Input Sparsity and Hardness for Robust Subspace Approximation

Kenneth Clarkson and David Woodruff
IBM Research-Almaden

Singular Value Decomposition

- Given an $n \times d$ matrix A, think of the rows $a_{1}, a_{2}, \ldots, a_{n}$ as poin
- Find k-dimensional subspace V of R^{d} minimizing

$$
\sum_{\mathrm{i}}\left|\mathrm{a}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}} \mathrm{VV} \mathrm{~V}^{\mathrm{T}}\right|_{2}^{2}=\sum_{\mathrm{i}} \mathrm{~d}\left(\mathrm{a}_{\mathrm{i}}, V\right)^{2}
$$

- Optimal V is given by the span of top k right singular values of A
- V can be found using $\min \left(n^{2} \mathrm{~d}, \mathrm{nd}^{2}\right)$ arithmetic operations
- Can find a V^{\prime} of dimension k for which

$$
\sum_{i} d\left(a_{i}, V^{\prime}\right)^{2} \leq(1+\epsilon) \min _{k-\operatorname{dim} V} \sum_{i} d\left(a_{i}, V\right)^{2}
$$

in $O(n n z(A))+(n+d)$ poly $(k / \epsilon)[C W 13]$. See [MM13, NN13] for further optimizations

Robust Statistics

- For many problems, sum of squared distances is too sensitive to outliers
- Other problems, such as regression $\min _{x \text { in } R^{d}}|A x-b|$ often study more "robust" norms
- E.g., $\min _{\mathrm{x} \text { in } \mathrm{R}^{\mathrm{d}}}|\mathrm{Ax}-\mathrm{b}|_{1}=\sum_{\mathrm{i}}\left|(\mathrm{Ax}-\mathrm{b})_{\mathrm{i}}\right|$
- Sometimes, norms are not used, e.g., M -estimators: $\min _{\mathrm{x} \in \mathrm{R}^{\mathrm{d}}} \sum_{\mathrm{i}} \mathrm{M}\left((\mathrm{Ax}-\mathrm{b})_{\mathrm{i}}\right)$
- Huber estimator: $M(x)=\frac{x^{2}}{2 \tau}$ if $x \leq \tau$, otherwise $M(x)=|x|-\tau / 2$
- Huber enjoys smoothness properties of l_{2}^{2} and robustness properties of l_{1}
- Can compute a $(1+\epsilon)$-approximation to Huber regression in nnz(A) + poly (d / ϵ) time [CW15]
- Similar results for regression for wide class of "nice" M-estimators [CW15]

Robust Forms of Low Rank Approximation

- (Basis Independence) if you rotate R^{d} by rotation matrix W , obtaining new points $\mathrm{a}_{1} \mathrm{~W}, \mathrm{a}_{2} \mathrm{~W}, \ldots, \mathrm{a}_{\mathrm{n}} \mathrm{W}$, the cost is preserved
- This rules out approximating A by a rank-k matrix B which minimizes $\sum_{i}\left|a_{i}-b_{i}\right|_{1}$, where b_{1}, \ldots, b_{n} are the rows of B
- E.g., if B has rank 0 , then $\sum_{i}\left|a_{i}\right|_{1} \neq \sum_{i}\left|a_{i} W\right|_{1}$ for most rotations W
- Cost function studied in [DZHZ06, SV07,DV07,FL11,VX12]:

$$
\min _{k-\operatorname{dim} V} \sum_{i} d\left(a_{i}, V\right)^{p}=\min _{k-\operatorname{dim} V} \sum_{i}\left|a_{i}-a_{i}^{T} V V^{T}\right|_{2}^{p}
$$

Prior Work on this Cost Function

- A k-dimensional space V^{\prime} is a $(1+\epsilon)$-approximation if

$$
\sum_{i} d\left(a_{i}, V^{\prime}\right)^{p} \leq(1+\epsilon) \min _{k-\operatorname{dim} V} \sum_{i} d\left(a_{i}, V\right)^{p}
$$

