
The Communication Complexity of Distributed Set-Joins
with Applications to Matrix Multiplication

Dirk Van Gucht1 Ryan Williams2 David P. Woodruff3 Qin Zhang1

1Indiana University Bloomington
2Stanford University

3IBM Almaden

ABSTRACT
Given a set-comparison predicateP and given two lists of setsA =
(A1, . . . , Am) and B = (B1, . . . , Bm), with all Ai, Bj ⊆ [n],
the P-set join A ./P B is defined to be the set {(i, j) ∈ [n] ×
[n] | P(Ai, Bj)} ([n] denotes {1, 2, . . . , n}). When P(Ai, Bj) is
the condition “Ai ∩ Bj 6= ∅” we call this the set-intersection-not-
empty join (a.k.a. the composition ofA and B); whenP(Ai, Bj) is
“Ai∩Bj = ∅” we call it the set-disjointness join; when P(Ai, Bj)
is “Ai = Bj” we call it the set-equality join; when P(Ai, Bj)
is “|Ai ∩ Bj | ≥ T ” for a given threshold T , we call it the set-
intersection threshold join. Assuming A and B are stored at two
different sites in a distributed environment, we study the (random-
ized) communication complexity of computing these, and related,
set-joins A ./P B, as well as the (randomized) communication
complexity of computing the exact and approximate value of their
size k = |A ./P B|. Combined, our analyses shed new insights
into the quantitative differences between these different set-joins.
Furthermore, given the close affinity of the natural join and the set-
intersection-not-empty join, our results also yield communication
complexity results for computing the natural join in a distributed
environment.

Additionally, we obtain new algorithms for computing the dis-
tributed set-intersection-not-empty join when the input and/or out-
put is sparse. For instance, when the and output is k-sparse, we
improve an Õ(kn) communication algorithm of (Williams and Yu,
SODA 2014). Observing that the set-intersection-not-empty join
is isomorphic to Boolean matrix multiplication (BMM), our results
imply new algorithms for fundamental graph theoretic problems re-
lated to BMM. For example, we show how to compute the transitive
closure of a directed graph in Õ(k3/2) time, when the transitive clo-
sure contains at most k edges. When k = O(n), we obtain a (prac-
tical) Õ(n3/2) time algorithm, improving a recent Õ(n · n

ω+1
4)

time algorithm (Borassi, Crescenzi, and Habib, arXiv 2014) based
on (impractical) fast matrix multiplication, where ω ≥ 2 is the ex-
ponent for matrix multiplication.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
In this paper we study the complexity of a variety of dis-

tributed set-join operations in the natural setting of two-party
communication complexity.

In this introduction, we first specify the different set-joins
we consider. We next turn to their distributed computation,
and then provide a summary of the main results regarding
their communication complexities. We obtain both positive
and negative results. For the set-intersection, set-equality,
and at-least-T set-joins, we obtain positive results by show-
ing that efficiency gains in communication can be achieved
through the use of sophisticated protocols. We also show
that several of these protocols are optimal. On the other
hand, for the set-disjointness join, and its affiliated super-
set and subset joins, we obtain negative results: we prove
lower bounds on their communication complexity which es-
tablish that, in general, the best one can do for these set-joins
is to send all the data from one site to the other site and then,
at that site, perform the set-join without further communica-
tion.

In addition to our communication complexity results, we
also describe new and positive results about the computa-
tion of Boolean matrix multiplication and transitive closure
that follow from the algorithmic techniques developed for
computing distributed set-intersection joins (i.e., composi-
tion and natural join).

1.1 Set-Joins
Among the most common tasks in querying data are find-

ing associations/links between two data sources. Two clas-
sic cases of such tasks are computing the composition and
the natural join of two relations[10].1 More specifically,
let A be a relation defined over attributes (I, L) and let B
be a relation defined over attributes (L, J). Let [z] denote
{1, 2, . . . , z} for a natural number z. Assume for simplicity
that dom(I) = dom(J) = [m], and dom(L) = [n]. Then
A ⊆ [m]×[n] and B ⊆ [n]×[m]. The composition ofA and
B and the natural join of A and B are respectively defined

1The composition and the natural join were first introduced to the
database community by Codd in his 1970 celebrated paper on the
Relational Model [10]. Actually, compared to the natural join, the
composition operator has a much longer history: its definition and
properties were first studied by De Morgan, Schröder, Peirce, and
Tarski in the late 19th and early 20th centuries [35]. More recently,
since composition can be considered as the canonical graph traver-
sal/navigation operation, it has been studied intensively in the con-
text of semi-structured tree and graph databases [2, 14, 42]. Fur-
thermore, since repeated application of the composition operation
corresponds to determining graph connectivity, it is at the core of
computing the transitive closure of a graph.

as

A ◦ B := {(i, j) | ∃` : (i, `) ∈ A & (`, j) ∈ B}, and
A ./ B := {(i, `, j) | (i, `) ∈ A & (`, j) ∈ B}.

Clearly, one can view the natural join as an adornment of
the composition, i.e., for each composition pair (i, j) ∈ A ◦
B, the natural join adorns (i, j) with its corresponding wit-
nesses `. The composition operator can also be viewed as
Boolean matrix multiplication when A and B are construed
as Boolean matrices in a natural way; see the discussion in
Section 1.3.

