Draw S from a k x n random family of matrices, for a 

value k << n

� Compute S*A and S*b

� Output the solution x‘ to minx‘ |(SA)x-(Sb)|2
� x’ = (SA)-Sb 
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How to choose the right sketching matrix S? 

� Recall: output the solution x‘ to minx‘ |(SA)x-(Sb)|2

� Lots of matrices work

� S is d/ε2 x n matrix of i.i.d. Normal random variables

� To see why this works, we 

introduce the notion of a 

subspace embedding



Subspace Embeddings

• Let k = O(d/ε2)

• Let S be a k x n matrix of i.i.d. normal 

N(0,1/k) random variables

• For any fixed d-dimensional subspace, i.e., 

the column space of an n x d matrix A

– W.h.p., for all x in Rd, |SAx|2 = (1±ε)|Ax|2

• Entire column space of A is preserved

Why is this true?



Subspace Embeddings – A Proof

• Want to show |SAx|2 = (1±ε)|Ax|2 for all x

• Can assume columns of A are orthonormal 
(since we prove this for all x)

• Claim: SA is a k x d matrix of i.i.d. N(0,1/k) 
random variables

– First property: for two independent random variables X 
and Y, with X drawn from N(0,a�) and Y drawn from 
N(0,b�), we have X+Y is drawn from N(0, a� + b�)



X+Y is drawn from N(0, � �
• Probability density function  ! of Z = X+Y is 

convolution of probability density functions  " and	 #

•  $ % = ∫  # % − '  " ' 	('	

•  * ' = �
+ �, .- .�*//�+/ ,    1 2 = �

3 �, .- .�*//�3/

•  $ % = ∫ �
+ �, .- .�(!�*)//�+/ �

3 �, .- .�*//�3/('

= �
�, .- +/43/ .- .�!//� +/43/ ∫ +/43/ .-

�, .-+3 .
�

56 7/8
9/:7/

/

/ 97 /
9/:7/;

; dx



X+Y is drawn from N(0, � �

Calculation:	.�
865 /
/9/ 	�	 5//7/ 		= 		 .

� 8/
/ 9/:7/ 	�	

56 7/8
9/:7/

/

/ 97 /
9/:7/

Density	of	Gaussian	distribution:	∫ +/43/ .-

�, .-+3 .
�

56 7/8
9/:7/

/

/ 97 /
9/:7/;

; dx = 1 



Rotational Invariance

• Second property: if u, v are vectors with <u, v> = 0, 
then <g,u> and <g,v> are independent, where g is a 
vector of i.i.d. N(0,1/k) random variables

• Why? 

• If g is an n-dimensional  vector of i.i.d. N(0,1)  
random variables, and R is a fixed matrix, then   
the probability density function of Rg is 

 ' = �
KLM	(NNO) �, P// .�

5Q RRO 6S5
/

– RR	 is the covariance matrix
– For a rotation matrix R, the distribution of Rg

and of g are the same



Orthogonal Implies Independent

• Want to show: if u, v are vectors with <u, v> = 0, then 

<g,u> and <g,v> are independent, where g is a vector of 

i.i.d. N(0,1/k) random variables

• Choose a rotation R which sends u to αe�, and sends v 

to βe�

• < g, u >	=	< gR, R	u >	=	< h, αe� >	= αh�
• < g, v >	=	< gR, R	v >	=	< h, βe� >	= βh�

where h is a vector of i.i.d. N(0, 1/k) random variables

• Then h� and h�	are independent by definition 



Where were we?

• Claim: SA is a k x d matrix of i.i.d. N(0,1/k) random 
variables

• Proof: The rows of SA are independent

– Each row is: < g, A� >,< g, A� >	, … ,< g, AK >	

– First property implies the entries in each row are 

N(0,1/k) since the columns A] have unit norm

– Since the columns A] are orthonormal, the entries in a 

row are independent by our second property



Back to Subspace Embeddings

• Want to show |SAx|2 = (1±ε)|Ax|2 for all x

• Can assume columns of A are orthonormal

• Can also assume x is a unit vector

• SA is a k x d matrix of i.i.d. N(0,1/k) random variables

• Consider any fixed unit vector ' ∈ _`

• SAx �� = ∑ < g], x >�;]∈ d , where g] is i-th row of SA

• Each < g], x >� is distributed as N 0, �d
�

• E[< g], x >�] = 1/k, and so E[ SAx ��] = 1

How concentrated is SAx �� about its expectation?



Johnson-Lindenstrauss Theorem

• Suppose h�, … , hd	are i.i.d. N(0,1) random variables

• Then G = ∑ h]�;] is a f�-random variable

• Apply known tail bounds to G:

– (Upper)	Pr G ≥ k + 2 kx .j + 2x ≤ e�l
– (Lower) Pr G ≤ k	 − 	2 kx .j ≤ e�l

• If x = m/d
�� , then Pr G ∈ k(1 ± ϵ)	 ≥ 1 − 2e�m/d/��

• If k = Θ(ϵ��log	(�r)), this probability is 1-δ

• Pr SAx �� ∈ 1 ± ϵ ≥ 1 − 2�s K

This only holds for a fixed x, how to argue for all x?



Net for Sphere 

• Consider the sphere SK��
• Subset N is a γ-net if for all x ∈ SK��, there is a y ∈ N, 

such that x − y � ≤ γ
• Greedy construction of N

– While there is a point x ∈ SK�� of distance larger than 

γ from every point in N, include x in N

• The sphere of radius γ/2 around every point in N is 

contained in the sphere of radius 1+ γ/2 around 0K
• Further, all such spheres are disjoint

• Ratio of volume of d-dimensional sphere of radius 1+ γ/2
to dimensional sphere of radius u is 1 + γ/2 K/(γ/2)K, 

so N ≤ 1 + γ/2 K/(γ/2)K



Net for Subspace

• Let M = {Ax | x in N}, so	 M ≤ 1 + γ/2 K/(γ/2)K

• Claim: For every x in SK��, there is a y in M for which 

Ax − y � ≤ γ

• Proof: Let x’ in SK�� be such that x − x� � ≤ γ
Then Ax − Ax� � = x − x� � ≤ γ, using that the 

columns of A are orthonormal. Set y = Ax’



Net Argument

• For a fixed unit x, Pr SAx �� ∈ 1 ± ϵ ≥ 1 − 2�s K

• For a fixed pair of unit x, x’, SAx ��, SAx′ ��, SA x − x� ��
are all 1 ± ϵ with probability 1 − 2�s K

• SA x − x� �� = SAx �� + SAx� �� − 2 < SAx, SAx� >
• A x − x� �� = Ax �� + Ax� �� − 2 < Ax, Ax� >

– So Pr < Ax, Ax� >	=	< SAx, SAx� >	±	O ϵ = 1	 − 2�s(K)
• Choose a ½-net M = {Ax | x in N} of size 5`
• By a union bound, for all pairs y, y’ in M, 

< y, y′ >	=	< Sy, Sy′ > 	±	O ϵ
• Condition on this event

• By linearity, if this holds for y, y’ in M, for αy, βy′ we have

< αy, βy′ >	= αβ < Sy, Sy′ > 	±	O ϵ	αβ



Finishing the Net Argument

• Let y = Ax for an arbitrary x ∈ SK��
• Let y� ∈ M be such that y − y� � ≤ γ
• Let α be such that α(y − y�) � = 1

– α ≥ 1/γ (could be infinite)

• Let y�� ∈ M be such that α y − y� − y�′ � ≤ γ
• Then y − y� − y/�

z � ≤
{
z ≤ γ�

• Set y� = y/|
z . Repeat, obtaining y�, y�, y�, … such that for 

all integers i, 

y − y� − y� −	…− y] � ≤ γ]
• Implies y] � ≤ γ]�� + γ] ≤ 2γ]��	



Finishing the Net Argument

• Have y�, y�, y�, … such that y	= ∑ y];] and y] � ≤ 2γ]��	

• Sy �� = |S∑ y]|��;]
= ∑ Sy] �� + 2∑ < Sy], Sy} >;],};]
= ∑ y] �� + 2	∑ < y], y} >;],}	;] ± O ϵ ∑ y] � y} �;],}	
= | ∑ y];] |�� 	± O ϵ
= y �� ± O ϵ
= 1 ± O ϵ

• Since this held for an arbitrary y = Ax for unit x, by 

linearity it follows that for all x, |SAx|2 = (1±ε)|Ax|2 



• We showed that S is a subspace 
embedding, that is, simultaneously for all x,

|SAx|2 = (1±ε)|Ax|2 

What does this have to do with regression?