- For constant $1 \leq \mathrm{p}<\infty$,
- can output a k-dimensional space V^{\prime} which is a $(1+\epsilon)$-approximation in $\mathrm{n} \cdot \mathrm{d} \cdot \operatorname{poly}(\mathrm{k} / \epsilon)+\exp (\operatorname{poly}(\mathrm{k} / \epsilon))$ time [KV07]
- (Weak Coreset) can obtain a poly(k / ϵ)-dimensional space V^{\prime} which contains a k -dimensional space $\mathrm{V}^{\prime \prime}$ which is a ($1+\epsilon$)-approximation in $\mathrm{n} \cdot \mathrm{d} \cdot \operatorname{poly}(\mathrm{k} / \epsilon)$ time [DV07, FL11]
- For $p>2$,
- the problem is NP-hard to approximate up to a fixed constant factor γ_{p} [DTV10, GRSW12].
- there is a poly(nd) time algorithm achieving $\sqrt{2} \gamma_{\mathrm{p}}$-approximation [DTV10]

Open Questions from Prior Work

- We are interested in $1 \leq \mathrm{p}<2$, since these are more robust than the SVD

1. (Exponential Term) Is the $\exp (p o l y(k / \epsilon))$ in the running times necessary, or is it possible to have an algorithm running in time polynomial in $n, d, k, 1 / \epsilon$?
2. (Input Sparsity) Can one achieve input sparsity time, i.e., a leading order term in the time complexity of $n n z(A)$, as in the case of $p=2$?
3. (M-Estimators) What about other loss functions, e.g., M-estimators

$$
\min _{\mathrm{k}-\operatorname{dim} \mathrm{V}} \sum_{\mathrm{i}} \mathrm{M}\left(\left|\mathrm{a}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}^{\mathrm{T}} V V^{\mathrm{T}}\right|_{2}\right)
$$

Can one obtain any algorithm for low rank approximation for M-estimators?

Our Contributions (Hardness)

- We show the first hardness for p in $[1,2)$, namely, for any p in $[1,2$) it is NPhard to obtain a $(1+1 / \mathrm{d})$-approximation in poly(nd) time (answers an open question of Kannan and Vempala)
- Implies there is no poly(n, $\mathrm{d}, \mathrm{k}, 1 / \epsilon)$ time algorithm unless $\mathrm{P}=\mathrm{NP}$
- Together with previous work, shows there is a "singularity" at $\mathrm{p}=2$: for every $1 \leq \mathrm{p}<\infty$, the problem is NP-hard unless $\mathrm{p}=2$
- Open Question: we do not know if the problem is NP-hard for fixed constant ϵ

Our Contributions (Input Sparsity)

- For p in $[1,2)$ we achieve an algorithm running in time

$$
n n z(A)+(n+d) \operatorname{poly}(k / \epsilon)+\exp (p o l y(k / \epsilon))
$$

- $n n z(A)$ time is required for algorithms achieving relative error, and is optimal when $n n z(A)>(n+d)$ poly $(k / \epsilon)+\exp (\operatorname{poly}(k / \epsilon))$
- (Weak Coreset) For p in [1,2), can find a poly(k / ϵ)-dimensional subspace V^{\prime} which contains a k-dimensional subspace $V^{\prime \prime}$ of R^{d} which is a $(1+\epsilon)$-approximation in $\mathrm{nnz}(\mathrm{A})+(\mathrm{n}+\mathrm{d})$ poly (k / ϵ) time

Our Contributions (M-Estimators)

- We give the first results for low rank approximation with M-Estimator losses (previous empirical results in [DZHZO6])
- An M-estimator $M(x)$ is nice if

1. (even) $M(x)=M(-x)$, with $M(0)=0$
2. (monotonic) $M(a) \geq M(b)$ for $|a| \geq|b|$
3. (polynomially bounded) There is a constant $C_{M}>0$ so that for all $|a| \geq|b|$

$$
\frac{C_{M} \mathrm{a}}{\mathrm{~b}} \leq \frac{\mathrm{M}(\mathrm{a})}{\mathrm{M}(\mathrm{~b})} \leq\left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{2}
$$

