Input Sparsity and Hardness for Robust Subspace Approximation

> Kenneth Clarkson and David Woodruff IBM Research-Almaden

Singular Value Decomposition

- Given an n x d matrix A, think of the rows a_1, a_2, \dots, a_n as poin
- Find k-dimensional subspace V of R^d minimizing $\sum_{i} |a_{i} - a_{i} VV^{T}|_{2}^{2} = \sum_{i} d(a_{i}, V)^{2}$
- Optimal V is given by the span of top k right singular values of A
- V can be found using min(n²d, nd²) arithmetic operations
- Can find a V' of dimension k for which

$$\sum_{i} d(a_i, V')^2 \le (1 + \epsilon) \min_{k - \dim V} \sum_{i} d(a_i, V)^2$$

Abuse notation and use V to be a subspace and the d x k matrix with orthonormal columns spanning the subspace

in O(nnz(A)) + (n+d) poly(k/ ϵ) [CW13]. See [MM13, NN13] for further optimizations

Robust Statistics

- For many problems, sum of squared distances is too sensitive to outliers
- Other problems, such as regression $\min_{x \text{ in } R^d} |Ax b|$ often study more "robust" norms
 - E.g., $\min_{x \text{ in } \mathbb{R}^d} |Ax b|_1 = \sum_i |(Ax b)_i|$
 - Sometimes, norms are not used, e.g., M-estimators: $\min_{x \in \mathbb{R}^d} \sum_i M((Ax b)_i)$
 - Huber estimator: $M(x) = \frac{x^2}{2\tau}$ if $x \le \tau$, otherwise $M(x) = |x| \tau/2$
 - Huber enjoys smoothness properties of l_2^2 and robustness properties of l_1
 - Can compute a $(1 + \epsilon)$ -approximation to Huber regression in nnz(A) + poly(d/ ϵ) time [CW15]
 - Similar results for regression for wide class of "nice" M-estimators [CW15]

Robust Forms of Low Rank Approximation

- (Basis Independence) if you rotate R^d by rotation matrix W, obtaining new points a₁W, a₂W, ..., a_nW, the cost is preserved
- This rules out approximating A by a rank-k matrix B which minimizes ∑_i|a_i - b_i|₁, where b₁, ..., b_n are the rows of B
 E.g., if B has rank 0, then ∑_i|a_i|₁ ≠ ∑_i|a_iW|₁ for most rotations W
- Cost function studied in [DZHZ06, SV07, DV07, FL11, VX12]:

$$\min_{k-\dim V} \sum_{i} d(a_i, V)^p = \min_{k-\dim V} \sum_{i} |a_i - a_i^T V V^T|_2^p$$

• This is rotationally invariant, and for p in [1,2) is more robust than the SVD

Prior Work on this Cost Function

• A k-dimensional space V' is a (1+ ϵ)-approximation if

$$\sum_{i} d(a_{i}, V')^{p} \leq (1 + \epsilon) \min_{k-\dim V} \sum_{i} d(a_{i}, V)^{p}$$

- For constant $1 \le p < \infty$,
 - can output a k-dimensional space V' which is a (1+ ε)-approximation in n · d ·poly(k/ε) + exp(poly(k/ε)) time [KV07]
 - (Weak Coreset) can obtain a poly(k/ε)-dimensional space V' which contains a k-dimensional space V'' which is a (1+ ε)-approximation in n · d ·poly(k/ε) time [DV07, FL11]
- For p > 2,
 - the problem is NP-hard to approximate up to a fixed constant factor γ_p [DTV10, GRSW12].
 - there is a poly(nd) time algorithm achieving $\sqrt{2\gamma_p}$ -approximation [DTV10]

Open Questions from Prior Work

- We are interested in $1 \le p < 2$, since these are more robust than the SVD
- 1. (Exponential Term) Is the exp(poly(k/ϵ)) in the running times necessary, or is it possible to have an algorithm running in time polynomial in n,d,k,1/ ϵ ?
- 2. (Input Sparsity) Can one achieve input sparsity time, i.e., a leading order term in the time complexity of nnz(A), as in the case of p = 2?
- 3. (M-Estimators) What about other loss functions, e.g., M-estimators

$$\min_{k-\dim V} \sum_{i} M(|a_i - a_i^T V V^T|_2)$$

Can one obtain any algorithm for low rank approximation for M-estimators?