Back to Regression



Subspace Embeddings for 

Regression

• Want x so that |Ax-b|2 · (1+ε) miny |Ay-b|2
• Consider subspace L spanned by columns of A 

together with b

• Then for all y in L, |Sy|2 = (1± ε) |y|2
• Hence, |S(Ax-b)|2 = (1± ε) |Ax-b|2 for all x

• Solve argminy |(SA)y – (Sb)|2
• Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd2) time 
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How to choose the right sketching matrix S? [S] 

� S is a Subsampled Randomized Hadamard Transform

� S = P*H*D

� D is a diagonal matrix with +1, -1 on diagonals

� H is the Hadamard transform

� P just chooses a random (small) subset of rows of H*D

� S*A can be computed in O(nd log n) time

Why does it work?
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Why does this work?

� We can again assume columns of A are orthonormal

� It suffices to show SAx �� = PHDAx �� = 1 ± ϵ for all x

� HD is a rotation matrix, so HDAx �� = Ax �� = 1 for any x

� Notation: let y = Ax

� Flattening Lemma: For any fixed y, 

Pr [ HDy � ≥ C ���.- �K/r
�.- ] ≤ r

�K
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� Flattening Lemma: Pr [ HDy � ≥ C ���.- �K/r
�.- ] ≤ r

�K
� Let C > 0 be a constant. We will show for a fixed i in [n], 

Pr [ HDy ] ≥ C ���.- �K/r
�.- ] ≤ r

��K
� If we show this, we can apply a union bound over all i

� HDy ] = ∑ H],}D},}y};}

� (Azuma-Hoeffding)	Pr | ∑ Z}|;} > t ≤ 2e
�( �/

/ ∑ ��/;�
)
,	where |Z}| ≤ β} with 

probability 1

� Z} = H],}D},}y} has 0 mean

� |Z}| ≤ |y�|
�.- = β} with probability 1

� ∑ β}� = �
�

;}

� Pr |∑ Z}|;} > �	���.- ��
�

�.- ≤ 2e�
�/ ��� ��

�
/ 	 ≤ r

��K

Proving the Flattening Lemma
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Consequence of the Flattening Lemma

� Recall columns of A are orthonormal

� HDA has orthonormal columns 

� Flattening Lemma implies HDAe] � ≤ C ���.- �K/r
�.- with 

probability 1 − r
�K for a fixed i ∈ d

� With probability 1 − r
�, e}HDAe] ≤ C ���.- �K/r

�.- for all i,j

� Given this, e}HDA � ≤ C K.-���.- �K/r
�.- for all j

(Can be optimized further)
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Matrix Chernoff Bound

� Let X�, … , X� be independent copies of a symmetric random matrix X ∈ RKlK
with E X = 0, X � ≤ γ, and E X	X � ≤ ��. Let W = �

�∑ X];]∈[�] .	 For any ϵ > 0,
Pr W � > ϵ ≤ 2d ⋅ e��m//(�/4��

� )

(here W � = sup	 Wx �/ x �)
� Let V = HDA, and recall V has orthonormal columns

� Suppose P in the S = PHD definition samples uniformly with replacement. If 

row i is sampled in the j-th sample, then P},] = n, and is 0 otherwise

� Let Y] be the i-th sampled row of V = HDA

� Let X] = IK − n ⋅ Y]	Y]
� E X] = IK − n ⋅ ∑ �

� V}	V};} = IK − V	V = 0K

� X] � ≤ IK � + n ⋅ max	 e}HDA �
� = 1 + n ⋅ C�	log �K

r ⋅ K� = Θ(d log �K
r )
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Matrix Chernoff Bound

� Recall: let Y] be the i-th sampled row of V = HDA

� Let X] = IK − n ⋅ Y]	Y]
� E X	X + IK = IK +	IK − 2n	E Y]	Y] + n�E[Y]	Y]Y]	Y]]

= 2IK − 2IK + n�∑ �
� ⋅ v]	v]v]	v];] = n∑ v]	v] ⋅;] v] ��

� Define Z = n	∑ v]	v];] C�	log �K
r ⋅ K� = C�dlog �K

r 	 IK
� Note that E[X	X + IK] and Z are real symmetric, with non-negative 

eigenvalues

� Claim: for all vectors y, we have: y	E[X	X + IK]y	 ≤ y	Zy	
� Proof: y	E[X	X + IK]	y = n	 ∑ y	v]	v]y	 v] ��;] = n	∑ < v], y >� v] ��;] and  

y	Zy = n y	v]	v]y	C� log
nd
δ ⋅ dn = d	  < v], y >� C� log nd

δ
;

]

;

]
� Hence, E X	X � ≤ E X	X + IK � + IK � = |E X	X + IK |� + 1

≤ Z � + 1 ≤ C�d log nd
δ + 1

� Hence, E X	X � = O d	log �K
r
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Matrix Chernoff Bound

� Hence, E X	X � = O d	log �K
r

� Recall: (Matrix Chernoff) Let X�, … , X� be independent copies of a 

symmetric random matrix X ∈ RKlK with E X = 0, X � ≤ γ, and E X	X � ≤
��. Let W = �

�∑ X];]∈[�] .	 For any ϵ > 0, Pr W � > ϵ ≤ 2d ⋅ e��m//(�/4��
� )

Pr |IK − PHDA 	 PHDA ¢� > ϵ ≤ 2d ⋅ e��	m//(s(K	���
�K
r )

� Set s = d	log �K
r

��� �
�

m/ ,	to make this probability less than 
r
�
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SRHT Wrapup

� Have shown  |IK − PHDA 	 PHDA |� < ϵ using Matrix 

Chernoff Bound and with s = d	log �K
r

��� �
�

m/ samples

� Implies for every unit vector x, 

|1− PHDAx ��| = x	x	 − x	 PHDA 	 PHDA x < ϵ	,
so PHDAx �� ∈ 1 ± ϵ for all unit vectors x

� Considering the column span of A adjoined with b, we can 

again solve the regression problem

� The time for regression is now only O(nd log n) + 

poly(` ��� £
¤ ). Nearly optimal in matrix dimensions (n >> d)
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Faster Subspace Embeddings S [CW,MM,NN] 

[

[0 0 1 0  0 1  0 0 

1 0 0 0  0 0  0 0

0 0 0 -1 1 0 -1 0

0-1 0 0  0 0  0 1

� CountSketch matrix

� Define k x n matrix S, for k = O(d2/ε2)

� S is really sparse: single randomly chosen non-zero 

entry per column

Can compute

S ⋅ A in nnz(A) 

time!

� nnz(A) is number of non-zero entries of A
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Simple Proof [Nguyen]

� Can assume columns of A are orthonormal

� Suffices to show |SAx|2 = 1 ± ε for all unit x

� For regression, apply S to [A, b]

� SA is a 2d2/ε2 x d matrix

� Suffices to show | ATST SA – I|2 · |ATST SA – I|F · ε

� Matrix product result shown below:

Pr[|CSTSD – CD|F
2 · [6/(¥(# rows of S))] * |C|F

2 |D|F2] ≥ 1 − δ

� Set C = AT and D = A. 