4. (square-root subadditive) $M(a)^{1 / 2}+M(b)^{1 / 2} \geq M(a+b)^{1 / 2}$

Our Contributions for Nice M-Estimators

- For a parameter $\mathrm{L}=(\log n)^{\mathrm{O}(\log \mathrm{k})}$, we reduce the problem to

$$
\min _{\operatorname{rank}(\mathrm{X})=\mathrm{k}} \sum_{\mathrm{i}} \mathrm{M}\left(\widehat{\mathrm{a}_{\mathrm{i}} \mathrm{XB}}-\left.\mathrm{c}_{\mathrm{i}}\right|_{2}\right),
$$

where \widehat{A}, B, C have dimensions in poly $\left(L, \frac{1}{\epsilon}, \log n\right)$, in $n n z(A) \log n+(n+d) \operatorname{poly}(L / \varepsilon)$ time

- (Large Approximation) In $O(n n z(A))+(n+d)$ poly (k) time, we find a space of dimension poly($k \log n$) whose cost is within a factor L of the best k-dimensional space
- (Weak Coreset) In O(nnz(A)) + (n+d) poly $(\mathrm{L} / \varepsilon)$ time, can find a space of dimension poly $(\mathrm{L} / \varepsilon)$ that contains a k-dimensional space which is a $(1+\epsilon)$-approximation
- Open Question: we do not know how to solve the small problem and avoid a factor-L approximation or a bi-criteria solution, though heuristics can be run

Talk Outline

1. Algorithm for $p=1$

Due to time constraints, please see the paper for the hardness result, and adaptations of the algorithm to p in $(1,2)$ and M -estimators

Algorithm for $\mathrm{p}=1$

\square

- For a matrix A , let $|\mathrm{A}|_{\mathrm{v}}=\sum_{\mathrm{i}}\left|\mathrm{a}_{\mathrm{i}}\right|_{2}$
- Would like to compute a V for which

$$
\left|A-A V V^{T}\right|_{V} \leq(1+\epsilon) \min _{\operatorname{rank}(W)=k}\left|A-A W W^{T}\right|_{V}
$$

- (Strategy)
- Find poly $(\mathrm{k} / \varepsilon) \times \mathrm{n}$ matrix R and a $\mathrm{d} \times$ poly $(\mathrm{k} / \varepsilon)$ matrix C
- Find $\mathrm{d} x \operatorname{poly}(\mathrm{k} / \varepsilon)$ matrix U with orthonormal columns
- If the $\operatorname{poly}(\mathrm{k} / \varepsilon) \times \operatorname{poly}(\mathrm{k} / \varepsilon)$ matrix X is the solution to

$$
\min _{\text {rank-k projectors } X}\left|R A U X U^{T} C-R A C\right|_{V}
$$

then $U X U^{T}$ is the desired projection matrix

Why Reduce to a Small Problem?

- Solve $\min _{\text {rank-k projectors } X}\left|\operatorname{RA~UXU}^{\mathrm{T}} \mathrm{C}-\mathrm{RAC}\right|_{\mathrm{v}}$ using polynomial optimization
- Given c polynomial inequalities each of degree at most d in m variables: $p_{1}\left(x_{1}, \ldots, x_{m}\right) \geq \beta_{1}, \ldots, p_{c}\left(x_{1}, \ldots, x_{m}\right) \geq \beta_{c}$, can determine if there is a solution using (cd) ${ }^{\mathrm{O}(\mathrm{m})}$ arithmetic operations [BPR96]
- Since X has dimensions poly $(k / \varepsilon) \times$ poly (k / ε), one can create a small number of variables and solve the problem in $\exp (\mathrm{poly}(\mathrm{k} / \varepsilon))$ time
- Technicalities: need a lower bound on the cost given it is non-zero