The composition and natural join operations can be de-
fined in an alternative way: if we let Ai be the “projec-
tion/witness” set {` | (i, `) ∈ A} and let Bj be {` | (`, j) ∈
B}, then we have

A ◦ B = {(i, j) | Ai ∩Bj 6= ∅}, and
A ./ B = {(i, `, j) | ` ∈ Ai ∩Bj}.

Because of the not-empty set-intersection conditions present
in the definition of the composition and the natural join, we
will call them generically set-intersection-not-empty joins,
or more succinctly, set-intersection joins. We will reserve
the acronym SIJ for the composition and when necessary,
explicitly refer to the natural join.

Set-intersection joins are by no means the only set-joins
one may consider. Imagine, for example, that A stores job-
applicants and their skills and thatB stores the required skills
of job-openings. In this case, a useful relationship between a
job-applicant and a job-opening may exist if all of the skills
of an applicant include (contain) all the skills required for
a job. We may also wish that these skills are precisely the
same. Formally, we want to compute the sets {(i, j) | Ai ⊇
Bj} and {(i, j) | Ai = Bj}, which we call the superset join
and the set-equality join, respectively.

There are other set-joins of this flavor one may consider.
Table 1 summarizes the set-joins of interest for this paper.
Besides the set-intersection, superset, and set-equality joins,
we consider the Subset Join A ./⊆ B which can be viewed
as an inverse of the superset join, the Set-Disjointness Join
A ./∩=∅ B which can be viewed as the negation of the set-
intersection joins, the Not-Superset Join A ./ 6⊇ B and the
Not-Subset Join A ./ 6⊆ B which can be viewed as negations
of the superset and subset joins, respectively, and the At-
Least-T join A ./≥T B which joins the Ai and Bj pairs
whose intersection contain at least T elements.

Clearly, not all these set-joins paper are independent. In-
deed, straightforward equivalences between the above per-
mit us to focus only on four classes of set-joins: the set-
intersection, set-disjointness, set-equality, and at-least-T join
operations.2 Observe that, since, A ./= B = (A ./⊆

B) ∩ (A ./⊇ B), we could also omit the set-equality join
from our study. We will see however that it is more insight-
ful if we consider the set-equality join as a primitive set-join
in its own right.

Applications, logical and algebraic properties, algorithms
and data structures (and their implementations), and empir-
2Recalling that Ai, Bj ⊆ [n], let Ai = [n] − Ai and Bj = [n] −
Bj . Then (1) the conditions Ai ⊇ Bj and Ai ∩ Bj = ∅ are
equivalent; (2) the conditions Ai ⊆ Bj and Ai ∩ Bj = ∅ are
equivalent; (3) the conditions Ai 6⊇ Bj and Ai ∩ Bj 6= ∅ are
equivalent; and (4) the conditions Ai 6⊆ Bj and Ai ∩ Bj 6= ∅ are
equivalent.

ical studies of some or all of these set-joins have been de-
scribed in [3, 5, 9, 13, 16–18, 23, 26, 28, 36–38, 46].

One of the main threads that runs through these papers is
that, compared to the set-intersection joins, the class of the
super, subset, and set-disjointness joins are considered and
suspected to be computationally more expensive in time and
space utilization, even though we are not aware of formal
proof of this. We therefore think that our communication-
complexity results are particularly meaningful since they do
indeed formally prove, and therefore inform and substanti-
ate, these suspected computational differences.

1.2 Distributed Set-Joins and their Commu-
nication Complexity

Distributed computations of several set-joins have been
studied extensively. Mishra and Eich [29] (Section 5) and
Kossman [21]) surveyed distributed set-intersection joins (prin-
cipally, natural joins). More recently, and primarily because
of the introduction of MapReduce, there has been renewed
interest in the distributed and parallel computations of such
joins (see for example [1, 6, 33].) On the other hand, there
is far less work on distributed and parallel computation for
the other set-joins operations we consider in this paper: we
mention here the work in [4, 24, 43] wherein algorithms, data
structures, and implementation are described for set-joins
other than set-intersection joins.

In this paper, we study the complexity of distributed set-
join operations in the natural setting of two-party commu-
nication complexity. One party, Alice, holds the collection
A = {A1, . . . , Am}, and another party, Bob, holds B =
{B1, . . . , Bm′} in another remote location. To ease the pre-
sentation we assume m = m′, but all our results can be
easily adapted to the case where m 6= m′. Alice and Bob
wish to exchange a minimum number of bits in order to de-
termine information about a set-join operation on A and B
(or compute the set-join itself, if that is a small set). We al-
low Alice and Bob to occasionally make random choices in
their algorithms. Informally, we call the minimum number
of bits needed to be exchanged to compute an operation with
high probability (as a function of n and m) the randomized
communication complexity of that operation. Further back-
ground and definitions are in Section 2.

We prove new upper and lower bounds on the communi-
cation required to compute these set-joins, building on so-
phisticated algorithms and tools from prior work. Our re-
sults establish formal quantitative differences between the
complexities of these various set-join operations; in particu-
lar, their respective communication complexities are not the
same.