� Then |A|2F = d and (# rows of S) = 6 d2/(δε2)



43

Matrix Product Result [Kane, Nelson]

� Show: Pr[|CSTSD – CD|F
2 · [6/(δ(# rows of S))] * |C|F

2 |D|F2] ≥ 1 − δ

� (JL Property) A distribution on matrices S ∈ Rdl	� has the (ϵ, δ, ℓ)-JL 

moment property if for all x ∈ R� with x � = 1,
E§ Sx �� − 1 	ℓ ≤ ϵℓ ⋅ δ

� (From vectors to matrices) For ϵ, δ ∈ 0, �� ,	let D be a distribution on 

matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL 

moment property for some ℓ ≥ 2. Then for A, B matrices with n rows, 

Pr§ A	S	SB	 − A	B © ≥ 3	ϵ A © B © ≤ δ
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From Vectors to Matrices

� (From vectors to matrices) For ϵ, δ ∈ 0, �� ,	let D be a distribution on matrices 

S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL moment property 

for some ℓ ≥ 2. Then for A, B matrices with n rows, 

Pr§ A	S	SB	 − A	B © ≥ 3	ϵ A © B © ≤ δ

� Proof: For a random scalar X, let X « = E X « �/«	
� Sometimes consider X = T © for a random matrix T

� |	 T © 	|«= E T ©
« �/«

� Can show |. |« is a norm if p ≥ 1	
� Minkowski’s Inequality: X + Y « ≤ X « + Y «

� For unit vectors x, y, we will bound |〈Sx, Sy〉 - 〈x, y〉|ℓ
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Minkowski’s Inequality

� Minkowski’s Inequality: X + Y « ≤ X « + Y «
� Proof: 

� If X «, Y « are finite, then so is X + Y «.	Why?

� f x = x« is convex for p ≥ 1,	so for any fixed x, y:

.5x + .5y « ≤ .5 x| +	 .5 y |« ≤ .5|x|« + .5 y « , so 

x + y « ≤ 2«��( x «+ y «)
� So, E X + Y «

« ≤ E[2«��( X «
« + Y «

«)]	

� X + Y «
« = ∫ x + y « dμ
= ∫ x + y ⋅ x + y «��dμ
≤ ∫ x + y x + y «��	dμ
= ∫ x x + y «��	dμ + ∫ y x + y «��dμ

≤ ∫ x «dμ
S
° + ∫ y «dμ

S
° ∫ x + y «�� °

°6S dμ
°6S
°

= X « + Y « X + Y «
«��
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From Vectors to Matrices

� For unit vectors x, y, |〈Sx, Sy〉 - 〈x, y〉|ℓ
= 	 �� ( Sx ��−1 + Sy �� − 1 − S x − y �� − x − y �� |ℓ	
≤ �

� 	( Sx �� − 1 ℓ + Sy �� − 1 ℓ + S x − y �� − x − y �� ℓ)	
≤ �

� 	(ϵ ⋅ δ
S
ℓ +ϵ ⋅ δSℓ + x − y ��	ϵ ⋅ δ

S
ℓ)	

≤ 3	ϵ ⋅ δSℓ 	

� By linearity, for arbitrary x, y, 
§l,§y	 � l,y ℓ

l / y /
≤ 3	ϵ ⋅ δSℓ

� Suppose A has d columns and B has e columns. Let the columns of A be 

A�, … , AK and the columns of B be B�, … , BL

� Define X],} = �
±² / ³� /

⋅ ( SA], SB} − A], B} )

� A	S	SB	 − A	B ©
� = ∑ ∑ A] ��;};] ⋅ B} �

�X],}	�
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� Have shown: for arbitrary x, y, 
§l,§y	 � l,y ℓ

l / y /
≤ 3	ϵ ⋅ δSℓ

� For X],} = �
±² / ³� /

⋅ SA], SB} − A], B} : A	S	SB	 − A	B ©
� = ∑ ∑ A] ��;};] ⋅ B} �

�X],}	�

� | A	S	SB	 − A	B ©
�|ℓ/� = ∑ ∑ A] ��;};] ⋅ B} �

�X],}	�
ℓ/�

≤ ∑ ∑ A] ��;};] ⋅ B} �
�|X],}	� |ℓ/�

= ∑ ∑ A] �� ⋅ B} �
� X],} ℓ

�;};]

≤ 3ϵδSℓ
�
	∑ ∑ A] �� B} �

�;};]

= 3	ϵδSℓ
�
A ©� B ©�

� Since E A	S	SB	 − A	B ©
ℓ = A	S	SB − A	B ©

�
ℓ
/

ℓ/� 		, by Markov’s inequality,

� Pr A	S	SB − A	B © > 3ϵ A © B © ≤ �
�m ± ´ ³ ´

ℓ E |A	S	SB − A	B|©ℓ ≤ δ

From Vectors to Matrices
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Result for Vectors

� Show: Pr[|CSTSD – CD|F
2 · [6/(¥(# rows of S))] * |C|F

2 |D|F2] ≥ 1 − ¥

� (JL Property) A distribution on matrices S ∈ Rdl	� has the (ϵ, δ, ℓ)-JL moment 

property if for all x ∈ R� with x � = 1,
E§ Sx �� − 1 	ℓ ≤ ϵℓ ⋅ δ

� (From vectors to matrices) For ϵ, δ ∈ 0, �� ,	let D be a distribution on matrices 

S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL moment property 

for some ℓ ≥ 2. Then for A, B matrices with n rows, 

Pr§ A	S	SB	 − A	B © ≥ 3	ϵ A © B © ≤ δ

� Just need to show that the CountSketch matrix S satisfies JL property and 

bound the number k of rows
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CountSketch Satisfies the JL Property

� (JL Property) A distribution on matrices S ∈ Rdl	� has the (ϵ, δ, ℓ)-JL moment 

property if for all x ∈ R� with x � = 1,
E§ Sx �� − 1 	ℓ ≤ ϵℓ ⋅ δ

� We	show	this	property	holds	with	ℓ = 2.	First,	let	us	consider	ℓ = 1

� For	CountSketch matrix	S,	let	
� h:[n]	->	[k]	be	a	2-wise	independent	hash	function
� σ: n → {−1,1} be	a	4-wise	independent	hash	function

� Let	δ E = 1 if	event	E	holds,	and	δ E = 0 otherwise

� E[ Sx ��] = ∑ E[ ∑ δ h i = j σ]x];]∈ �
�;}∈ d ]

=	∑ ∑ E[δ h i1 = j δ h i2 = j σ]�σ]�]x]�x]�;]�,]�∈[�];}∈ d
=	∑ ∑ E[δ h i = j �]x]�;]∈[�];}∈ d

=	 �
d ∑ ∑ x]�;]∈ �;}∈[d]	 = x ��
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� E[ Sx �¿] = E[∑ ∑}|∈ d ∑ δ h i = j σ]x];]∈ �
�;}∈ d ∑ δ h i′ = j′ σ]�x]�;]�∈ �

�] =	

∑ E[σ]�σ]�σ]�σ]¿δ h i� = j� δ h i� = j� δ h i� = j� δ h i¿ = j� ]x]�	x]�x]�x]¿;
}S,}/ ,]S.]/,]�,]À

� We must be able to partition {i�, i�, i�, i¿} into equal pairs

� Suppose i� = i� = i� = i¿. Then necessarily j� = j�. Obtain ∑ �
d∑ x]¿ = x ¿¿;];}

� Suppose i� = i� and i� = i¿ but i� ≠ i�. Then get ∑ �
d/

;}S,}/,]S,]� x]S� x]�� = x �¿ − x ¿¿

� Suppose i� = i� and i� = i¿ but i� ≠ i�. Then necessarily j� = j�. Obtain 

∑ �
d/∑ x]S� x]/� ≤ �

d x �¿;]S,]/
;} . Obtain same bound if i� = i¿ and i� = i�.

� Hence, E[ Sx �¿] ∈ [ x �¿, x �¿(1 + �
d)] = [1, 1 + �

d]	
� So, E§ Sx �� − 1 	� ≤ 1 + �

d − 2 + 1 = �
d .	Setting k = �

m/r	finishes the proof 

CountSketch Satisfies the JL Property
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Where are we?