Steps in Our Algorithm

- Suffices to reduce to $\min _{\text {rank-k projectors } X}\left|R A U X U^{T} C-R A C\right|_{V}$
- Suppose we find a weak coreset, i.e., a subspace U of R^{d} of dimension poly (k / ε) which contains a k-dimensional subspace which is a $(1+\varepsilon)$-approximation
- Projection onto the k-dimensional subspace can be written as UXU ${ }^{T}$ where X has rank k
- Reduces the original problem to $\min _{\operatorname{rank}(X)=k}\left|A U X U^{T}-A\right|_{v}$
- We are then done if we find small matrices R and C for which

$$
\min _{\operatorname{rank}(X)=\mathrm{k}}\left|R A U X U^{\mathrm{T}} \mathrm{C}-\mathrm{RAC}\right|_{\mathrm{v}} \leq(1+\epsilon) \min _{\operatorname{rank}(X)=\mathrm{k}}\left|A U X U^{\mathrm{T}}-\mathrm{A}\right|_{\mathrm{V}}
$$

Sketching Matrices for the v-Norm

- Consider the problem $\min _{X}|X B-A|_{v}$ where B has rank r
- The rows x_{i} in the optimal X can be solved via n regression problems

$$
\min _{x_{i}}\left|x_{i} B-a_{i}\right|_{2}
$$

- Would like to reduce this to a smaller problem $\min _{X}|X B S-A S|_{v}$
- (Subspace Embeddings) There are $\mathrm{d} x$ poly $(\mathrm{r} / \varepsilon$) random matrices S for which simultaneously for all x,

$$
\left|x B S-a_{i} S\right|_{2}=(1 \pm \epsilon)\left|x B-a_{i}\right|_{2}
$$

with probability $\geq 1-\operatorname{poly}\left(\frac{\epsilon}{\mathrm{r}}\right)$

- S can be a matrix of i.i.d. Gaussians or Randomized FFT [S06]
- For faster computation, S can be the CountSketch matrix [CW13]

The CountSketch Matrix [CCFCO4]

- S is $d x$ poly (r / ε)
- S is extremely sparse!
- Only a single non-zero per row
- Non-zero location chosen uniformly at random
- On that location it is 1 w.pr. $1 / 2$ and -1 w.pr. $1 / 2$
- For a matrix B, B • S computable in nnz(B) time
- [CW13] Simultaneously for all x ,

$$
\left|x B S-a_{i} S\right|_{2}=(1 \pm \epsilon)\left|x B-a_{i}\right|_{2}
$$

with probability $\geq 1-\operatorname{poly}\left(\frac{\epsilon}{\mathrm{r}}\right)$

Sketching Matrices for the v-Norm

- Want to solve $\min _{\mathrm{X}}|\mathrm{XB}-\mathrm{A}|_{\mathrm{V}}$
- The rows X_{i} in the optimal X can be solved via n regression problems

$$
\min _{x_{i}}\left|x_{i} B-a_{i}\right|_{2}
$$

- There exist $\mathrm{d} x$ poly $(\mathrm{r} / \varepsilon)$ random matrices S for which simultaneously for all x ,

$$
\left|\mathrm{xBS}-\mathrm{a}_{\mathrm{i}} \mathrm{~S}\right|_{2}=(1 \pm \epsilon)\left|\mathrm{xB}-\mathrm{a}_{\mathrm{i}}\right|_{2}
$$

with probability $\geq 1-\operatorname{poly}\left(\frac{\epsilon}{\mathrm{r}}\right)$
Can we just output $X^{\prime}=\underset{X}{\operatorname{argmin}}|X B S-A S|_{v}$?

- No! To be correct on all n regression problems requires error probability $1 / n$, so the number of rows of S is poly $(k / \varepsilon) \log n$, which later causes our polynomial optimization problem to have at least poly $(\mathrm{k} / \varepsilon) \log \mathrm{n}$ variables...