We are aware of only one other theoretical result with
a similar type of message: namely, Leinders and Van den
Bussche [23] exhibit a way in which the set-intersection join
and the superset-join can be seen as quantitatively different.
Consider the problem of determining if |A ./ B| > 0 and
the problem of determining if |A ./⊇ B| > 0. Establishing
that |A ./ B| > 0 is equivalent to establishing |AnB| > 0.3
Since the size of An B is linear in the size of A and B, the
decision problem |A ./ B| > 0 can be solved in linear space,
even though the size of A ./ B itself may be quadratic. In
sharp contrast, Leinders and Van den Bussche showed that
for any expression E in the relational algebra with the prop-
3Recall that A n B, i.e. the semi-join of A and B, is {(i, `) | ` ∈
Ai &Ai ∩ B 6= ∅}, where B = π[L](B), i.e, the set of `-values in
all L columns of B.

Name Notation Definition
Natural Join A ./ B {(i, `, j) | ` ∈ Ai ∩Bj}
Composition A ./∩6=∅ B {(i, j) | Ai ∩Bj 6= ∅}
Superset Join A ./⊇ B {(i, j) | Ai ⊇ Bj}
Set-Equality Join A ./= B {(i, j) | Ai = Bj}
Subset Join A ./⊆ B {(i, j) | Ai ⊆ Bj}
Set-Disjointness Join A ./∩= ∅ B {(i, j) | Ai ∩Bj = ∅}
Not-Superset Join A ./6⊇ B {(i, j) | Ai 6⊇ Bj}
Not-Subset Join A ./6⊆ B {(i, j) | Ai 6⊆ Bj}
At-Least-T -Join A ./≥T B T ∈ N, {(i, j) | |Ai ∩Bj | ≥ T}

Table 1: Joins considered in this paper.

erty that |A ./⊇ B| > 0 is equivalent to |E| > 0, such an
E must have a sub-expression which, when evaluated, gen-
erates an intermediate result whose size is quadratic in the
size of A and B. In other words, in contrast with the set-
intersection join, there is no linear space expression E in the
relational algebra for the |A ./⊇ B| > 0 decision problem
for the superset join.

1.3 Main Results
To describe the main results about the communication-

complexity of a set-join, we need to define its enumerative
version and its counting version. Given a set-join A ./P B,
its enumerative version refers to the communication-complexity
of determining (enumerating) the set of pairs {(i, j)|P(Ai, Bj)},
and its counting version refers to the communication-complexity
of determining the count k = |{(i, j)|P(Ai, Bj)}| of this
set. For the counting version, we furthermore discern be-
tween the exact and the approximate determination of k.

Notice that a lower bound on the counting version implies
a lower bound on the corresponding enumerative version,
and analogously, an upper bound on the enumerative version
implies and upper bound on its corresponding counting ver-
sion. Actually, in many cases, the enumerative and counting
versions are the same. Therefore, in the statements of our
results we will not always explicitly differentiate between
them.

The main contributions of our paper are

1. to the best of our knowledge, the first formal evidence
of the suspected quantitative differences between the
“hardness” of computing different set-join operations
in terms of a computational complexity model;

2. the determination of matching lower and upper com-
munication bound for the enumerative set-intersection
join;

3. the determination of an output-sensitive upper commu-
nication bound for the enumerative natural join;

4. the determination of upper and lower communication
bounds for approximating the size of set-intersection
join;

5. the determination of matching lower and upper com-
munication bound for the enumerative and counting
versions of superset, subset, set-disjointness, and set-
equality set-join operations; and

6. new algorithmic techniques and insights for Boolean
matrix multiplication (isomorphic to set-intersection join),

which lead to an improved algorithm for the funda-
mental problem of computing transitive closure of a
directed graph in terms of running time.

Our main results for various joins are described in Table 2.
In the rest of this section we illustrate our main results in
more details. Below are some global notations we use in our
paper.

• n to denote the size of the item universe,
• m to denote the number of tuples in a table to be joined,
• k to denote the size of the output,
• s to denote the sparsity of each tuple in the set-joins;

that is,
s = max{|Ai| , |Bj | | i, j ∈ [m]}.

For a matrix M , let Mi,j denote the entry at i-th row and j-
th column; let Mi,∗ denote the i-th row and let M∗,j denote
the j-th column. Let nnz(M) denote the number of non-
zero entries in M . For simplicity, we use Õ(f) to denote
f · poly log(fmn). That is, Õ suppresses polylogarithmic
factors. We use Θ̃(f) to denote at most Õ(f) and at least
Ω(f).

An isomorphic way to view the composition operatorA◦B
is as a Boolean matrix multiplication (BMM). ConstrueA as
an m×n Boolean matrix P such that Pi,` = 1 if and only if
(i, `) ∈ A. Similarly, construe B as an n×m matrix Q such
that Q`,j = 1 if and only if (`, j) ∈ B. Then (P ·Q)i,j ≥ 1
if and only if (i, j) ∈ A ◦ B.