Our Contributions (Hardness)

- We show the first hardness for p in [1, 2), namely, for any p in [1,2) it is NPhard to obtain a (1+1/d)-approximation in poly(nd) time (answers an open question of Kannan and Vempala)
- Implies there is no poly(n,d,k,1/ ϵ) time algorithm unless P = NP
- Together with previous work, shows there is a "singularity" at p = 2: for every 1 ≤ p < ∞, the problem is NP-hard unless p = 2
- Open Question: we do not know if the problem is NP-hard for fixed constant ε

Our Contributions (Input Sparsity)

- For p in [1,2) we achieve an algorithm running in time $nnz(A) + (n+d)poly(k/\epsilon) + exp(poly(k/\epsilon))$
- nnz(A) time is required for algorithms achieving relative error, and is optimal when nnz(A) > (n+d)poly(k/ε) + exp(poly(k/ε))
- (Weak Coreset) For p in [1,2), can find a poly(k/ε)-dimensional subspace V' which contains a k-dimensional subspace V'' of R^d which is a (1+ε)-approximation in nnz(A) + (n+d)poly(k/ε) time

Our Contributions (M-Estimators)

- We give the first results for low rank approximation with M-Estimator losses (previous empirical results in [DZHZ06])
- An M-estimator M(x) is nice if
 - 1. (even) M(x) = M(-x), with M(0) = 0
 - 2. (monotonic) $M(a) \ge M(b)$ for $|a| \ge |b|$
 - 3. (polynomially bounded) There is a constant $C_M > 0$ so that for all $|a| \ge |b|$

$$\frac{C_M a}{b} \le \frac{M(a)}{M(b)} \le \left(\frac{a}{b}\right)^{-1}$$
4. (square-root subadditive) $M(a)^{1/2} + M(b)^{1/2} \ge M(a+b)^{1/2}$

Our Contributions for Nice M-Estimators

• For a parameter $L = (\log n)^{O(\log k)}$, we reduce the problem to

 $\min_{\operatorname{rank}(X)=k} \sum_{i} M(|\widehat{a_i}XB - c_i|_2),$ where \widehat{A} , B, C have dimensions in poly(L, $\frac{1}{\epsilon}$, log n), in nnz(A) log n + (n+d) poly(L/ ϵ) time

- (Large Approximation) In O(nnz(A)) + (n+d) poly(k) time, we find a space of dimension poly(k log n) whose cost is within a factor L of the best k-dimensional space
- (Weak Coreset) In O(nnz(A)) + (n+d) poly(L/ ε) time, can find a space of dimension poly(L/ ε) that contains a k-dimensional space which is a (1 + ϵ)-approximation
- Open Question: we do not know how to solve the small problem and avoid a factor-L approximation or a bi-criteria solution, though heuristics can be run

Talk Outline

1. Algorithm for p = 1

Due to time constraints, please see the paper for the hardness result, and adaptations of the algorithm to p in (1,2) and M-estimators

Algorithm for p = 1

R

AUXU^T – A

- For a matrix A, let $|A|_v = \sum_i |a_i|_2$
- Would like to compute a V for which $|A AVV^{T}|_{v} \le (1 + \epsilon) \min_{\operatorname{rank}(W) = k} |A AWW^{T}|_{v}$
- (Strategy)
 - Find poly(k/ ϵ) x n matrix R and a d x poly(k/ ϵ) matrix C
 - Find d x poly(k/ ϵ) matrix U with orthonormal columns
 - If the poly(k/ ε) x poly(k/ ε) matrix X is the solution to $\min_{\substack{\text{rank}-k \text{ projectors } X}} |\text{RA UXU}^{T}\text{C} - \text{RAC}|_{v}$ then UXU^T is the desired projection matrix

Why Reduce to a Small Problem?