� (JL Property) A distribution on matrices S ∈ Rdl	� has the (ϵ, δ, ℓ)-JL 

moment property if for all x ∈ R� with x � = 1,
E§ Sx �� − 1 	ℓ ≤ ϵℓ ⋅ δ

� (From vectors to matrices) For ϵ, δ ∈ 0, �� ,	let D be a distribution on 

matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL moment 

property for some ℓ ≥ 2. Then for A, B matrices with n rows, 

Pr§ A	S	SB	 − A	B �
© ≥ 3	ϵ�	 A ©� B ©� ≤ δ

� We showed CountSketch has the JL property with ℓ = 2, and	k = �
m/r

� Matrix product result we wanted was:

Pr[|CSTSD – CD|F
2 · (6/(¥k)) * |C|F

2 |D|F2] ≥ 1 − ¥
� We are now done with the proof CountSketch is a subspace embedding
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Course Outline

� Subspace embeddings and least squares regression

� Gaussian matrices

� Subsampled Randomized Hadamard Transform

� CountSketch

� Affine embeddings

� Application to low rank approximation

� High precision regression

� Leverage score sampling

� Distributed low rank approximation

� L1 Regression

� M-Estimator regression
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Affine Embeddings

� Want to solve minÂ AX − B ©�, A is tall and thin with d columns, but B has a large 

number of columns

� Can’t directly apply subspace embeddings

� Let’s try to show SAX − SB © = 1 ± ϵ AX − B © for all X and see what properties 

we need of S

� Can assume A has orthonormal columns

� Let B∗ = AX∗ − B, where X∗	is the optimum

� S AX − B ©� 	− SB∗ ©� = SA X − X∗ + S AX∗ − B ©� − SB∗ ©�

= SA X − X∗ ©� + 2tr[ X − X∗ 	A	S	SB∗] (use C + D ©� = C ©� + D ©� + 2Tr(C	D))
∈ SA X − X∗ ©� ± 2 X − X∗ © A	S	SB∗

© (use tr CD ≤ C © D ©)

∈ SA X − X∗ ©� ±2ϵ X − X∗ © B∗ © (if we have approx. matrix product)

∈ A X − X∗ ©� ± ϵ( A X − X∗ ©� + 2 X − X∗ © B∗ ) (subspace embedding for A)
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� We have  

S AX − B ©� 	− SB∗ ©� ∈ A X − X∗ ©� ± ϵ( A X − X∗ ©� + 2 X − X∗ © B∗ )

� Normal equations imply that

AX − B ©� = A X − X∗ ©� + B∗ ©�

� S AX − B ©� 	− SB∗ ©� − AX − B ©� − B∗ ©�

∈ 	ϵ( A X − X∗ ©� + 2 X − X∗ © B∗ ©)
					∈ 	±ϵ A X − X∗ © + B∗ ©

�

					∈ 	±2ϵ A X − X∗ ©
� + B∗

©
� 	

					= 	±2ϵ AX − B ©�

� SB∗ ©� = 1 ± ϵ B∗ ©� (this holds with constant probability)

Affine Embeddings
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� Know: S AX − B ©� 	− SB∗ ©� − AX − B ©� − B∗ ©� 		 ∈
	±2ϵ AX − B ©�

� Know: SB∗ ©� = 1 ± ϵ B∗ ©�

� S AX − B ©� = (1 ± 2ϵ) AX − B ©�+ϵ B∗ ©�

= 1 ± 3ϵ AX − B ©�

� Completes proof of affine embedding!

Affine Embeddings
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� Claim: A + B ©� = A ©� + B ©� + 2Tr(A	B)

� Proof: A + B ©� = ∑ A] + B] ��;]

=   A] �� +  B] �� + 2〈A], B]〉
;

]

;

]

= A ©� + B ©� + 2Tr(A	B)

Affine Embeddings: Missing Proofs 
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Affine Embeddings: Missing Proofs 

� Claim: Tr AB ≤ A © B ©

� Proof: Tr AB = ∑ 〈A], B]〉;] for rows A] and columns B]

																				≤ ∑ A] � B] �;] by Cauchy-Schwarz for each i

																			≤ ∑ A] �
�	;]

S
/ ∑ B] ��	;]

S
/ another Cauchy-Schwarz

= A © B ©
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Affine Embeddings: Homework Proof

� Claim: SB∗ ©� = 1 ± ϵ B∗ ©� with constant probability if 

CountSketch matrix S has k = 	O( �m/) rows 

� Proof:

� SB∗ ©� = ∑ SB]∗ ��;]

� By our analysis for CountSketch and linearity of expectation, 

E SB∗ ©� = ∑ E SB]∗ �� = B∗ ©�;]

� E[ SB∗ ©¿] = ∑ E[ SB]∗ ��;],}	 SB}∗ �
�
]

� By our CountSketch analysis,E[ SB]∗ �¿]] ≤ B]∗ �¿(1 + �
d)

� For cross terms see Lemma 40 in [CW13]
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Low rank approximation 

� A is an n x d matrix

� Think of n points in Rd 

� E.g., A is a customer-product matrix

� Ai,j = how many times customer i purchased item j

� A is typically well-approximated by low rank matrix

� E.g., high rank because of noise

� Goal: find a low rank matrix approximating A

� Easy to store, data more interpretable
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What is a good low rank approximation? 

Singular Value Decomposition (SVD)
Any matrix A = U ¢ Σ ¢ V

� U has orthonormal columns

� Σ is diagonal with non-increasing positive 

entries down the diagonal

� V has orthonormal rows

� Rank-k approximation: Ak = Uk ¢ Σk ¢ Vk

� rows of Vk are the top k principal components
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What is a good low rank approximation? 

Ak = argminrank k matrices B |A-B|F

(|C|F = (Σi,j Ci,j
2)1/2 )

Computing Ak exactly is expensive 
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Low rank approximation 

� Goal: output a rank k matrix A’, so that

|A-A’|F · (1+ε) |A-Ak|F

� Can do this in nnz(A) + (n+d)*poly(k/ε) time [S,CW]

� nnz(A) is number of non-zero entries of A
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Solution to low-rank approximation [S]

� Given n x d input matrix A

� Compute S*A using a random matrix S with k/ε << n 

rows. S*A takes random linear combinations of rows of A

SA

A

� Project rows of A onto SA, then find best rank-k 

approximation to points inside of SA. 
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What is the matrix S?

� S can be a k/ε x n matrix of i.i.d. normal random 

variables

� [S] S can be a k/ε x n Fast Johnson Lindenstrauss 

Matrix
� Uses Fast Fourier Transform

� [CW] S can be a poly(k/ε) x n CountSketch matrix

[

[

0 0 1 0  0 1  0 0 

1 0 0 0  0 0  0 0

0 0 0 -1 1 0 -1 0

0-1 0 0  0 0  0 1

S ¢ A can be 

computed in 

nnz(A) time
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� Consider the regression problem minÂ AdX − A ©

� Let S be an affine embedding

� Then SAdX − SA © = 1 ± ϵ AdX	 − A © for all X

� By normal equations, argmin
Â

SAdX	 − SA © = SAd �SA

� So, Ad SAd �SA − A © ≤ 1 + ϵ Ad − A ©

� But Ad SAd �SA is a rank-k matrix in the row span of SA!

� Let’s formalize why the algorithm works now3

Why do these Matrices Work?
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� minÄÅ�d�d	Â XSA − A ©� ≤	 Ad SAd �SA − A|©� ≤ 1 + ϵ A − A_k|©�

� By the normal equations, 

XSA − A ©� = XSA	 − A SA �SA ©� + A SA �SA	 − A ©�

� Hence, 

minÄÅ�d�d	Â XSA − A ©� = A SA �SA	 − A ©� + minÄÅ�d�d	Â	 XSA − A SA �SA ©�

� Can write SA = U	ΣV	 in its SVD

� Then, minÄÅ�d�d	Â	 XSA − A SA �SA ©� =	 minÄÅ�d�d	Â	 XUΣ − A SA �UΣ ©�

																																									= minÄÅ�d�d	È Y − A SA �UΣ ©�

� Hence, we can just compute the SVD of A SA �UΣ

� But how do we compute A SA �UΣ quickly?