We start with our results on the set-intersection join (i.e.,
Boolean matrix multiplication). We first consider computing
the set-intersection join exactly, presenting what we consider
to be the main result of this paper; certainly it is the most
surprising. Recent work on the communication complex-
ity of matrix multiplication demonstrated that, when Alice
(holding A = {A1, . . . , Am}, Ai ⊆ [n]) and Bob (hold-
ing B = {B1, . . . , Bm}, Bj ⊆ [n]) construe A and B as
m × n and n ×m matrices, respectively, they can compute
their product A · B over an arbitrary finite field with ran-
domized communication Õ(kn), where k is the number of
nonzeroes in the matrix product [44]. Intuitively, this upper
bound looks essentially optimal. It seems impossible to at-
tain o(kn) communication: shouldn’t Alice and Bob need to
communicate Ω(n) bits in the worst case, for every nonzero
entry in the output (exchanging the relevant n-bit vectors)?
Here, we show that o(kn) communication is in fact possible,
and the communication algorithms can be efficiently imple-
mented as well.

enumeration / exact counting c-approximate counting
upper bound lower bound upper bound lower bound

set-intersection join (composition), Θ̃(min(ms,
√
skn) + n) ? Õ(n/ε2) (c = 1 + ε) Ω(n/ε2) (1-way, c = 1 + ε)

not-superset/not-subset join Ω(n/ε
2
3) (2-way, c = 1 + ε)

set-equality join Θ(m ilogΘ(r) m+ log logn) Θ(m ilogΘ(r) m+ log logn) (any c > 0)
set-disjointness join Θ(mn) Θ(mn) (any c > 0)
subset/superset join

at-least-T join Θ(mn) O(mn) Ω(mn) (1-way, any c > 0)
Ω(m
√
nT) (2-way, any c > 0)

Table 2: Our results for joins. ?This result also applies to natrual join after converting it to the form of set-intersection join by projections
(see discussions in Section 1.1). Õ(f) denotes f · poly log(fmn); Θ̃(f) denotes at most Õ(f) and at least Ω(f); and ilogrm means
log . . . logm with r logs.

Result 1 (Theorem 3 in Section 3) The randomized commu-
nication complexity of computing set-intersection join (equiv-
alently, computing the product of two Boolean matrices P ∈
{0, 1}m×n and Q ∈ {0, 1}n×m) is Õ(

√
k · n), when n is

the universe size and k is the output join size. Furthermore,
if the sparsity of A,B is at most s, we can obtain an algo-
rithm with Õ(min(ms,

√
skn) + n) bits of communication.

Finally, this algorithm is optimal, up to polylogarithmic fac-
tors.

The algorithm (Algorithm 1) in Theorem 3 applies both
the Count-Sketch algorithm [12] and the `0-sketch algorithm [20]
in novel ways. The high-level idea is to consider two kinds
of column vectors that may appear in the output matrix: columns
which are “sparse” and columns which are “dense”. Roughly
speaking, “dense” columns have at least

√
k non-zeroes, and

“sparse” columns are those which are not dense. First, we
can determine which resulting columns will be sparse and
dense using an `0-sketch, requiring little communication be-
tween the two parties. Dense columns can be handled effi-
ciently by having Bob send O(

√
k) of the relevant columns

to Alice (there are O(
√
k) columns with greater than

√
k

nonzeroes in the output matrix, by simple counting). Sparse
columns can be computed using a Count-Sketch matrix with
only Õ(

√
k) rows: Alice can multiply such a matrix with her

own, and send the resulting Õ(
√
kn) data to Bob, who can

then recover the sparse columns of the matrix product.
As a “by-product”, which is in fact fundamental for databases,

this algorithm plus a post-processing (Algorithm 2 in Sec-
tion 3) can output all witnesses of all set-intersections, that
is, all `’s s.t. ` ∈ Ai ∩ Bj for any Ai ∈ A, Bj ∈ B, which
in fact solves the corresponding natural join problem (see
the discussion on the equivalence between natural join and
set-intersection join in Section 1.1).

Result 2 (Corollary 1 in Section 3) Under the notations in
Result 1, the algorithm can also be used to solve the corre-
sponding natural join problem with Õ(min(ms,

√
skn)+n)

communication.

With more algorithmic cleverness, this algorithm can be
efficiently implemented as well:

Result 3 (Theorem 13 in Section 4) There is a randomized
algorithm for multiplyingP ∈ {0, 1}m×n andQ ∈ {0, 1}n×m
that runs in Õ(k+ k1/2(nnz(P) +nnz(Q))) time and suc-
ceeds with probability 1 − 1/n, where k is the number of

nonzero entries in the output.4

Result 3 has natural applications in situations where one
anticipates that the output may be sparse. For example, in
Section 4 we can readily apply Result 3 to obtain:

Result 4 (Corollary 4 in Section 4) There is a randomized
algorithm for computing the transitive closure of an n × n
Boolean matrix A which runs in Õ(k1.5) time and succeeds
with probability 1− 1/n, where k is the number of edges in
the transitive closure.

Hence any transitive closure which contains O(nnz(A))

edges can be computed in Õ(nnz(A)1.5) time. This, in the
case that nnz(A) ≤ n, improves over a recent result of Bo-
rassi, Crescenzi, and Habib [7], who achieved Õ(nnz(A) ·
n

ω+1
4) time, where ω ≈ 2.373 is the exponent of fast ma-

trix multiplication. Moreover, their algorithm relies on fast
matrix multiplication algorithms while ours does not, and so
ours presumably have practical advantages. One can recog-
nize whether a given graph is a comparability graph in the
same time as computing the transitive closure, as observed
in [7]. (See Section 4 for more details.) Corollary 4 therefore
improves the algorithm of [7] for this task as well.

