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Singular Value Decomposition

• Given an n x d matrix A, think of the rows a1, a2, … , an as points in Rd

• Find k-dimensional subspace V of Rd minimizing 

 i ai − ai VVT
2

2
=  i d ai, V

2

• Optimal V is given by the span of top k right singular values of A

• V can be found using min n2d, nd2 arithmetic operations

• Can find a V’ of dimension k for which 

 

i

d ai, V′ 2 ≤ 1 + ϵ min
k−dim V

 

i

d ai, V
2

in O(nnz(A)) + (n+d) poly(k/ϵ) [CW13]. See [MM13, NN13] for further optimizations

Abuse notation 
and use V to be a 
subspace and the 
d x k matrix with 

orthonormal 
columns spanning 

the subspace 



Robust Statistics

• For many problems, sum of squared distances is too sensitive to outliers

• Other problems, such as regression min
x in Rd

|Ax − b| often study more “robust” norms

• E.g., min
x in Rd

Ax − b 1 =  i | Ax − b i|

• Sometimes, norms are not used, e.g., M-estimators: min
x∈Rd

 i M Ax − b i

• Huber estimator: M x =
x2

2τ
if x ≤ τ, otherwise M x = x − τ/2

• Huber enjoys smoothness properties of 𝑙2
2 and

robustness properties of 𝑙1
• Can compute a (1 + ϵ)-approximation to Huber

regression in nnz(A) + poly(d/ϵ) time [CW15]

• Similar results for regression for wide class of

“nice” M-estimators [CW15]



Robust Forms of Low Rank Approximation 

• (Basis Independence) if you rotate Rd by rotation matrix W, obtaining 
new points a1W, a2W, … , anW, the cost is preserved

• This rules out approximating A by a rank-k matrix B which minimizes 
 i ai − bi 1 , where b1, … , bn are the rows of B
• E.g., if B has rank 0, then  i ai 1 ≠  i aiW 1 for most rotations W

• Cost function studied in [DZHZ06, SV07,DV07,FL11,VX12]:

min
k−dim V

 

i

d ai, V
p = min

k−dim V
 

i

ai − ai
TVVT

2

p

• This is rotationally invariant, and 

for p in [1,2) is more robust than the SVD



Prior Work on this Cost Function

• A k-dimensional space V’ is a (1+ ϵ)-approximation if

 

i

d ai, V
′ p ≤ 1 + ϵ min

k−dim V
 

i

d ai, V
p

• For constant 1 ≤ p < ∞, 

• can output a k-dimensional space V’ which is a (1+ 𝜖)-approximation in 
n ⋅ d ⋅poly(k/ϵ) + exp(poly(k/ϵ)) time [KV07]

• (Weak Coreset) can obtain a poly(k/ϵ)-dimensional space V’ which contains a 
k-dimensional space V’’ which is a (1+ ϵ)-approximation in n ⋅ d ⋅poly(k/ϵ) 
time [DV07, FL11]

• For p > 2, 

• the problem is NP-hard to approximate up to a fixed constant factor γp

[DTV10, GRSW12]. 

• there is a poly(nd) time algorithm achieving √2γp-approximation [DTV10]



Open Questions from Prior Work

• We are interested in 1 ≤ p < 2, since these are more robust than the SVD

1. (Exponential Term) Is the exp(poly(k/ϵ)) in the running times necessary, or 
is it possible to have an algorithm running in time polynomial in n,d,k,1/ϵ?

2. (Input Sparsity) Can one achieve input sparsity time, i.e., a leading order 
term in the time complexity of nnz(A), as in the case of p = 2?

3. (M-Estimators) What about other loss functions, e.g., M-estimators

min
k−dim V

 

i

M( ai − ai
TVVT

2
)

Can one obtain any algorithm for low rank approximation for M-estimators?