Structural Lemma

- Let X^{*} be the minimizer to $\min _{X}|X B-A|_{V}$
- Can show $\left|X^{*} B S-A S\right|_{v} \leq(1+\epsilon)\left|X^{*} B-A\right|_{v}$ with constant probability
- Uses a second moment argument
- For $X^{\prime}=\operatorname{argmin}|X B S-A S|_{v}$ to satisfy $\left|X^{\prime} B-A\right|_{v} \leq(1+\epsilon)\left|X^{*} B-A\right|_{v}$, it suffices to show for all X,

$$
|\mathrm{X} B S-A S|_{v} \geq(1-\epsilon)|\mathrm{XB}-\mathrm{A}|_{v}
$$

- (Structural Lemma) for all X , it holds that $|\mathrm{XBS}-\mathrm{AS}|_{\mathrm{v}} \geq(1-\epsilon)|\mathrm{XB}-\mathrm{A}|_{\mathrm{v}}$
- Intuition: S will be a subspace embedding for most $\left[B, A_{i}\right]$ pairs, so for most i , we will have $\left|X_{i} B S-A_{i} S\right|_{v} \geq(1-\epsilon)\left|X_{i} B-A_{i}\right|_{v}$

Structural Lemma

For $i=1, \ldots, n$, say i is bad if S

$$
\left|\mathrm{x}_{1} \mathrm{BS}-\mathrm{a}_{1} \mathrm{~S}\right|_{2}
$$

is not a subspace embedding for $\left[B, a_{i}\right]$, otherwise i is good

$$
\left|\mathrm{x}_{2} \mathrm{BS}-\mathrm{a}_{2} \mathrm{~S}\right|_{2}
$$

For a good i ,

$$
\left|x_{3} B S-a_{3} S\right|_{2}
$$ $\left|x_{i} B-a_{i}\right|_{2} \geq$ $(1-\epsilon)\left|x_{i} B-a_{i}\right|_{2}$

$$
\mathrm{E}\left[\sum_{\text {bad i }}\left|\mathrm{x}_{\mathrm{i}}^{*} \mathrm{~B}-\mathrm{a}_{\mathrm{i}}\right|_{2}\right] \leq \operatorname{poly}\left(\frac{\epsilon}{\mathrm{r}}\right)\left|\mathrm{X}^{*} \mathrm{~B}-\mathrm{A}\right|_{\mathrm{v}}
$$

Structural Lemma

- Previous slide shows we can condition on X^{*} not contracting
- What about those X for which $\left|x_{i} B-a_{i}\right|_{2}$ is large on those i when the subspace embedding fails?
- Suppose we additionally condition on the single event:

$$
\text { For all } x,|x B S|_{2}=(1 \pm \epsilon)|x B|_{2}
$$

- (Triangle Inequality)

$$
\text { - } \begin{aligned}
\left|x_{i} B S-a_{i} S\right|_{2} & \geq\left|x_{i} B S-x_{i}^{*} B S\right|_{2}-\left|x_{i}^{*} B S-a_{i} S\right|_{2} \\
& \geq(1-\epsilon)\left|x_{i} B-x_{i}^{*} B\right|_{2}-\left|x_{i}^{*} B S-a_{i} S\right|_{2} \\
& \geq(1-\epsilon)\left(\left|x_{i} B-a_{i}\right|_{2}-\left|x_{i}^{*} B-a_{i}\right|_{2}\right)-\left|x_{i}^{*} B S-a_{i} S\right|_{2} \\
& \geq(1-\epsilon)\left|x_{i} B-a_{i}\right|_{2}-\left|x_{i}^{*} B-a_{i}\right|_{2}-\left|x_{i}^{*} B S-a_{i} S\right|_{2}
\end{aligned}
$$

- $\sum_{\text {bad } i}\left|x_{i}^{*} B-a_{i}\right|_{2}$ is small
- $\sum_{\text {bad } i}\left|\mathrm{x}_{\mathrm{i}}^{*} \mathrm{BS}-\mathrm{a}_{\mathrm{i}} \mathrm{S}\right|_{2}$ is small, otherwise $\left|\mathrm{X}^{*} \mathrm{BS}-\mathrm{AS}\right|_{\mathrm{v}}>(1+\epsilon)\left|\mathrm{X}^{*} \mathrm{~B}-\mathrm{A}\right|_{\mathrm{v}}$