- Solve $\min_{\substack{\text{rank}-k \text{ projectors } X}} |\text{RA UXU}^{T}\text{C} \text{RAC}|_{v}$ using polynomial optimization
- Given c polynomial inequalities each of degree at most d in m variables: $p_1(x_1, ..., x_m) \ge \beta_1, ..., p_c(x_1, ..., x_m) \ge \beta_c$, can determine if there is a solution using $(cd)^{O(m)}$ arithmetic operations [BPR96]
- Since X has dimensions poly(k/ε) x poly(k/ε), one can create a small number of variables and solve the problem in exp(poly(k/ε)) time
 - Technicalities: need a lower bound on the cost given it is non-zero

Steps in Our Algorithm

- Suffices to reduce to $\min_{rank-k \text{ projectors } X} |RA UXU^TC RAC|_v$
- Suppose we find a weak coreset, i.e., a subspace U of R^d of dimension poly(k/ε) which contains a k-dimensional subspace which is a (1+ε)-approximation
- Projection onto the k-dimensional subspace can be written as $UXU^{\rm T}$ where X has rank k
- Reduces the original problem to $\min_{\operatorname{rank}(X)=k} |A U X U^T A|_v$
- We are then done if we find small matrices R and C for which $\min_{\substack{\text{rank}(X)=k}} |\text{RAUXU}^{T}\text{C} \text{RAC}|_{v} \leq (1 + \epsilon) \min_{\substack{\text{rank}(X)=k}} |\text{AUXU}^{T} \text{A}|_{v}$

Sketching Matrices for the v-Norm

- Consider the problem $\min_{X} |XB A|_v$ where B has rank r
- The rows x_i in the optimal X can be solved via n regression problems $\min_{x_i} |x_iB a_i|_2$
- Would like to reduce this to a smaller problem $\min_{v} |XBS AS|_{v}$
- (Subspace Embeddings) There are d x poly(r/ε) random matrices S for which simultaneously for all x,

$$|xBS - a_iS|_2 = (1 \pm \epsilon)|xB - a_i|_2$$

with probability $\ge 1 - poly\left(\frac{\epsilon}{r}\right)$

- S can be a matrix of i.i.d. Gaussians or Randomized FFT [S06]
- For faster computation, S can be the CountSketch matrix [CW13]

The CountSketch Matrix [CCFC04]

- S is d x poly(r/ ϵ)
- S is extremely sparse!
 - Only a single non-zero per row
 - Non-zero location chosen uniformly at random
 - On that location it is 1 w.pr. ½ and -1 w.pr. ½
 - For a matrix B, $B \cdot S$ computable in nnz(B) time
- [CW13] Simultaneously for all x, $|xBS - a_iS|_2 = (1 \pm \varepsilon)|xB - a_i|_2$ with probability $\ge 1 - poly\left(\frac{\varepsilon}{r}\right)$

Sketching Matrices for the v-Norm

- Want to solve $\min_{X} |XB A|_{v}$
- The rows x_i in the optimal X can be solved via n regression problems $\min_{x_i} |x_i B a_i|_2$
- There exist d x poly(r/ ε) random matrices S for which simultaneously for all x, $|xBS - a_iS|_2 = (1 \pm \varepsilon)|xB - a_i|_2$ with probability $\ge 1 - poly\left(\frac{\epsilon}{r}\right)$ Can we just output X' = $argmin_X|XBS - AS|_v$?
- No! To be correct on all n regression problems requires error probability 1/n, so the number of rows of S is poly(k/ε) log n, which later causes our polynomial optimization problem to have at least poly(k/ε) log n variables...

