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in O(nnz(A)) + (n+d) poly(k/e) [CW13]. See [MM13, NN13] for further optimizations




Robust Statistics

* For many problems, sum of squared distances is too sensitive to outliers

e Other problems, such as regression minc1 |Ax — b| often study more “robust” norms
xin R

 E.g, mindlAX —b|; = 2 |(Ax — b)

xin R
* Sometimes, norms are not used, e.g., M-estimators: mir(ll D M((AX — b)i)
XER

2
Huber estimator: M(x) = )Z(—T if x < 1, otherwise M(x) = |x| — t/2

Huber enjoys smoothness properties of 15 and
robustness properties of [,

Can compute a (1 + €)-approximation to Huber
regression in nnz(A) + poly(d/e) time [CW15]
Similar results for regression for wide class of
“nice” M-estimators [CW15]




Robust Forms of Low Rank Approximation

* (Basis Independence) if you rotate RY by rotation matrix W, obtaining
new points a; W, a,W, ...,a,W, the cost is preserved

* This rules out approximating A by a rank-k matrix B which minimizes
Y.ila; — bjl;, where by, ..., b, are the rows of B
* E.g., if Bhasrank 0, then ),;|a;|; # ).;la;W]|; for most rotations W

e Cost function studied in [DZHZ06, SVO7,DV07,FL11,VX12]:

: : Txn/TIP @
min d(a;, V)P = min E a; —a; VV O
k—dimVZ (2, V) k—dim vV £ ai —a, |2 ¢

1 1

* This is rotationally invariant, and
for pin[1,2) is more robust than the SVD




Prior Work on this Cost Function

* A k-dimensional space V' is a (1+ €)-approximation if
E d(a;, V)P < (1 +€) min E d(a;, V)P
: k—dim V £
1 1

* Forconstant1 < p < oo,

e can output a k-dimensional space V' which is a (1+ €)-approximation in
n - d -poly(k/e) + exp(poly(k/€)) time [KVO7]

* (Weak Coreset) can obtain a poly(k/e)-dimensional space V' which contains a
k-dimensional space V"’ which is a (1+ €)-approximationin n - d -poly(k/e€)
time [DVO7, FL11]

* Forp>2,

* the problem is NP-hard to approximate up to a fixed constant factor y,,

[DTV10, GRSW12].

* there is a poly(nd) time algorithm achieving \/2yp-approximation [DTV10]



Open Questions from Prior Work

* We are interestedin 1 < p < 2, since these are more robust than the SVD

1. (Exponential Term) Is the exp(poly(k/€)) in the running times necessary, or
is it possible to have an algorithm running in time polynomial in n,d,k,1/€?

2. (Input Sparsity) Can one achieve input sparsity time, i.e., a leading order
term in the time complexity of nnz(A), as in the case of p =27

3. (M-Estimators) What about other loss functions, e.g., M-estimators
min Z M(‘ai —ajvvT , )
i

k—dim V
Can one obtain any algorithm for low rank approximation for M-estimators?




Our Contributions (Hardness)

* We show the first hardness for pin [1, 2), namely, for any pin [1,2) it is NP-
hard to obtain a (1+1/d)-approximation in poly(nd) time (answers an open
qguestion of Kannan and Vempala)

* Implies there is no poly(n,d,k,1/€) time algorithm unless P = NP

* Together with previous work, shows there is a “singularity” at p = 2: for
every 1 < p < oo, the problem is NP-hard unless p =2

* Open Question: we do not know if the problem is NP-hard for fixed
constant €



Our Contributions (Input Sparsity)

* For pin[1,2) we achieve an algorithm running in time
nnz(A) + (n+d)poly(k/€) + exp(poly(k/€))

* nnz(A) time is required for algorithms achieving relative error, and is
optimal when nnz(A) > (n+d)poly(k/€) + exp(poly(k/€))

* (Weak Coreset) For pin [1,2), can find a poly(k/€)-dimensional
subspace V’ which contains a k-dimensional subspace V"’ of R which
is a (1+€)-approximation in nnz(A) + (n+d)poly(k/€) time



Our Contributions (M-Estimators)

* We give the first results for low rank approximation with M-Estimator
losses (previous empirical results in [DZHZ06])

* An M-estimator M(x) is nice if
1. (even) M(x) = M(—x), withM(0) =0
2. (monotonic) M(a) = M(b) for |a] = |b]
3. (polynomially bounded) There is a constant Cy; > 0 so that for all |a|= |b|
Cya M(a) (a)z
< <|-
b M(b)

b
4. (square-root subadditive) M(a)/2 + M(b)/2 > M(a + b)*/2



Our Contributions for Nice M-Estimators

e For a parameter L = (Iogn)°?U°8K) e reduce the problem to

arin | 2iM(aiXB —cif),

where A, B, C have dimensions in poly(L,%, logn), in nnz(A) log n + (n+d) poly(L/€) time

 (Large Approximation) In O(nnz(A)) + (n+d) poly(k) time, we find a space of dimension
poly(k log n) whose cost is within a factor L of the best k-dimensional space