Using the Structural Lemma

- Two steps of our algorithm:
- Find a weak coreset to reduce the original problem to

$$
\min _{\operatorname{rank}(X)=k}\left|A U X U^{T}-A\right|_{V}
$$

- Find small matrices R and C on the left and right for which

$$
\min _{\operatorname{rank}(\mathrm{X})=\mathrm{k}}\left|\mathrm{RA} U X U^{\mathrm{T}} \mathrm{C}-\mathrm{RAC}\right|_{\mathrm{V}} \leq(1+\epsilon) \min _{\operatorname{rank}(\mathrm{X})=\mathrm{k}}\left|\mathrm{AUXU}^{\mathrm{T}}-\mathrm{A}\right|_{\mathrm{V}}
$$

- By structural lemma, if $X^{\prime}=\arg \min _{\operatorname{rank}(X)=k}\left|A U X U^{T} S-A S\right|_{v}$ then

$$
\left|A U X^{\prime} U^{T}-A\right|_{v} \geq(1-\epsilon) \min _{\operatorname{rank}(X)=\mathrm{k}}\left|A U X U^{T}-A\right|_{v}
$$

- Set C = S

Finishing the Small Matrices Step

- Given a weak coreset, we've reduced the problem to $\min _{\operatorname{rank}(X)=\mathrm{k}}\left|A U X U^{T} S-A S\right|_{v}$
- Dvoretsky's theorem: for an appropriately scaled dx $\frac{d}{\epsilon^{2}}$ Gaussian matrix G, the mapping $y \rightarrow y G$ satisfies w.h.p, simultaneously for all $y,|y G|_{1}=(1 \pm \epsilon)|y|_{2}$
- $\left|\mathrm{AUXU}^{\mathrm{T}} \mathrm{S}-\mathrm{AS}\right|_{\mathrm{v}}=(1 \pm \epsilon)\left|\mathrm{AUXU}^{\mathrm{T}} \mathrm{G}-\mathrm{ASG}\right|_{1}$, where $\left.\left.\right|_{\cdot}\right|_{1}$ is entry-wise 1-norm
- Columns of AUXU ${ }^{T} G$ - ASG are in a poly $\left(\frac{k}{\epsilon}\right)$-dimensional subspace so we can apply known sampling for the 1-norm to sample poly $\left(\frac{k}{\epsilon}\right)$ rows R so that for all X,

$$
\begin{gathered}
\mid \text { RAUXU }^{\mathrm{T}} \mathrm{G}-\left.\mathrm{RASG}\right|_{1}=(1 \pm \epsilon)\left|\mathrm{AUXU}^{\mathrm{T}} \mathrm{G}-\mathrm{ASG}\right|_{1} \text {, or } \\
\mid \text { RAUXU }^{\mathrm{T}}-\left.\mathrm{RAS}\right|_{\mathrm{V}}=(1 \pm \epsilon)\left|\mathrm{AUXU}^{\mathrm{T}}-\mathrm{AS}\right|_{\mathrm{V}}
\end{gathered}
$$

The Weak Coreset

- Two steps of our algorithm:
- Find a weak coreset to reduce the original problem to

$$
\min _{\operatorname{rank}(\mathrm{X})=\mathrm{k}}\left|\mathrm{AUXU}{ }^{\mathrm{T}}-\mathrm{A}\right|_{\mathrm{v}}
$$

- Find small matrices R and C on the left and right for which

$$
\min _{\operatorname{rank}(X)=\mathrm{k}}\left|R A U X U^{\mathrm{T}} \mathrm{C}-\mathrm{RAC}\right|_{\mathrm{V}} \leq(1+\epsilon) \min _{\operatorname{rank}(X)=\mathrm{k}}\left|A U X U^{\mathrm{T}}-\mathrm{A}\right|_{\mathrm{V}}
$$