Why do these Matrices Work?
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Caveat: projecting the points onto SA is slow 

� Current algorithm: 

1. Compute S*A 

2. Project each of the rows onto S*A

3. Find best rank-k approximation of projected points 

inside of rowspace of S*A 

� Bottleneck is step 2 

� [CW] Approximate the projection

� Fast algorithm for approximate regression 

minrank-k X |X(SA)-A|F
2

� Want nnz(A) + (n+d)*poly(k/ε) time

minrank-k X |X(SA)R-AR|F
2

Can solve with affine embeddings
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Using Affine Embeddings

� We know we can just output arg minÄÅ�d�d	Â XSA − A ©�	

� Choose an affine embedding R:

XSAR − AR ©� = 1 ± ϵ XSA − A ©� for all X

� Note: we can compute AR and SAR in nnz(A) time

� Can just solve minÄÅ�d�d	Â XSAR − AR ©�	

� minÄÅ�d�d	Â XSAR − AR ©�	 = AR SAR � SAR − AR ©� + minÄÅ�d�d	Â XSAR − AR SAR � SAR ©�	

� Compute minÄÅ�d�d	È Y − AR SAR � SAR ©�	 using SVD which is n + d poly d
m time

� Necessarily, Y = XSAR for some X. Output Y SAR �SA in factored form. We’re done! 
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Low Rank Approximation Summary

1. Compute SA

2. Compute SAR and AR

3. Compute minÄÅ�d�d	È Y − AR SAR � SAR ©�	 using SVD

4. Output Y SAR �SA in factored form

Overall time: nnz(A) + (n+d)poly(k/ε)
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Course Outline

� Subspace embeddings and least squares regression

� Gaussian matrices

� Subsampled Randomized Hadamard Transform

� CountSketch

� Affine embeddings

� Application to low rank approximation

� High precision regression

� Leverage score sampling

� Distributed low rank approximation

� L1 Regression

� M-Estimator regression
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High Precision Regression

� Goal: output x‘ for which |Ax‘-b|2 · (1+ε) minx |Ax-b|2
with high probability

� Our algorithms all have running time poly(d/ε)

� Goal: Sometimes we want running time poly(d)*log(1/ε)

� Want to make A well-conditioned 

� κ A = sup
l /Ê�

Ax �/ infl /Ê�	
Ax �	

� Lots of algorithms’ time complexity depends on κ A

� Use sketching to reduce κ A to O(1)!
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Small QR Decomposition

� Let S be a (1 + ϵË)- subspace embedding for A

� Compute SA

� Compute QR-factorization, SA = QR��

� Claim: κ AR = �4mÍ
��mÍ

� For all unit x, 1 − ϵË ARx � ≤	 SAR	x �= 1

� For all unit x, 1 + ϵË ARx � ≥ SARx � = 1

� So κ AR = sup
l /Ê�

ARx �/ infl /Ê�	
ARx �	 ≤ �4mÍ

��mÍ
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Finding a Constant Factor Solution

� Let S be a 1 + ϵË - subspace embedding for AR

� Solve xË = argmin
l

SARx − Sb �

� Time to compute R and xË is nnz(A) + poly(d) for constant ϵË
� xÎ4� ← xÎ + R	A	 b	 − AR	xÎ 	

� AR xÎ4�	 − x∗ = AR	(xÎ + R	A	 b − ARxÎ − x∗)
= AR	 − ARR	A	AR xÎ − x∗
= U Σ − Σ� V	(xÎ − x∗),

where AR = U	ΣV	 is the SVD of AR

� AR xÎ4�	 − x∗ � = Σ − Σ� V	 xÎ − x∗ � = O ϵË |AR(xÎ − x∗)|�
� ARxÎ − b �

� = AR xÎ − x∗ �� + ARx∗ − b ��
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Course Outline

� Subspace embeddings and least squares regression

� Gaussian matrices

� Subsampled Randomized Hadamard Transform

� CountSketch

� Affine embeddings

� Application to low rank approximation

� High precision regression

� Leverage score sampling

� Distributed low rank approximation

� M-Estimator regression
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� This is another subspace embedding, but it is based on sampling!

� If A has sparse rows, then SA has sparse rows!

� Let A = U	ΣV	 be an n x d matrix with rank d, written in its SVD

� Define the i-th leverage score ℓ i of A to be U],∗ �
�

� What is ∑ ℓ i ?;]
� Let q�, … , q� be a distribution with q] ≥ Òℓ ]

K , where β is a parameter

� Define sampling matrix S = D ⋅ Ω	, where D is k x k and Ω is n x k

� Ω is a sampling matrix, and D is a rescaling matrix

� For each column j of Ω, D, independently, and with replacement, pick a row 

index i in [n] with probability q], and set Ω],} = 1 and D},}	 = 	1/(q]k).j	

Leverage Score Sampling
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Leverage Score Sampling

� Note: leverage scores do not depend on choice of orthonormal 

basis U for columns of A

� Indeed, let U and U’ be two such orthonormal bases

� Claim: e]U �� = e]U� �� for all i

� Proof: Since both U and U’ have column space equal to that of A, 

we have U = U�Z for change of basis matrix Z

� Since U and U’ each have orthonormal columns, Z is a rotation 

matrix (orthonormal rows and columns)

� Then e]U �� = e]U�Z �� = e]U� ��
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Leverage Score Sampling gives a Subspace Embedding

� Want to show for S = D ⋅ Ω	,	that SAx �� = 1 ± ϵ Ax �� for all x

� Writing A = U	ΣV	 in its SVD, this is equivalent to showing               

SUy �� = 1 ± ϵ Uy �� = 1 ± ϵ y ��	 for all y

� As usual, we can just show with high probability, U	S	SU	 − I � ≤ ϵ

� How can we analyze U	S	SU?	

� (Matrix Chernoff) Let X�, … , Xd be independent copies of a symmetric 

random matrix X ∈ RKlK with E X = 0, X � ≤ γ, and E X	X � ≤ σ�. Let W =
�
d∑ X};}∈[d] .	 For any ϵ > 0,

Pr W � > ϵ ≤ 2d ⋅ e�dm//(Ô/4��
� )

(here W � = sup Õl /
l /

.	Since W is symmetric, W � = sup	x	Wx	
l /Ê�	

. )	
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Leverage Score Sampling gives a Subspace Embedding

� Let i(j) denote the index of the row of U sampled in the j-th trial

� Let X} = IK − Ö²(�)O Ö²(�)
×²(�) , where U](}) is the j-th sampled row of U

� The X} are independent copies of a symmetric matrix random variable

� E X} = IK − ∑ q] Ö²OÖ²
×²

;] = IK − IK = 0K

� X} � ≤ IK � +
Ö² �O Ö² � /

×² � ≤ 1 +max]
Ö² //
×² ≤ 1 + K

Ò	

� E X	X = IK − 2E Ö² �O Ö² �
×² � + E Ö² �O Ö² � Ö² �O Ö² �

×² �/

																							= ∑ Ö²OÖ²Ö²OÖ²
× ]

;] − IK ≤ K
Ò ∑ U]	U];] 	− IK ≤ K

Ò 	− 1 IK, 

where A ≤ B means x	Ax ≤ x	Bx for all x

� Hence, |E X	X |� ≤ K
Ò − 1
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Applying the Matrix Chernoff Bound

� (Matrix Chernoff) Let X�, … , Xd be independent copies of a symmetric 

random matrix X ∈ RKlK with E X = 0, X � ≤ γ, and E X	X � ≤ σ�. Let W =
�
d∑ X};}∈[d] .	 For any ϵ > 0,

Pr W � > ϵ ≤ 2d ⋅ e�dm//(Ô/4��
� )

(here W � = sup Õl /
l /

.	Since W is symmetric, W � = sup	x	Wx	
l /Ê�	

. )	

� γ = 1 + K
Ò, and σ� =	 KÒ − 1

� X} = 	IK −
Ö² �O Ö² �
×² � ,	and recall how we generated S = D ⋅ Ω	: For each 

column j of Ω, D, independently, and with replacement, pick a row index i in 

[n] with probability q], and set Ω],} = 1 and D},}	 = 1/(q]k).j				
� Implies W = IK − U	S	SU

� Pr IK − U	S	SU � > ϵ ≤ 2d ⋅ e�dm/s �
� .	Set k = Θ(K ��� K

Òm/ ) and we’re done. 
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Fast Computation of Leverage Scores

� Naively, need to do an SVD to compute leverage scores

� Suppose we compute SA for a subspace embedding S

� Let SA = QR�� be such that Q has orthonormal columns

� Set ℓ]� = e]AR ��

� Since AR has the same column span of A, AR = UT��
� 1 − ϵ ARx � ≤ SARx � = x �
� 1 + ϵ ARx � ≥ SARx � = x �
� 1 ± O(ϵ ) x � = ARx � = UT��x � = T��x �, 

� ℓ] = 	 e]ART �� = 1 ± O(ϵ) e]AR �� = 1 ± O(ϵ) ℓ]′

� But how do we compute AR? We want nnz(A) time
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Fast Computation of Leverage Scores

� ℓ] =	 1 ± O(ϵ) ℓ]′

� Suffices to set this ϵ to be a constant 

� Set ℓ]� = e]AR ��

� This takes too long

� Let G be a d x O(log n) matrix of i.i.d. normal random variables

� For any vector z, Pr	[ zG �� = 1 ± �
� z �] ≥ 1 − �

�/

� Instead set ℓ]� = e]ARG ��. 