* (Weak Coreset) In O(nnz(A)) + (n+d) poly(L/€) time, can find a space of dimension
poly(L/€) that contains a k-dimensional space which is a (1 + €)-approximation

* Open Question: we do not know how to solve the small problem and avoid a factor-L
approximation or a bi-criteria solution, though heuristics can be run



Talk Outline

1. Algorithmforp=1

Due to time constraints, please see the paper for the hardness result,
and adaptations of the algorithm to p in (1,2) and M-estimators



Algorithm forp =1

* For a matrix A, let |Al, = Xila;l;
* Would like to compute a V for which

AUXUT — A

[A—AWT| < (1+¢€) min |A-AWWT|

rank(W) =k
* (Strategy)
* Find poly(k/€) x n matrix R and a d x poly(k/€) matrix C

* Find d x poly(k/g) matrix U with orthonormal columns

* If the poly(k/€) x poly(k/€) matrix X is the solution to
min IRAUXUTC — RAC

rank—Kk projectors X A7
then UXUT is the desired projection matrix




Why Reduce to a Small Problem?

* Solve min IRAUXUTC — RAC]|, using polynomial

rank—Kk projectors X
optimization

* Given c polynomial inequalities each of degree at most d in m variables:
P1 (X1, oy Xmm) = By, ooy P (X1, --o» Xm) = B, can determine if there is a
solution using (cd)®™ arithmetic operations [BPR9I6]

* Since X has dimensions poly(k/€) x poly(k/€), one can create a small
number of variables and solve the problem in exp(poly(k/g)) time

* Technicalities: need a lower bound on the cost given it is non-zero



Steps in Our Algorithm

» Suffices to reduce to min IRAUXUTC — RAC|,

rank—Kk projectors X

« Suppose we find a weak coreset, i.e., a subspace U of RY of
dimension poly(k/€) which contains a k-dimensional subspace which
is a (1+€)-approximation

e Projection onto the k-dimensional subspace can be written as UXUT
where X has rank k

* Reduces the original problemto min [|AUXUT —AJ,
rank(X)=k

e We are then done if we find small matrices R and C for which

min |RAUXU'C —RAC| <(1+€) min [|AUXUT —A
rank(X)=k A rank(X)=k A\



Sketching Matrices for the v-Norm

* Consider the problem mXin|XB — A|, where B has rank r

* The rows x; in the optimal X can be solved via n regression problems

min|x;B — aj],
Xj

* Would like to reduce this to a smaller problem mXinIXBS — AS|,

* (Subspace Embeddings) There are d x poly(r/e) random matrices S for
which simultaneously for all x,

|xBS — a;S|, = (1 £ €)|xB — aj;
with probability = 1 — poly G)

e S can be a matrix of i.i.d. Gaussians or Randomized FFT [SO6]
* For faster computation, S can be the CountSketch matrix [CW13]



The CountSketch Matrix [CCFCO4]

* Sisd x poly(r/e)

* Sis extremely sparse!

Only a single non-zero per row

Non-zero location chosen uniformly at random
On that location it is 1 w.pr. %2 and -1 w.pr. %2
For a matrix B, B - S computable in nnz(B) time

e [CW13] Simultaneously for all x,
|XxBS — a;S|, = (1 + €)|xB —ajl;

with probability = 1 — poly G)




Sketching Matrices for the v-Norm

* Want to solve mXianB —Aly

* The rows X; in the optimal X can be solved via n regression problems
min|x;B — aj|,
Xj
* There exist d x poly(r/€) random matrices S for which simultaneously for all x,
[XxBS — a;S|; = (1 £ €)|xB —ajf;

with probability = 1 — poly (E)
Can we just output X' = argm)}'nIXBS — AS|,?

* No! To be correct on all n regression problems requires error probability 1/n, so
the number of rows of S is poly(k/g) log n, which later causes our polynomial
optimization problem to have at least poly(k/€) log n variables...



Structural Lemma

* Let X* be the minimizer to mXinIXB —Aly
* Can show |[X*BS — AS|, < (1 + €)|X*B — A|,, with constant probability

e Uses a second moment argument

* For X' = argmin|XBS — AS]|, to satisfy |[X'B—A|, < (1 +€)|X*B—A|,, it
suffices to show for all X,
IXBS — AS|, = (1 — €)|XB — Al

* (Structural Lemma) for all X, it holds that | XBS — AS|, = (1 — €)|XB — A,

* Intuition: S will be a subspace embedding for most [B, A;] pairs, so for most i,
we will have [X;BS — A;S]|, = (1 —€)|X;B — Ail,



Structural Lemma

Fori=1, .., n,sayiis badifS

|x4BS —a; S|,

IS not a subspace embedding

x2BS —a,S|;

for [B, a;], otherwise i is good

h For a good |,

x3BS — a3S|;

xiB — aj|, =

(1-©)lxB - ajl,

E[haai X/B —ail; 1< poly (5) IXB - Al



Structural Lemma

* Previous slide shows we can condition on X* not contracting

* What about those X for which |x;B — a;|, is large on those i when the
subspace embedding fails?