Next, we turn to approximating the size of the set-intersection
join. Let c-SIJ be the communication problem of approxi-
mating the number of pairs (i, j) such that Ai ∩ Bj 6= ∅ to
within a multiplicative factor of c. We give nearly tight upper
and lower bounds on the one-way communication complex-
ity of this problem, where all messages are sent from Alice
to Bob, and Bob computes the answer. The true answer is
surprisingly low:

Result 5 (Theorem 5, 6 in Section 3) The one-way random-
ized communication of (1 + ε)-SIJ is Θ̃(n/ε2).

The upper bound applies the `0-sketch algorithm ([20]) in
a simple way; the lower bound follows by a reduction from
the Indexing function (see the Section 2 for definitions). We
note that since our upper bound is a sketching algorithm and
our lower bound is for 1-way communication, they apply to
the data stream model of computation in which one sees the
sets Ai and Bj one at a time in an arbitrary order and one
would like to compute (1 + ε)-SIJ using a small amount of
4The algorithm can be implemented in any reasonable computa-
tional model with random access to the input, such as the RAM
model.

memory. Our results imply that Θ̃(n/ε2) bits of memory is
necessary and sufficient.

In the general (two-way) communication setting, we can
still prove a lower bound depending on n and ε, although
we do not have a better upper bound than that for 1-way
communication.

Result 6 (Theorem 7 in Section 3) The randomized commu-
nication complexity of (1 + ε)-SIJ is at least Ω(n/ε2/3).

A main question left open by this work is to close this gap
for two-way approximate set-intersect join.

Finally, we consider a few other joins. In the Set-Equality
Join (EQJ) problem, Alice and Bob wish to compute all pairs
(i, j) such that Ai = Bj . We notice that the complexity of
this enumerative problem is the same as the counting ver-
sion. In fact, we show that a lower bound for the counting
version matches an upper bound for the enumerative version.
We thus use EQJ for the two versions interchangeably. In its
approximation version, which we call c-EQJ, Alice and Bob
wish to compute the number of such pairs (i, j) within a
multiplicative factor of c. Recent work on the communica-
tion complexity of set intersection implies fairly tight results
on the communication complexity of these two problems:

Result 7 (Theorem 8, 9 and Corollary 2 in Section 3) The
randomized communication complexity of EQJ is at least
Ω(m ilogΘ(r)m+ log log n) and is at most O(m ilogrm+
log log n), where ilogr = log log · · · logm (with r logs) de-
notes the log function iterated r times. Analogous results
hold for c-EQJ for any constant c > 0.

Then we turn to the Set-Disjointness Join (SDJ) problem,
where Alice and Bob wish to compute all pairs (i, j) such
that Ai ∩ Bj = ∅. Again, we notice that the enumerative
version has the same complexity as the counting version of
this problem. More precisely, the lower bound for the count-
ing version is high enough to match the trivial enumerative
upper bound that Alice simply ships all her data to Bob. We
thus use SDJ for the two versions interchangeably. In this
case, we can show there is no substantially better communi-
cation algorithm than the one in which one party sends all
their data to the other.

Result 8 (Theorem 10 in Section 3) The randomized com-
munication complexity of SDJ is Ω(mn). Analogous results
hold for the c-approximation version c-SDJ for any constant
c > 0.

We also look at the At-Least-T Join (ATJ) problem, where
T is a non-negative integer known in advance and Alice and
Bob wish to output (or count, again they have the same com-
plexity) those (i, j) such that |Ai∩Bj | ≥ T . Via a simple re-
duction to SDJ, this requires Ω(mn) communication. More
interestingly, we consider the c-ATJ problem in which the
players would like to approximate the number of such pairs
up to a multiplicative factor of c. Here we can prove lower
bounds:

Result 9 (Theorem 11, 12 in Section A) For every c > 1,
the randomized one-way communication complexity of c-ATJ
is Ω(mn), and assuming κ logm ≤ T ≤ 99n/100, for a
constant κ > 0, the randomized two-way communication
complexity of c-ATJ is Ω(m

√
nT).

2. BACKGROUND ON SKETCHES AND COM-
MUNICATION COMPLEXITY

In this section we introduce a few sketching algorithms
from the data stream literature and some concepts in com-
munication complexity that are needed in this paper. Please
refer to the survey of Muthukrishnan [31] for more back-
ground on data steams and the book [22] for more knowl-
edge on communication complexity. For background on ap-
proximation and randomized algorithms, please refer to the
classic book [30].

Sketches. The idea being that a sketch provides a faithful but
(much) smaller summary representation of a data object and
that a reconstruction function has the ability to yield back a
good approximation of the initial data object or some func-
tion (like the `0 norm) of this data object. Since sketches are
smaller than the original data objects, they can be commu-
nicated with fewer bits. Furthermore, this communication
preserves in a good way the original data object.