Structural Lemma

- Let X^* be the minimizer to $\min_v |XB A|_v$
- Can show $|X^*BS AS|_v \le (\hat{1} + \epsilon)|X^*B A|_v$ with constant probability
- Uses a second moment argument
- For X' = argmin|XBS AS|_v to satisfy $|X'B A|_v \le (1 + \epsilon)|X^*B A|_v$, it suffices to show for all X, $|XBS - AS|_v \ge (1 - \epsilon)|XB - A|_v$
- (Structural Lemma) for all X, it holds that $|XBS AS|_v \ge (1 \epsilon)|XB A|_v$
- Intuition: S will be a subspace embedding for most $[B, A_i]$ pairs, so for most i, we will have $|X_iBS A_iS|_v \ge (1 \epsilon)|X_iB A_i|_v$

Structural Lemma

$$|\mathbf{x}_1 \mathbf{BS} - \mathbf{a}_1 \mathbf{S}|_2$$

 $|\mathbf{x}_2 \mathbf{BS} - \mathbf{a}_2 \mathbf{S}|_2$

For i = 1, ..., n, say i is bad if S is not a subspace embedding for $[B, a_i]$, otherwise i is good

> For a good i, $|x_i B - a_i|_2 \ge (1 - \epsilon)|x_i B - a_i|_2$

...

$$E[\sum_{bad i} |x_i^*B - a_i|_2] \le poly\left(\frac{\epsilon}{r}\right)|X^*B - A|_v$$

 $|x_3BS - a_3S|_2$

Structural Lemma

- Previous slide shows we can condition on X^* not contracting
- What about those X for which $|x_iB-a_i|_2$ is large on those i when the subspace embedding fails?
- Suppose we additionally condition on the single event:

For all x,
$$|xBS|_2 = (1 \pm \epsilon)|xB|_2$$

• (Triangle Inequality)

•
$$|x_iBS - a_iS|_2 \ge |x_iBS - x_i^*BS|_2 - |x_i^*BS - a_iS|_2$$

 $\ge (1 - \epsilon)|x_iB - x_i^*B|_2 - |x_i^*BS - a_iS|_2$
 $\ge (1 - \epsilon)(|x_iB - a_i|_2 - |x_i^*B - a_i|_2) - |x_i^*BS - a_iS|_2$
 $\ge (1 - \epsilon)|x_iB - a_i|_2 - |x_i^*B - a_i|_2 - |x_i^*BS - a_iS|_2$

- $\sum_{bad i} |x_i^*B a_i|_2$ is small
- $\sum_{bad i} |x_i^*BS a_iS|_2$ is small, otherwise $|X^*BS AS|_v > (1 + \epsilon)|X^*B A|_v$

Using the Structural Lemma

- Two steps of our algorithm:
 - Find a weak coreset to reduce the original problem to

 $\min_{\operatorname{rank}(X)=k} |A U X U^T - A|_v$

• Find small matrices R and C on the left and right for which

$$\min_{\operatorname{rank}(X)=k} |\operatorname{RA} U X U^{T} C - \operatorname{RAC}|_{v} \leq (1+\epsilon) \min_{\operatorname{rank}(X)=k} |\operatorname{A} U X U^{T} - A|_{v}$$

• By structural lemma, if X' = arg $\min_{\operatorname{rank}(X)=k} |A U X U^T S - A S|_v$ then $|A U X' U^T - A|_v \ge (1 - \epsilon) \min_{\operatorname{rank}(X)=k} |A U X U^T - A|_v$ • Set C = S

Finishing the Small Matrices Step

- Given a weak coreset, we've reduced the problem to $\min_{\operatorname{rank}(X)=k} |A U X U^T S A S|_v$
- Dvoretsky's theorem: for an appropriately scaled d $x \frac{d}{\epsilon^2}$ Gaussian matrix G, the mapping $y \rightarrow yG$ satisfies w.h.p, simultaneously for all y, $|yG|_1 = (1 \pm \epsilon)|y|_2$
- $|AUXU^{T}S AS|_{v} = (1 \pm \epsilon) |AUXU^{T}G ASG|_{1}$, where $|.|_{1}$ is entry-wise 1-norm
- Columns of AUXU^TG ASG are in a poly $\left(\frac{k}{\epsilon}\right)$ -dimensional subspace so we can apply known sampling for the 1-norm to sample poly $\left(\frac{k}{\epsilon}\right)$ rows R so that for all X, $\left|\text{RAUXU^TG} - \text{RASG}\right|_1 = (1 \pm \epsilon) \left|\text{AUXU^TG} - \text{ASG}\right|_1$, or $\left|\text{RAUXU^T} - \text{RASG}\right|_v = (1 \pm \epsilon) \left|\text{AUXU^T} - \text{ASG}\right|_v$