Our Contributions (Hardness)

• We show the first hardness for p in [1, 2), namely, for any p in [1,2) it is NP-
hard to obtain a (1+1/d)-approximation in poly(nd) time (answers an open 
question of Kannan and Vempala)

• Implies there is no poly(n,d,k,1/ϵ) time algorithm unless P = NP

• Together with previous work, shows there is a “singularity” at p = 2: for 
every 1 ≤ p < ∞, the problem is NP-hard unless p = 2 

• Open Question: we do not know if the problem is NP-hard for fixed 
constant ϵ



Our Contributions (Input Sparsity)

• For p in [1,2) we achieve an algorithm running in time

nnz(A) + (n+d)poly(k/ϵ) + exp(poly(k/ϵ))

• nnz(A) time is required for algorithms achieving relative error, and is 
optimal when nnz(A) > (n+d)poly(k/ϵ) + exp(poly(k/ϵ))

• (Weak Coreset) For p in [1,2), can find a poly(k/ϵ)-dimensional 
subspace V’ which contains a k-dimensional subspace V’’ of Rd which 
is a (1+ϵ)-approximation in nnz(A) + (n+d)poly(k/ϵ) time



Our Contributions (M-Estimators)

• We give the first results for low rank approximation with M-Estimator 
losses (previous empirical results in [DZHZ06])

• An M-estimator M(x) is nice if
1. (even) M x = M(−x), with M 0 = 0

2. (monotonic) M a ≥ M b for a ≥ |b|

3. (polynomially bounded) There is a constant CM > 0 so that for all |a|≥ |b|
CMa

b
≤

M a

M b
≤

a

b

2

4. (square-root subadditive) M a 1/2 + M b 1/2 ≥ M a + b 1/2



Our Contributions for Nice M-Estimators

• For a parameter L = (log n)O(log k), we reduce the problem to

min
rank X =k

 i M( |aiXB − ci|2),

where  A, B, C have dimensions in poly(L,
1

ϵ
, log n), in nnz(A) log n + (n+d) poly(L/ε) time 

• (Large Approximation) In O(nnz(A)) + (n+d) poly(k) time, we find a space of dimension 
poly(k log n) whose cost is within a factor L of the best k-dimensional space

• (Weak Coreset) In O(nnz(A)) + (n+d) poly(L/ε) time, can find a space of dimension 
poly(L/ε) that contains a k-dimensional space which is a 1 + ϵ -approximation

• Open Question: we do not know how to solve the small problem and avoid a factor-L 
approximation or a bi-criteria solution, though heuristics can be run



Talk Outline

1. Algorithm for p = 1

Due to time constraints, please see the paper for the hardness result, 
and adaptations of the algorithm to p in (1,2) and M-estimators



Algorithm for p = 1

• For a matrix A, let A v =  i ai 2

• Would like to compute a V for which
A − AVVT

v
≤ 1 + ϵ min

rank W = k
A − AWWT

v

• (Strategy) 
• Find poly(k/ε) x n matrix R and a d x poly(k/ε) matrix C

• Find d x poly(k/ε) matrix U with orthonormal columns

• If the poly(k/ε) x poly(k/ε) matrix X is the solution to

min
rank−k projectors X

|RA UXUTC − RAC  
v

then UXUT is the desired projection matrix

R CAUXUT − A



Why Reduce to a Small Problem?

• Solve min
rank−k projectors X

|RA UXUTC − RAC|v using polynomial 

optimization

• Given c polynomial inequalities each of degree at most d in m variables: 
p1 x1, … , xm ≥ β1, … , pc(x1, … , xm) ≥ βc , can determine if there is a 
solution using cd O m arithmetic operations [BPR96]

• Since X has dimensions poly(k/ε) x poly(k/ε), one can create a small 
number of variables and solve the problem in exp(poly(k/ε)) time
• Technicalities: need a lower bound on the cost given it is non-zero



Steps in Our Algorithm

• Suffices to reduce to min
rank−k projectors X

|RA UXUTC − RAC|v

• Suppose we find a weak coreset, i.e., a subspace U of Rd of 
dimension poly(k/ε) which contains a k-dimensional subspace which 
is a (1+ε)-approximation

• Projection onto the k-dimensional subspace can be written as UXUT

where X has rank k

• Reduces the original problem to min
rank X =k

|A UXUT − A|v

• We are then done if we find small matrices R and C for which 

min
rank X =k

|RA UXUTC − RAC  
v

≤ 1 + ϵ min
rank X =k

|A UXUT − A  
v



Sketching Matrices for the v-Norm

• Consider the problem min
X

XB − A v where B has rank r

• The rows xi in the optimal X can be solved via n regression problems
min

xi

xiB − ai 2

• Would like to reduce this to a smaller problem min
X

XBS − AS v

• (Subspace Embeddings) There are d x poly(r/ε) random matrices S for 
which simultaneously for all x, 

xBS − aiS 2 = 1 ± ϵ xB − ai 2

with probability ≥ 1 − poly
ϵ

r

• S can be a matrix of i.i.d. Gaussians or Randomized FFT [S06]