We will make use of a few linear sketches from the litera-
ture. Let κ be an integer. We say that a vector v is κ-sparse
if v has at most κ non-zeros in its components.

Lemma 1 ([12], Count-Sketch) For any positive integer n,
δ ∈ (0, 1), and integer κ ∈ [n], there is a distribution on
random matrices S ∈ RO(κ·log 1/δ)×n and a reconstruction
function Rec(·), such that

1. Given any κ-sparse vector x ∈ Rn, Rec(·) can take
Sx, and give x exactly with probability 1− δ. In addi-
tion, Rec(·) can take Sx and a parameter i, and output
the i-th bit of x in Õ(1) time.

2. The column sparsity of S is bounded by O(log n).

Lemma 2 ([20], `0-sketch) For any positive integer n, ε ∈
(0, 1), and δ ∈ (0, 1), there is a distribution on random ma-
trices M ∈ RO(1/ε2·log(1/δ))×n and a reconstruction func-
tion Rec(·), such that given any x ∈ [N]n (N is the maxi-
mum value of coordinates in x), Rec(Mx) gives a (1 + ε)-
approximation of nnz(x) with probability 1 − δ. Further-
more, we can truncate the real number in each entry of M
to log(Nn) bits without affecting the approximation ratio.

Communication Complexity. In this paper we consider
the classical model of two-party communication complex-
ity. Here we briefly recall some standard notions. Let X and
Y be sets of strings. One party, Alice, is given x ∈ X and
another party Bob is given y ∈ Y , and they want to jointly
compute some function f : X × Y → Z , by exchanging
messages according to a randomized algorithm Π. We al-
low Alice and Bob to use both private randomness (coins).
Let rA and rB be the private coins used by Alice and Bob
respectively. We use ΠxyrArB to denote the transcript (i.e.,
the concatenation of messages) when Alice and Bob run Π
on the input (x, y) using private coins rA, rB respectively,
and Π(x, y, rA, rB) denotes the output of the algorithm. We
will omit x, y, rA, rB when clear from context. We say Π is
a δ-error algorithm if for all (x, y) ∈ X × Y ,

PrrA,rB [Π(x, y, rA, rB) 6= f(x, y)] ≤ δ.
Let |Π| be the bit-length of the transcript. The communica-
tion cost of Π is maxx,y,rA,rB |ΠxyrArB |. The δ-error ran-
domized communication complexity of f , denoted byRδ(f),
is the minimal cost of any δ-error algorithm for f .

Let µ be a distribution over the inputs, and let (X,Y) ∼ µ.
A deterministic algorithm Π computes f with error prob-
ability δ on µ if Pr(X,Y)∼µ[Π(X,Y) 6= f(X,Y)] ≤ δ.
The δ-error µ-distributional communication complexity of
f , denoted by Dµ

δ (f), is the minimum communication com-
plexity of a deterministic algorithm that computes f with
error probability δ on µ. Yao’s Lemma [47] says that for any
function f and any δ > 0, Rδ(f) ≥ maxµD

µ
δ (f). There-

fore to prove randomized communication lower bounds, one
can choose an input distribution µ, then prove distributional
communication lower bounds under µ.

For a problem f : X × Y → {0, 1}, by a standard Cher-
noff bound argument, it holds that for any constant δ > 0,
R1/3(f) = Ω(Rδ(f)/ log(1/δ)) = Ω(Rδ(f)).

We use R→δ (f) to denote one-way communication com-
plexity where communication is either only from Alice to
Bob or from Bob to Alice, and use R(r)

δ (f) to denote two-
way communication complexity using r rounds of communi-
cation. In a round of communication, only one player speaks
to the other player, so Alice sends a single message to Bob
or Bob sends a single message to Alice.

In our lower bound reductions, we allow parties to use po-
tentially infinite amounts of public coins in algorithms (that
is, Alice and Bob have free access to a shared, potentially
infinite, public random string). Denote the corresponding
randomised communication complexity by Rpub

δ where δ is
the error parameter as before. Such coins can be “removed”
(replaced with private randomness) by Newman’s theorem.
The increases on the communication cost and error proba-
bility are negligible in our applications.

Theorem 1 (Newman’s Theorem [32]) Let f : {0, 1}t ×
{0, 1}t → N be a function. For every δ > 0 and every ε > 0,
Rε+δ(f) ≤ Rpub

ε (f) + O(log t + log δ−1), where Rpub de-
notes the randomized communication complexity with public
coins.

We will need two well-known problems in communication
complexity for proving our lower bounds by reductions.

Indexing. In the Indexing communication problem for t ∈
N, Alice holds x = {0, 1}t, and Bob holds an index i ∈ [t].
The goal is for Bob to compute xi. It is known that this
problem effectively requires Alice to send her entire input to
Bob, in the one-way communication setting:

Lemma 3 (see, e.g., [22]) R→1/2−δ(Indexing) ≥ Ω(t) for any
constant δ > 0.

Set-intersection (SI). In the SI communication problem for
t ∈ N, Alice has x = (x1, . . . , xt) ∈ {0, 1}t, and Bob has
y = (y1, . . . , yt) ∈ {0, 1}t. They want to compute

SI(x, y) =

{
1, if ∃` ∈ [t] s.t. x` = y` = 1,
0, otherwise.