� Can compute in (nnz(A) + d�) log n	 time

� Can solve regression in nnz(A) log n + poly(d(log n)/ε) time 
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Course Outline

� Subspace embeddings and least squares regression

� Gaussian matrices

� Subsampled Randomized Hadamard Transform

� CountSketch

� Affine embeddings

� Application to low rank approximation

� High precision regression

� Leverage score sampling

� Distributed low rank approximation

� L1 Regression

� M-Estimator regression
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Distributed low rank approximation 

� We have fast algorithms for low rank approximation, but 

can they be made to work in a distributed setting?

� Matrix A distributed among s servers

� For t = 1, 3, s, we get a customer-product matrix from 

the t-th shop stored in server t. Server t’s matrix = At

� Customer-product matrix A = A1 + A2 + 3 + As

� Model is called the arbitrary partition model

� More general than the row-partition model in which each 

customer shops in only one shop
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The Communication Model

3

Server 1

Coordinator

• Each player talks only to a Coordinator via 2-way communication

• Can simulate arbitrary point-to-point communication up to factor of 2

(and an additive O(log s) factor per message)

Server 2 Server s
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Communication cost of low rank approximation 

� Input: n x d matrix A stored on s servers

� Server t has n x d matrix At

� A = A1 + A2 + 3 + As

� Assume entries of At are O(log(nd))-bit integers

� Output: Each server outputs the same k-dimensional space W

� C = A�PÕ + A�PÕ +	…+ A�PÕ, where PÕ is the projection onto W

� |A-C|F · (1+ε)|A-Ak|F

� Application: k-means clustering

� Resources: Minimize total communication and computation. 

Also want O(1) rounds and input sparsity time
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Work on Distributed Low Rank Approximation

� [FSS]: First protocol for the row-partition model.

� O(sdk/ε) real numbers of communication

� Don’t analyze bit complexity (can be large)

� SVD Running time, see also [BKLW]

� [KVW]: O(skd/ε) communication in arbitrary partition model

� [BWZ]: O(skd) + poly(sk/ε) words of communication in 

arbitrary partition model. Input sparsity time

� Matching Ω(skd) words of communication lower bound

� Variants: kernel low rank approximation [BLSWX], low rank 

approximation of an implicit matrix [WZ], sparsity [BWZ]
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Outline of Distributed Protocols

� [FSS] protocol

� [KVW] protocol

� [BWZ] protocol
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Constructing a Coreset [FSS]

� Let A = U	ΣV	 be its SVD

� Let m = k + k/ϵ

� Let ΣÎ agree with Σ on the first m diagonal entries, and be 0 

otherwise

� Claim: For all projection matrices Y=I-X onto (d-k)-dimensional 

subspaces, 

ΣÎV	Y ©
� = 1 ± ϵ AY ©� + c, 

where c = A − AÎ ©� does not depend on Y

� We can think of S as UÎ	 so that SA = UÎ	 UΣV	 = ΣÎV	 is a sketch 
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Constructing a Coreset

� Claim: For all projection matrices Y=I-X onto (n-k)-dimensional subspaces, 

ΣÎV	Y ©
� + c	 = 1 ± ϵ AY ©�, 

where c = A − AÎ ©� does not depend on Y

� Proof: AY ©� = UΣÎV	Y ©
� + U Σ − ΣÎ V	Y ©

�

≤ ΣÎV	Y ©
� + A − AÎ ©� = ΣÎV	Y ©

� + c

Also, ΣÎV	Y ©
� + A − AÎ ©� 	− AY ©�

= ΣÎV	
©
� − ΣÎV	X ©

� + A − AÎ ©� − A ©� + AX ©�

= AX ©� − ΣÎV	X ©
�

= Σ − ΣÎ V	X ©
�

													≤ Σ − ΣÎ V	
�
� ⋅ X ©�

												≤ σÎ4�	� k ≤ ϵ	σÎ4�� m− k ≤ ϵ∑ σ]� ≤ ϵ A − Ad ©�	;]∈{d4�,..,Î4�}
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Unions of Coresets

� Suppose we have matrices A�, … , A� and construct 

ΣÎ� V	,�, ΣÎ� V	,�, … , ΣÎ� V	,� as in the previous slide, together with c�, … , c�

� Then ∑;] ΣÎ] V	,]Y ©
� + c] 	 = 1 ± ϵ AY ©�, where A is the matrix formed by 

concatenating the rows of A�, … , A�

� Let B be the matrix obtained by concatenating the rows of 

ΣÎ� V	,�, ΣÎ� V	,�, … , ΣÎ� V	,�

� Suppose we compute B = U	ΣV	 and compute ΣÎV	 and	 B − BÎ ©�

� Then ΣÎV	Y ©
� + c + ∑ c];] = 1 ± ϵ BY ©� + ∑ c];] = 1 ± O(ϵ) AY ©�

� So  ΣÎV	 and the constant c + ∑ c];] are a coreset for A
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[FSS] Row-Partition Protocol

3

P� ∈ R�S	l	K

Coordinator

P� ∈ R�/	l	K P� ∈ R�Ø	l	K

� Server t sends the top k/ε + k principal components of PM, scaled by the top 

k/ε + k singular values ΣM,	together with ÚÛ

� Coordinator returns top k principal components of Σ�V�; Σ�V�; … ; Σ�V� 	
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[FSS] Row-Partition Protocol

Problems: 

1. sdk/ε real numbers of communication

2. bit complexity can be large

3. running time for SVDs [BLKW]

4. doesn’t work in arbitrary partition model

This is an SVD-based protocol. Maybe 

our random matrix techniques can 

improve communication just like they 

improved computation? 

[KVW] protocol 

will handle 2, 3, 

and 4
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[KVW] Arbitrary Partition Model Protocol 

� Inspired by the sketching algorithm presented earlier

� Let S be one of the k/ε x n random matrices discussed

� S can be generated pseudorandomly from small seed

� Coordinator sends small seed for S to all servers

� Server t computes SAt and sends it to Coordinator

� Coordinator sends Σt=1
s SAt = SA to all servers

� There is a good k-dimensional subspace inside of SA. If 

we knew it, t-th server could output projection of At onto it
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[KVW] Arbitrary Partition Model Protocol 

Problems:

� Can’t output projection of At onto SA since 

the rank is too large

� Could communicate this projection to the 

coordinator who could find a k-dimensional 

space, but communication depends on n
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[KVW] Arbitrary Partition Model Protocol 

Fix: 

� Instead of projecting A onto SA, recall 

we can solve minÄÅ�d�d	Â A SA 	XSA − A ©
�	

� Let T�, T� be affine embeddings, solve 

minÄÅ�d�d	Â T�A SA 	XSAT� − T�AT� ©
�	

(optimization problem is small and has 

a closed form solution)

� Everyone can then compute XSA and 

then output k directions
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[KVW] protocol

� Phase 1:

� Learn the row space of SA

SA

optimal k-dimensional 

space in SA

cost · (1+ε)|A-Ak|F
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[KVW] protocol

� Phase 2:

� Find an approximately optimal space W inside of SA

SA

optimal space in SA

approximate 

space W in SA

cost · (1+ε)2|A-Ak|F



98

[BWZ] Protocol

� Main Problem: communication is O(skd/ε) + poly(sk/ε)

� We want O(skd) + poly(sk/ε) communication!