• For faster computation, S can be the CountSketch matrix [CW13]



The CountSketch Matrix [CCFC04]

• S is d x poly(r/ε)

• S is extremely sparse!
• Only a single non-zero per row
• Non-zero location chosen uniformly at random
• On that location it is 1 w.pr. ½ and -1 w.pr. ½ 
• For a matrix B, B ⋅ S computable in nnz(B) time

• [CW13] Simultaneously for all x, 
xBS − aiS 2 = 1 ± ϵ xB − ai 2

with probability ≥ 1 − poly
ϵ

r

0 0 0 1
0 0 -1 0
1 0 0 0
0 0 1 0
0 0 -1 0
1 0 0 0
0 0 0 -1
0 1 0 0 



Sketching Matrices for the v-Norm

• Want to solve min
X

XB − A v

• The rows xi in the optimal X can be solved via n regression problems
min

xi

xiB − ai 2

• There exist d x poly(r/ε) random matrices S for which simultaneously for all x, 
xBS − aiS 2 = 1 ± ϵ xB − ai 2

with probability ≥ 1 − poly
ϵ

r

Can we just output 𝑋′ = arg𝑚𝑖𝑛
𝑋

𝑋𝐵𝑆 − 𝐴𝑆 𝑣?

• No! To be correct on all n regression problems requires error probability 1/n, so 
the number of rows of S is poly(k/ε) log n, which later causes our polynomial 
optimization problem to have at least poly(k/ε) log n variables…



Structural Lemma

• Let X∗ be the minimizer to min
X

XB − A v

• Can show X∗BS − AS v ≤ 1 + ϵ X∗B − A v with constant probability
• Uses a second moment argument

• For X′ = argmin
X

XBS − AS v to satisfy X′B − A v ≤ 1 + ϵ X∗B − A v, it 
suffices to show for all X, 

XBS − AS v ≥ 1 − ϵ XB − A v

• (Structural Lemma) for all X, it holds that XBS − AS v ≥ 1 − ϵ XB − A v

• Intuition: S will be a subspace embedding for most B, Ai pairs, so for most i, 
we will have XiBS − AiS v ≥ 1 − ϵ XiB − Ai v



Structural Lemma

x1BS − a1S 2

x2BS − a2S 2

x3BS − a3S 2

For i = 1, …, n, say i is bad if S
is not a subspace embedding 
for B, ai , otherwise i is good

E[ bad i xi
∗B − ai 2 ] ≤ poly

ϵ

r
X∗B − A v

…

For a good i, 
xiB − ai 2 ≥
1 − ϵ xiB − ai 2



Structural Lemma

• Previous slide shows we can condition on X∗ not contracting

• What about those X for which xiB − ai 2 is large on those i when the 
subspace embedding fails? 

• Suppose we additionally condition on the single event:

For all x, xBS 2 = 1 ± ϵ xB 2

• (Triangle Inequality)
• xiBS − aiS 2 ≥ xiBS − xi

∗BS 2 − xi
∗BS − aiS 2

≥ 1 − ϵ xiB − xi
∗B 2 − xi

∗BS − aiS 2

≥ 1 − ϵ xiB − ai 2 − xi
∗B − ai 2 − xi

∗BS − aiS 2

≥ 1 − ϵ xiB − ai 2 − xi
∗B − ai 2 − xi

∗BS − aiS 2

•  bad i xi
∗B − ai 2is small

•  bad i xi
∗BS − aiS 2 is small, otherwise X∗BS − AS v > 1 + ϵ X∗B − A v



Using the Structural Lemma

• Two steps of our algorithm:
• Find a weak coreset to reduce the original problem to