* Suppose we additionally condition on the single event:
For all x, |xBS|, = (1 + €)|xB]|,
* (Triangle Inequality)
* |x;BS — a;S|, = |x;BS —x{BS|, — [x{BS — a;S|,
> (1 —¢€)[x;B —x{B|], — |x{BS —a;S|,
= (1 -e)(xB —ajl; — |x{B —aj|;) — [x{BS —a;S|;
= (1 -6)[xB—ajl, — |x{B —aj|, = [x{BS — a;S|,
* Ybadi 1XiB — aj|,is small
* Ybadi |XiBS — a;S|, is small, otherwise |X*BS — AS|y, > (1 + €)|X*B — Al




Using the Structural Lemma

* Two steps of our algorithm:
* Find a weak coreset to reduce the original problem to
min |AUXUT —A|,
rank(X)=k
* Find small matrices R and C on the left and right for which

min  |RA UXUTC —RAC| <(1+€ min |AUXUT —A
rank(X)=k rank(X)=k '

e By structural lemma, if X’ =arg min |AUXUTS — AS|, then
rank(X)=k
AUX'UT— Al >(1—-¢€) min |AUXUT —A|,
\4 rank(X)=k
*SetC=S



Finishing the Small Matrices Step

Given a weak coreset, we’ve reduced the problemto min

rank(X)=k

IJAUXUTS — AS|,

Dvoretsky’s theorem: for an appropriately scaled d X— Gaussian matrix G, the
mapping y — yG satisfies w.h.p, simultaneously for aII y, |[yGly =

(1+e)lyl,

AUXUTS — AS|, = (1 4+ €)|AUXUTG — ASG|,, where |.|; is entry-wise 1-norm

Columns of AUXUTG — ASG are in a poly (g)—dimensional subspace so we can

apply known sampling for the 1-norm to sample poly (IZ() rows R so that for all X,

[RAUXUTG — RASG|, =
—RAS| = (1+e)|AUXUT —AS|

|IRAUXUT




The Weak Coreset

e Two steps of our algorithm:

* Find a weak coreset to reduce the original problem to

min |AUXUT —Al,
rank(X)=k

* Find small matrices R and C on the left and right for which

min |RAUXU'C —RAC| < (1+¢€) min_k|AUXUT — A

rank(X)=k A\ rank(X) A

* Done with finding small matrices, we just need a weak coreset



The Weak Coreset

e Structural Lemma: if X' = argmmIXBS AS|,, , then with large

constant probability, |[X'B — AIV < (1+ ¢)|X*B — Al|,, where the
number of rows of S is poly(rank(B)/e)

* Apply structural lemma with B = Ay, where Ay is the best rank-k
approximation to A in the v-norm
* S has poly(k/€) rows
* Since X' = argmin|XAS — AS|, satisfies X; = AS (AxS)~, there is a rank-k

X
space in the column space of AS which is a (1 + €)-approximation

e IfX’=arg min |ASX — A|,,itisa (1 + €)-approximation
rank—k X



The Weak Coreset

* We've reduced the original problemto min |ASX — Al
rank—k X

* By known sampling techniques for £; and Dvoretsky’s theorem, can

quickly find a matrix T for which if X" = arg Hll(iI}(X|TASX — TAl,,
rank—

then |[ASX" — Al, <4 min |ASX—A|,
rank—k X

e X’ =arg min |[TASX — TA|, isin the row span of TA
rank—k X

* Row span of TA is a 4-approximation



The Weak Coreset

* (Adaptive Sampling) [DV0O7] shows how to take a poly (g)-dimensional

subspace TA of RY, which is an O(1)-approximation, and obtain a poly (IZ()
dimensional subspace of RY containing a (1 + €)-approximation

* We show how to implement this procedure in nnz(A) time, improving the
previous nnz(A)*poly(k/g) time

* [DV0O7] sample a row a; of A proportional to its distance to TA, then sample
another row a; of A proportional to its distance to span(TA, a;), etc. We show
we can sample all rows proportional to their distance to the original TA

e Our sampling is non-adaptive



Algorithm Summary

1. Compute AS for a d x poly(k/e) CountSketch matrix S
2. Compute TAS where T samples poly(k/€) rows of AS using known
sampling for £

3. Feed TA into a non-adaptive sampling algorithm to obtain a weak
coreset U, reducing the problem to

min |AUXUT — A
rank(X)=k v

4. Find small matrices R and C to reduce the problem to

min |RAUXUTC — RAC
rank(X)=k v

5. Solve the problem using polynomial optimization




Conclusions

* First input sparsity time algorithm for robust low rank approximation with

cost measure
. . p
min E d(a;, V)P = min E |aj —a; VVT
k—dim V £ k—dim V 2

1

1

* Generalize the algorithm to give the first near-input sparsity time
algorithms for a wide class of M-estimators

* Show first hardness for p in [1,2), so there can be no polynomial time
algorithm in n, d, k, and 1/€ unless P = NP
* Helps explain why we need the exp(poly(k/g)) term in our time complexity

* Improve [CW15] for regression with M-estimator losses, showing for a
wide class how to obtain (1+€)-approximation in nnz(A) time