� Idea: use projection-cost preserving sketches [CEMMP]

� Let A be an n x d matrix

� If S is a random k/ε� x n matrix, then there is a constant 

Ú ≥ 0	so that for all k-dimensional projection matrices P: 

SA I − P © + c	 = 1 ± ϵ A I − P ©
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[BWZ] Protocol

� Let S be a k/ε� x n projection-cost preserving sketch

� Let T be a d x k/ε� projection-cost preserving sketch

� Server t sends SAMT to Coordinator

� Coordinator sends back SAT = ∑ SAMT	;M to servers

� Each server computes k/ε�x k matrix U of top k left singular 

vectors of SAT

� Server t sends U	SAM to Coordinator

� Coordinator returns the space U	SA = ∑ U	SAM;M to output

Intuitively, U looks like top k 

left singular vectors of SA

Thus, U	SA looks like top k 

right singular vectors of SA

Top k right singular vectors of SA 

work because S is a projection-

cost preserving sketch!
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[BWZ] Analysis

� Let W be the row span of U	SA, and P be the projection onto W

� Want to show A − AP © ≤ 1 + ϵ A − Ad ©

� Since T is a projection-cost preserving sketch, 

(*)    SA − SAP © ≤ SA	 − 	UU	SA © + c� ≤ 1 + ϵ SA − SA d ©

� Since S is a projection-cost preserving sketch, there is a scalar c > 

0, so that for all k-dimensional projection matrices Q, 

SA	 − SAQ © + c	 = 1 ± ϵ A − AQ ©

� Add c to both sides of (*) to conclude A − AP © ≤ 1 + ϵ A − Ad ©
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Conclusions for Distributed Low Rank Approximation

� [BWZ] Optimal O(sdk) + poly(sk/ε) communication protocol for low 

rank approximation in arbitrary partition model

� Handle bit complexity by adding noise

� Input sparsity time

� 2 rounds, which is optimal [W]

� Optimal data stream algorithms improves [CW, L, GP] 

� Communication of other optimization problems?

� Computing the rank of an n x n matrix over the reals

� Linear Programming 

� Graph problems: Matching

� etc. 
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Course Outline

� Subspace embeddings and least squares regression

� Gaussian matrices

� Subsampled Randomized Hadamard Transform

� CountSketch

� Affine embeddings

� Application to low rank approximation

� High precision regression

� Leverage score sampling

� Distributed low rank approximation

� L1 Regression

� M-Estimator Regression
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Robust Regression

Method of least absolute deviation (l1 -regression)

� Find x* that minimizes |Ax-b|1 = Σ |bi – <Ai*, x>|

� Cost is less sensitive to outliers than least squares

� Can solve via linear programming
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Solving l1 -regression via Linear Programming

� Minimize (1,3,1) ∙ (α + α )

� Subject to: 

A x + α  − α = b

α , α  ≥ 0

� Generic linear programming gives poly(nd) time

� Want much faster time using sketching!

+

-

+ -

+

-
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Well-Conditioned Bases

� For an n x d matrix A, can choose an n x d matrix U with orthonormal 

columns for which A = UW, and Ux � = x � for all x

� Can we find a U for which A = UW and Ux � ≈ x � for all x?

� Let A = QW where Q has full column rank, and define z Þ,� = Qz �
� z Þ,� is a norm

� Let C = {z ∈ RK ∶ z Þ,� ≤ 1} be the unit ball of |. |Þ,�

� C is a convex set which is symmetric about the origin

� Lowner-John Theorem: can find an ellipsoid E such that: E ⊆ C ⊆ d; E, 

where E = {z ∈ RK ∶ z	Fz	 ≤ 1}
� z	Fz .j ≤ z Þ,� ≤ d; z	Fz .j

� F = GG	 since F defines an ellipsoid

� Define U = QG��	
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� Recall U = QG��	 where 

z	Fz .j ≤ z Þ,� ≤ d; z	Fz .j
and F = GG	

� Ux � = QG��x � = Qz � = z Þ,� where z = G��x

� z	Fz = x	(G�� 	G	G	 G�� x) = x	x = x ��	

� So x � ≤ Ux � ≤ d; x �

� So 
l S
K; ≤ x � ≤ Ux|� ≤ d; x|� ≤ d; x �

Well-Conditioned Bases
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� Consider the unit ℓ�-ball B = {x	 ∈ RK ∶ x � = 1}
� Subset N is a γ-net if for all x ∈ B, there is a y ∈ N, such 

that x − y � ≤ γ
� Greedy construction of N

� While there is a point x ∈ B of distance larger than γ
from every point in N, include x in N

� The ℓ�-ball of radius γ/2 around every point in N is 

contained in the ℓ�-ball of radius 1+ γ/2 around 0K
� Further, all such ball are disjoint

� Ratio of volume of d-dimensional similar polytopes of 

radius 1+ γ/2 to radius u/2 is 1 + γ/2 K/(γ/2)K, so 

N ≤ 1 + γ/2 K/(γ/2)K

Net for ℓ� −	Ball
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Net for ℓ� − Subspace
� Let A = UW for a well-conditioned basis U

� x � ≤ Ux � ≤ d x � for all x

� Let N be a (γ/d) −net for the unit ℓ�-ball B

� Let M = {Ux | x in N}, so	 M ≤ 1 + γ/(2d) K/(γ/(2d))K

� Claim: For every x in B, there is a y in M for which Ax − y � ≤ γ

� Proof: Let x’ in B be such that x − x� � ≤ γ/d
Then Ax − Ax� � ≤ d x − x� � ≤ γ, using the 

well-conditioned basis property. Set y = Ax’

� M ≤ K
{

á(K)
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Rough Algorithm Overview

Compute poly(d)-

approximation

Compute well-conditioned

basis

Sample rows from the 

well-conditioned basis and 

the residual of the poly(d)-

approximation

Solve l1-regression on the sample, obtaining vector x, and output x

Takes nnz(A) time Takes poly(d/ε) time
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Rough Algorithm Overview

Find x’ such that
|Ax’-b|1 · poly(d) minx in Rd |Ax-b|1

Let b’ = b-Ax’ be the residual

poly(d) |x|1

Find a basis A=UW so that for all x 

in Rd, 
|x|1/poly(d) · |Ux|1 · poly(d) |x|1

minx in Rd |Ax-b|1 = minx in Rd |Ux – b’|1

Sample poly(d/ε) rows of U◦b’ 

proportional to their l1-norm.

Now generic linear 

programming is efficient
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Will focus on showing how to quickly compute

1. A poly(d)-approximation

2. A well-conditioned basis
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Sketching Theorem

Theorem

� There is a probability space over (d log d) × n matrices 

R such that for any n×d matrix A, with probability at least 

99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

Embedding

� is linear

� is independent of A

� preserves lengths of an infinite number of vectors
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Application of Sketching Theorem

Computing a d(log d)-approximation

� Compute RA and Rb

� Solve x’ = argminx |RAx-Rb|1

� Main theorem applied to A◦b implies x’ is a d log d –

approximation

� RA, Rb have d log d rows, so can solve l1-regression 

efficiently
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Application of Sketching Theorem

Computing a well-conditioned basis

1. Compute RA

2. Compute W so that RAW is orthonormal (in the l2-sense)

3. Output U = AW

U = AW is well-conditioned because

|AWx|1 · |RAWx|1 · (d log d)1/2 |RAWx|2 = (d log d)1/2 |x|2 · (d log d)1/2 |x|1

and

|AWx|1 ≥	|RAWx|1/(d log d) ¸≥ |RAWx|2/(d log d) = |x|2/(d log d) ≥	|x|1 /(d3/2 log d)



115

Theorem:

� There is a probability space over (d log d) × n matrices R such that for any 

n×d matrix A, with probability at least 99/100 we have for all x:

|Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

Sketching Theorem
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Cauchy Random Variables

� pdf(z) = 1/(π(1+z2)) for z in (-1, 1)

� Undefined expectation and 

infinite variance

� 1-stable:

� If z1, z2, 3, zn are i.i.d. Cauchy, then for a 2 Rn,

a1¢z1 + a2¢z2 + 3 + an¢zn » ∼	|a|1¢z, where z is Cauchy

� Can generate as the ratio of two standard normal random variables

z
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Proof of Sketching Theorem

� By 1-stability,

� For all rows r of R,

� <r, Ax> = |Ax|1¢Z / (d log d), 

where Z is a Cauchy

� RAx = » (|Ax|1 ¢ Z1, 3, |Ax|1 ¢ Zd log d) / (d log d),

where Z1, 3, Zd log d are i.i.d. Cauchy

� |RAx|1 = |Ax|1 ∑j |Zj| / (d log d)