min
rank X =k

|A UXUT − A|v
• Find small matrices R and C on the left and right for which 

min
rank X =k

|RA UXUTC − RAC  
v

≤ 1 + ϵ min
rank X =k

|A UXUT − A  
v

• By structural lemma, if X’ = arg min
rank X =k

|A UXUTS − AS|v then 

AUX′UT − A
v

≥ 1 − ϵ min
rank X =k

|A UXUT − A|v

• Set C = S



Finishing the Small Matrices Step

• Given a weak coreset, we’ve reduced the problem to min
rank X =k

|A UXUTS − AS|v

• Dvoretsky’s theorem: for an appropriately scaled d x
d

ϵ2 Gaussian matrix G, the 

mapping y → yG satisfies w.h.p, simultaneously for all y, yG 1 = 1 ± ϵ y 2

• AUXUTS − AS|v = 1 ± ϵ AUXUTG − ASG|1, where |. |1 is entry-wise 1-norm

• Columns of AUXUTG − ASG are in a poly
k

ϵ
-dimensional subspace so we can 

apply known sampling for the 1-norm to sample poly
k

ϵ
rows R so that for all X,

RAUXUTG − RASG
1

= 1 ± ϵ AUXUTG − ASG
1

, or

RAUXUT − RAS
v

= 1 ± ϵ AUXUT − AS
v



The Weak Coreset

• Two steps of our algorithm:

• Find a weak coreset to reduce the original problem to

min
rank X =k

|A UXUT − A|v

• Find small matrices R and C on the left and right for which 

min
rank X =k

|RA UXUTC − RAC  
v

≤ 1 + ϵ min
rank X =k

|A UXUT − A  
v

• Done with finding small matrices, we just need a weak coreset



The Weak Coreset

• Structural Lemma: if X′ = argmin
X

XBS − AS v , then with large 
constant probability, X′B − A v ≤ 1 + ϵ X∗B − A v, where the 
number of rows of S is poly(rank(B)/ε)

• Apply structural lemma with B = Ak, where Ak is the best rank-k 
approximation to A in the v-norm
• S has poly(k/ε) rows
• Since X′ = argmin

X
XAkS − AS v satisfies Xi

′ = AS AkS −, there is a rank-k 
space in the column space of AS which is a 1 + ϵ -approximation

• If X’ = arg min
rank−k X

ASX − A v , it is a 1 + ϵ -approximation



The Weak Coreset

• We’ve reduced the original problem to min
rank−k X

ASX − A v

• By known sampling techniques for ℓ1 and Dvoretsky’s theorem, can 
quickly find a matrix T for which if X’’ = arg min

rank−k X
TASX − TA v, 

then ASX′′ − A v ≤ 4 min
rank−k X

ASX − A v

• X’’ = arg min
rank−k X

TASX − TA v is in the row span of TA

• Row span of TA is a 4-approximation



The Weak Coreset

• (Adaptive Sampling) [DV07] shows how to take a poly
k

ϵ
-dimensional 

subspace TA of Rd, which is an O(1)-approximation, and obtain a poly
k

ϵ
-

dimensional subspace of Rd containing a 1 + ϵ -approximation

• We show how to implement this procedure in nnz(A) time, improving the 
previous nnz(A)*poly(k/ε) time

• [DV07] sample a row ai of A proportional to its distance to TA, then sample 
another row aj of A proportional to its distance to span(TA, ai), etc. We show 
we can sample all rows proportional to their distance to the original TA
• Our sampling is non-adaptive



Algorithm Summary

1. Compute AS for a d x poly(k/ϵ) CountSketch matrix S

2. Compute TAS where T samples poly(k/ϵ) rows of AS using known 
sampling for ℓ1

3. Feed TA into a non-adaptive sampling algorithm to obtain a weak 
coreset U, reducing the problem to

min
rank X =k

|A UXUT − A  
v

4. Find small matrices R and C to reduce the problem to 

min
rank X =k

|RA UXUTC − RAC  
v

5.   Solve the problem using polynomial optimization



Conclusions

• First input sparsity time algorithm for robust low rank approximation with 
cost measure          

min
k−dim V

 

i

d ai, V
p = min

k−dim V
 

i

ai − ai
TVVT

2

p

• Generalize the algorithm to give the first near-input sparsity time 
algorithms for a wide class of M-estimators

• Show first hardness for p in [1,2), so there can be no polynomial time 
algorithm in n, d, k, and 1/ε unless P = NP
• Helps explain why we need the exp(poly(k/ε)) term in our time complexity

• Improve [CW15] for regression with M-estimator losses, showing for a 
wide class how to obtain (1+ϵ)-approximation in nnz(A) time