- Two steps of our algorithm:
 - Find a weak coreset to reduce the original problem to

$$\min_{\operatorname{rank}(X)=k} |A U X U^T - A|_v$$

- Find small matrices R and C on the left and right for which $\min_{\text{rank}(X)=k} |\text{RAUXU}^{T}\text{C} - \text{RAC}|_{v} \leq (1 + \epsilon) \min_{\text{rank}(X)=k} |\text{AUXU}^{T} - \text{A}|_{v}$
- Done with finding small matrices, we just need a weak coreset

- Structural Lemma: if $X' = \operatorname{argmin} |XBS AS|_v$, then with large constant probability, $|X'B A|_v \le (1 + \epsilon)|X^*B A|_v$, where the number of rows of S is poly(rank(B)/ ϵ)
- Apply structural lemma with $B=A_k$, where A_k is the best rank-k approximation to A in the v-norm
 - S has poly(k/ε) rows
 - Since $X' = \arg\min_{X} |XA_kS AS|_v$ satisfies $X'_i = AS (A_kS)^-$, there is a rank-k space in the column space of AS which is a $(1 + \epsilon)$ -approximation
- If X' = arg min $|ASX A|_v$, it is a $(1 + \epsilon)$ -approximation

• We've reduced the original problem to $\min_{\operatorname{rank}-k X} |ASX - A|_v$

- By known sampling techniques for ℓ_1 and Dvoretsky's theorem, can quickly find a matrix T for which if X'' = arg $\min_{rank-k X} |TASX TA|_v$, then $|ASX'' A|_v \le 4 \min_{rank-k X} |ASX A|_v$
- X" = arg min $|TASX TA|_v$ is in the row span of TA
- Row span of TA is a 4-approximation

- (Adaptive Sampling) [DV07] shows how to take a poly $\left(\frac{k}{\epsilon}\right)$ -dimensional subspace TA of R^d, which is an O(1)-approximation, and obtain a poly $\left(\frac{k}{\epsilon}\right)$ -dimensional subspace of R^d containing a $(1 + \epsilon)$ -approximation
- We show how to implement this procedure in nnz(A) time, improving the previous nnz(A)*poly(k/ε) time
- [DV07] sample a row a_i of A proportional to its distance to TA, then sample another row a_j of A proportional to its distance to span(TA, a_i), etc. We show we can sample all rows proportional to their distance to the original TA
 - Our sampling is non-adaptive

Algorithm Summary

- 1. Compute AS for a d x poly(k/ ϵ) CountSketch matrix S
- 2. Compute TAS where T samples poly(k/ $\epsilon)$ rows of AS using known sampling for ℓ_1
- 3. Feed TA into a non-adaptive sampling algorithm to obtain a weak coreset U, reducing the problem to

$$\min_{\operatorname{rank}(X)=k} |A U X U^T - A|_v$$

- 4. Find small matrices R and C to reduce the problem to $\min_{\substack{\text{rank}(X)=k}} |\text{RAUXU}^{T}\text{C} - \text{RAC}|_{_{\text{TT}}}$
- 5. Solve the problem using polynomial optimization

Conclusions

 First input sparsity time algorithm for robust low rank approximation with cost measure

$$\min_{k-\dim V} \sum_{i} d(a_i, V)^p = \min_{k-\dim V} \sum_{i} |a_i - a_i^T V V^T|_2^p$$

- Generalize the algorithm to give the first near-input sparsity time algorithms for a wide class of M-estimators
- Show first hardness for p in [1,2), so there can be no polynomial time algorithm in n, d, k, and 1/ε unless P = NP
 - Helps explain why we need the $exp(poly(k/\epsilon))$ term in our time complexity
- Improve [CW15] for regression with M-estimator losses, showing for a wide class how to obtain $(1+\epsilon)$ -approximation in nnz(A) time