- Done with finding small matrices, we just need a weak coreset

The Weak Coreset

- Structural Lemma: if $X^{\prime}=\underset{X}{\operatorname{argmin}}|\mathrm{XBS}-\mathrm{AS}|_{\mathrm{V}}$, then with large constant probability, $\left|X^{\prime} B-A\right|_{v}^{X} \leq(1+\epsilon)\left|X^{*} B-A\right|_{v}$, where the number of rows of S is poly $(\operatorname{rank}(B) / \varepsilon)$
- Apply structural lemma with $B=A_{k}$, where A_{k} is the best rank- k approximation to A in the v -norm
- S has poly $(\mathrm{k} / \varepsilon)$ rows
- Since $X^{\prime}=\underset{X}{\operatorname{argmin}}\left|X A_{k} S-A S\right|_{v}$ satisfies $X_{i}^{\prime}=A S\left(A_{k} S\right)^{-}$, there is a rank-k space in the column space of AS which is a $(1+\epsilon)$-approximation
- If $X^{\prime}=\arg \min _{\operatorname{rank}-\mathrm{k} X}|A S X-A|_{V}$, it is a $(1+\epsilon)$-approximation

The Weak Coreset

- We've reduced the original problem to $\min _{\text {rank-k }}|A S X-A|_{v}$
- By known sampling techniques for ℓ_{1} and Dvoretsky's theorem, can quickly find a matrix T for which if $X^{\prime \prime}=\arg \min _{\operatorname{rank}-\mathrm{k} X}|T A S X-T A|_{v}$, then $\left|A S X^{\prime \prime}-A\right|_{v} \leq 4 \min _{\text {rank-k }}|A S X-A|_{v}$
- $\mathrm{X}^{\prime \prime}=\arg \min _{\operatorname{rank}-\mathrm{k} X}|\mathrm{TASX}-\mathrm{TA}|_{\mathrm{v}}$ is in the row span of TA
- Row span of TA is a 4-approximation

The Weak Coreset

- (Adaptive Sampling) [DV07] shows how to take a poly $\left(\frac{k}{\epsilon}\right)$-dimensional subspace TA of R^{d}, which is an $\mathrm{O}(1)$-approximation, and obtain a poly $\left(\frac{\mathrm{k}}{\epsilon}\right)$ dimensional subspace of R^{d} containing a $(1+\epsilon)$-approximation
- We show how to implement this procedure in nnz(A) time, improving the previous nnz(A)*poly(k/ ε) time
- [DV07] sample a row a_{i} of A proportional to its distance to TA, then sample another row a_{j} of A proportional to its distance to span(TA, $\left.\mathrm{a}_{\mathrm{i}}\right)$, etc. We show we can sample all rows proportional to their distance to the original TA
- Our sampling is non-adaptive

Algorithm Summary

1. Compute AS for a $d x$ poly(k/ ϵ) CountSketch matrix S
2. Compute TAS where T samples poly(k/ ϵ) rows of AS using known sampling for ℓ_{1}
3. Feed TA into a non-adaptive sampling algorithm to obtain a weak coreset U, reducing the problem to

$$
\min _{\operatorname{rank}(X)=\mathrm{k}}\left|A U X U^{T}-A\right|_{V}
$$

4. Find small matrices R and C to reduce the problem to

$$
\min _{\operatorname{rank}(X)=\mathrm{k}}\left|R A U X U^{\mathrm{T}} \mathrm{C}-\mathrm{RAC}\right|_{\mathrm{V}}
$$

5. Solve the problem using polynomial optimization

Conclusions

- First input sparsity time algorithm for robust low rank approximation with cost measure

$$
\min _{k-\operatorname{dim} V} \sum_{i} d\left(a_{i}, V\right)^{p}=\min _{k-\operatorname{dim} V} \sum_{i}\left|a_{i}-a_{i}^{T} V V^{T}\right|_{2}^{p}
$$

- Generalize the algorithm to give the first near-input sparsity time algorithms for a wide class of M-estimators
- Show first hardness for p in $[1,2)$, so there can be no polynomial time algorithm in n, d, k, and $1 / \varepsilon$ unless $P=N P$
- Helps explain why we need the $\exp (p o l y(k / \varepsilon))$ term in our time complexity
- Improve [CW15] for regression with M-estimator losses, showing for a wide class how to obtain $(1+\epsilon)$-approximation in $n n z(A)$ time