We will use the following hard input distribution for SI:
Distribution ν (Razborov [39]). With probability 1/2, x

and y are random among all pairs of non-intersecting strings
each of Hamming weight exactly t/4, while with probabil-
ity 1/2, x and y intersect in a unique uniformly randomly
chosen i, and each x and y have Hamming weight exactly
t/4.

Lemma 4 ([39]) Dν
δ (SI) ≥ Ω(t) for a sufficiently small con-

stant δ.

3. COMMUNICATION COMPLEXITY OF
SET JOINS

3.1 Exact Computation of Set-Intersection Join
As mentioned earlier, we can think of Alice having a ma-

trix P ∈ {0, 1}m×n where Pi,` = 1 if Ai has item `, and
Bob having a matrix Q ∈ {0, 1}n×m where Q`,j = 1 if
Bj has item `. Then, the set-intersection join (SIJ) is sim-
ply the Boolean matrix multiplication R = P · Q. Let
k = nnz(R) = |{(i, j) | Ai ∩Bj 6= ∅}| be the size of the
output of an SIJ instance.

One-way Communication. First we show an Ω(mn) bound
for SIJ when m = O(n), matching the trivial algorithm
where Alice sends all her data to Bob.

Theorem 2 R→1/3(SIJ) = Ω(mn) for m = O(n).

PROOF. The proof is by a reduction from the Indexing
problem of size mn. We can view Alice’s mn-bit input vec-
tor as an m× n Boolean matrix by partitioning the vector to
chunks of size n as rows, and Bob’s index ` ∈ [mn] as an
(i, j)-pair where i = b`/nc and j = `− b`/nc · n.

Suppose first thatm < n/2. We make the firstm columns
of Alice’s matrix P be the m × m identity matrix. On the
next n/2 columns, we place min{ms, nk} random 0/1 en-
tries in a block diagonal matrix with blocks of size k × s
(recall that s is the tuple sparsity and k is the join output
size). The rest n/2 − m columns are just left to be all 0.
Then Bob can make use of an algorithm for SIJ to do the
following:
• Query nnz(P∗,j) by creating an n × m matrix Q in

which all but the first column is 0. In the first column,
put a 1 in the j-th position.
• Query nnz(P∗,i + P∗,j) by creating an n ×m matrix
Q in which all but the first column is 0. In the first col-
umn, put a 1 in the i-th position and the j-th position.

Thus Bob can compute the (i, j)-th entry of matrix P for any
i ∈ [m] and j ∈ {m + 1, . . . , n} by comparing nnz(P∗,j)
and nnz(P∗,i +P∗,j). By reducing from the Indexing prob-
lem we obtain an Ω(mn) lower bound.

Remark 1 The above lower bound does not hold in the case
when m � n: for instance, if n, s = O(1) but k = Ω(m).
(This could happen ifP hasO(1) random non-zero columns.)
In this case there is an upper bound of 2n = O(1): one can
just prepare an answer for each possible query set Bj . The
above lower bound would be min{ms, nt} = Ω(m), which
cannot hold.

Two-way Communication. In the following, suppose A
and B have sparsity s, i.e., there are at most s non-zeroes
in each Ai, Bj . (Note that s ≤ n.) In contrast to the one-
way setting, the case of two-way communication becomes
extremely interesting. We show that there is a two-round al-
gorithm with communication cost Õ(min(ms,

√
skn) + n).

Theorem 3 R
(2)
2/m(SIJ) = Õ(min(ms,

√
skn) + n). This

bound also holds if we require to output for each (i, j) ∈
[m]2, all the witnesses ` such that ` ∈ Ai ∩Bj .

Algorithm 1: Exact Algorithm for Set-Intersection Join

Input : Alice has a matrix P ∈ Nm×n with rows
representing A1, . . . , Am, and Bob has a matrix
Q ∈ Nn×m with columns representing B1, . . . , Bm.
Let R← PQ ∈ Nm×m.

Output: k ← nnz(R)

1 Set s← max{nnz(Ai),nnz(Bi) | i ∈ [m]}. Set
kA ← 0, kB ← 0;

2 Alice and Bob approximate the number of non-zero entries in
columns R∗,1, . . . , R∗,m up to a factor of 2 using Algorithm 3
(setting ε = 1). Let k̃j be the 2-approximation of nnz(R∗,j),
and let k̃ ←

∑
j∈[m] k̃j ;

3 if sk̃ < n then
4 Set L = ∅;
5 Let H ← {j | k̃j > 0};
6 foreach j ∈ H do
7 Bob sends Q∗,j to Alice;

8 Alice computes nnz(R) =
∑
j∈H nnz(PQ∗,j).

9 else if sk̃ ≥ n then

10 Let H ← {j | k̃j >
√
sk̃/n}, and L← [m]\H;

11 foreach j ∈ H do
12 Bob sends Q∗,j to Alice;
13 Alice computes R∗,j = P ·Q∗,j , and sets

kA ← kA + nnz(R∗,j);

14 Alice samples a random matrix S ∈ RO(
√
sk̃/n·logm)×m

according to Lemma 1 (setting δ ← 1/(nm3)), and sends
Z ← SP to Bob;

15 Bob computes kB ←
∑
j∈L nnz(Rec(ZQ∗,j)) according

to Lemma 1, and sends it back to Alice;
16 Alice outputs k ← kA + kB .