� The |Zj| are half-Cauchy

� ∑j |Zj| = Ω(d log d) with probability 1-exp(-d log d) by Chernoff

� But the |Zj| are heavy-tailed3

z
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Proof of Sketching Theorem 

� ∑j |Zj| is heavy-tailed, so |RAx|1 = |Ax|1 ∑j |Zj| / (d log d) may be large

� Each |Zj| has c.d.f. asymptotic to 1-Θ(1/z) for z in [0, 1)

� There exists a well-conditioned basis of A 

� Suppose w.l.o.g. the basis vectors are A*1, 3, A*d

� |RA*i|1 » = |A*i|1 ¢ ∑j |Zi,j| / (d log d)

� Let E],} be the event that |Z],}| ≤ d�
� Define Z],}� = |Z],}| if |Z],}| ≤ d�, and Z],}� = d� otherwise

� E Z],} 	|	E],} = E Z],}� 	 E],}] = O(log d)	

� Let E be the event that for all i,j, E],} occurs

� Pr E ≥ 1 − ���	K
K

� What is E Z],}� 	|	E ?
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Proof of Sketching Theorem

� What is E Z],}� 	|	E ?

� E Z],}� E],} = E Z],}� E],}, E Pr E	 E],}] + E Z],}� E],}, ¬E Pr ¬E	 E],}]
																			≥ E Z],}� E],}, E Pr E	 E],}]

= E Z],}� E ⋅ äÄ E],} E äÄ å
äÄ å²,�

≥ E Z],}� E ⋅ 1 − log	d
d

� So, E Z],}� E = O(log d)	
� |RA*i|1 » = |A*i|1 ¢ ∑i,j |Zi,j| / (d log d)

� With constant probability, ∑ i |RA*i|1 = O(log d) ∑ i |A*i|1
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Proof of Sketching Theorem 

� With constant probability, ∑ i |RA*i|1 = O(log d) ∑ i |A*i|1

� Recall A*1, 3, A*d is a well-conditioned basis, and we 
showed the existence of such a basis earlier

� We will use the Auerbach basis which always exists:

� For all x, |x|1 · |Ax|1
� ∑i |A*i|1 = d

� ∑ i |RA*i|1 = O(d log d)

� For all x, |RAx|1 · ∑i |RA*i xi|· |x|1 ∑i |RA*i|1
= |x|1O(d log d) 

= O(d log d) |Ax|1
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� Suffices to show for all x with x � = 1, that |Ax|1 ≤  |RAx|1 ≤ d log d ∙ |Ax|1

� We know

� (1) there is a γ-net M, with M ≤ K
{

á(K)
, of the set {Ax such that x � = 1}

� (2) for any fixed x, RAx � ≥ Ax � with probability 1 − exp	(−d log d)
� (3) for all x, RAx � = O d	log	d Ax �

� Set γ = 1/(d� log d) so M ≤ dá(K)
� By a union bound, for all y in M, Ry � ≥ y �

� Let x with x � = 1 be arbitrary. Let y in M satisfy Ax − y � ≤ γ = 	1/(d� log d)

� RAx � ≥ Ry � − R Ax − y �
≥ y � − O d log d Ax − y �
≥ y � 	− O d log d γ
≥ y � 	− O �

K/
≥ y �/2 (why?)

Where are we?
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Sketching to solve l1-regression [CW, MM]

� Most expensive operation is computing R*A where R is 

the matrix of i.i.d. Cauchy random variables

� All other operations are in the “smaller space”

� Can speed this up by choosing R as follows:

[

[0 0 1 0  0 1  0 0 

1 0 0 0  0 0  0 0

0 0 0 -1 1 0 -1 0

0-1 0 0  0 0  0 1

¢
C1

C2

C3

3

Cn
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Further sketching improvements [WZ] 

� Can show you need a fewer number of sampled rows in 

later steps if instead choose R as follows

� Instead of diagonal of Cauchy random variables, choose 

diagonal of reciprocals of exponential random variables

[

[0 0 1 0  0 1  0 0 

1 0 0 0  0 0  0 0

0 0 0 -1 1 0 -1 0

0-1 0 0  0 0  0 1

¢
1/E1

1/E2

1/E3

3

1/En
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Course Outline

� Subspace embeddings and least squares regression

� Gaussian matrices

� Subsampled Randomized Hadamard Transform

� CountSketch

� Affine embeddings

� Application to low rank approximation

� High precision regression

� Leverage score sampling

� Distributed low rank approximation

� L1 Regression

� M-Estimator Regression



Robust Regression Fitness Measures

Example: Method of least absolute deviation (l1 -regression)

• Find x* that minimizes |Ax-b|1 = Σ |bi – <Ai*, x>|

• Cost is less sensitive to outliers than least squares

• Can solve via linear programming

• Can solve in nnz(A) + poly(d/ε) time using sketching

What about the many other fitness measures used in practice?



M-Estimators
• Measure function

– M: R -> R¸ 0

– M(x) = M(-x), M(0) = 0

– M is non-decreasing in |x|

• |y|M = Σi=1
n M(yi)

• Solve minx |Ax-b|M

• Least squares and L1-regression are special 
cases



Huber Loss Function
M(x) = x2/(2c) for |x| · c

M(x) = |x|-c/2 for |x| > c

Enjoys smoothness properties of l22 and

robustness properties of l1



Other Examples

• L1-L2

M(x) = 2((1+x2/2)1/2 – 1)

• Fair estimator

M(x) = c2 [ |x|/c  - log(1+|x|/c) ]

• Tukey estimator

M(x) = c2/6 (1-[1-(x/c)2]3)   if |x| · c

= c2/6                         if |x| > c



Nice M-Estimators
• An M-Estimator is nice if it has at least linear growth and at most quadratic 

growth

• There is CM > 0 so that for all a, a’ with |a| ¸≥ |a’| > 0,

|a/a’|2 ¸≥ M(a)/M(a’) ̧≥ CM |a/a’|

• Any convex M satisfies the linear lower bound (why?)

M a� = M a�
a ⋅ a + 1 − a�

a ⋅ 0 ≤ a�
a M a + 1 − a�

a M 0 = a�
a M(a)

• Any sketchable M satisfies the quadratic upper bound

– sketchable => there is a distribution on k x n matrices S for which |Sx|M
= Θ(|x|M) with good probability and k is slow-growing function of n



Nice M-Estimator Theorem

[Nice M-Estimators] O(nnz(A)) + poly(d log n)  time algorithm to 

output x’ so that for any constant C > 1, with probability 99%:

|Ax’-b|M · C minx |Ax-b|M

Remarks:

- For convex nice M-estimators can solve with convex 

programming, but slow – poly(nd) time 

- Our sketch is “universal”



M-Sketch

S0 ¢ D0

S1 ¢ D1

S2 ¢ D2

3
Slog n ¢ Dlog n

• Si are independent CountSketch matrices with poly(d) rows

• Di is n x n diagonal and uniformly samples a 1/(d log n)i

fraction of the n rows

T = 



-The same M-Sketch works 

for all nice M-estimators!

x’ = argminx |TAx-Tb|w,M

- Sketch used for 

estimating frequency 

moments [Indyk, W] and 

earthmover distance 

[Verbin, Zhang]

- many analyses of this 

data structure don’t 

work since they reduce 

the problem to a non-

convex problem



M-Sketch Intuition

• For a given y = Ax-b, consider |Ty|w, M = Σi wi M((Ty)i)

• [Contraction] |Ty|w,M ¸ ≥	½ |y|M with probability 1-exp(-d log n)

• [Dilation] |Ty|w,M · 2 |y|M with probability 99%

• Contraction allows for a net argument (no scale-invariance!)

– Show that y∗ � is within a factor poly(n) of minl Ax − b �

• Dilation implies the optimal y* does not dilate much

• Proof: try to estimate contribution to |y|M at all scales

– E.g., if y = (n, 1, 1, 3, 1) with a total of n-1 1s, then |y|1 = n + (n-1)*1

– When estimating a given scale, use the fact that smaller stuff cancels 

each other out in a bucket and gives its 2-norm