We have the following immediate corollary for natural join.
Let us first recall the relationship between natural join and
set-intersection join. In the natural join, Alice has a rela-
tion A ⊆ [m] × [n], and Bob has a relation B ⊆ [n] × [m].
They want to compute A ./ B. Now we make the follow-
ing “rewrite” of the input: For each i, j ∈ [m], let Ai =
{` | (i, `) ∈ A} and Bj = {` | (`, j) ∈ B} be the pro-
jection sets of A,B on [m]. It is straightforward to ob-
serve that (A′ = {A1, . . . , Am},B′ = {B1, . . . , Bm}) be-
comes an input to the set-intersection join. Still let s =
max{|Ai| , |Bj | | i, j ∈ [m]} be the sparsity of sets.

Corollary 1 Under the notations above, Alice and Bob can
compute the natural join A ./ B exactly in 2 rounds with
probability (1−2/m) using Õ(min(ms,

√
skn)+n) bits of

communication.

PROOF. (of Theorem 3) The algorithm is described in Al-
gorithm 1, where k̃j , k̃ are defined, and P,Q are the matrix
representations of A,B. Now we give the analysis.

First note that Line 2 only costs Õ(n) bits of communica-
tion by Theorem 5 (see Section 3.2; note that here ε = 1).

Suppose now that sk̃ < n, or sk < n (note that k ≤ k̃ ≤
2k). The number of columns of R containing a non-zero en-
try is at most k. These columns can be determined with Õ(n)
communication using Lemma 2, since a column contains a

Algorithm 2: Post-processing to Compute All Pairs (i, j), All
Witnesses ` s.t. ` ∈ Ai ∩Bj
/* All notations follow Algorithm 1 */

1 foreach j ∈ H do
2 Alice computes for all i ∈ [m], the Ai ∩Bj ;
3 foreach j ∈ L do
4 foreach i ∈ [m] do
5 foreach ` ∈ Bj do
6 Bob removes ` from Bj , getting Q′∗,j , computes

R′∗,j = Rec(ZQ′∗,j); /* Z is sent to
Bob at Line 14 of Algorithm 1 */

7 if Ri,j 6= R′∗,j then
8 declares ` ∈ Ai ∩Bj ;
9 Bob adds ` back to Bj .

non-zero entry if and only if k̃j > 0. Given the identities of
these columns j in R, Bob can send the corresponding Q∗,j ,
which requires only s communication since columns of Q
are s-sparse. Hence, Bob can send all such columns of Q
using at most k · s · log n = Õ(n) communication. Hence, if
sk < n, the upper bound is Õ(n), as desired.

Suppose then that sk̃ ≥ n. We can show anO(min(ms,
√
skn))

upper bound. Since each k̃j (j ∈ [m]) is a 2-approximation
of kj , the number of columns in H = {j | k̃j >

√
sk/n}

can be at most 2k/(
√
sk/n) = 2

√
kn/s. For each j ∈ H ,

if Bob sends Q∗,j to Alice, then Alice can compute R∗,j =
PQ∗,j . The total communication for all such columns, given
that the columns of Q are s-sparse, is at most 2

√
kn/s · s =

2
√
skn. All remaining columns of R have at most

√
sk/n

non-zero entries. Alice chooses a random Count-Sketch ma-
trix S with κ =

√
sk̃/n according to Lemma 1, computes

SP , and sends this to Bob. This requires Õ(
√
sk/n · n) =

Õ(
√
skn) bits of communication.

Finally, note that if ms <
√
skn, Alice can alternatively

just send P to Bob usingO(ms log n) communication, since
the rows of P are s-sparse.

The error of Algorithm 1 comes from two places. The first
is the error introduced by the call of Algorithm 3 at Line 2,
which is bounded by 1/m by Theorem 5. The second error
comes from Line 14 and 15. By setting δ = 1/(nm3) in
Lemma 1 and apply a union bound on columns with indices
in L, we can also bound this error by 1/m.

For the communication rounds, Lines 2 and 14 can be
done simultaneously in the first round (from Alice to Bob),
and Lines 7 (or 12) and 15 can be done simultaneously in the
second round (from Bob to Alice).

Algorithm 2 shows that we can in fact compute for all
pairs (i, j) ∈ [m]2, all the witnesses ` such that ` ∈ Ai ∩Bj
using a post-processing (without any further communica-
tion) after running Algorithm 1. For any j ∈ H , Alice can
compute the witnesses ` for all (i, j) (i ∈ [m]) trivially since
Bob has sent the whole column Q∗,j (i.e., the set Bj) to her.
For any j ∈ L, for any i ∈ [m] Bob can recover all the
witnesses ` in Ai ∩ Bj as follows: for each ` ∈ Bj , Bob
first removes ` from Bj by setting the corresponding cell
Q`,j = 0 (getting Q′∗,j), and compute R′∗,j = Rec(ZQ′∗,j).

Now for each i ∈ [m], if Ri,j 6= R′i,j , then we conclude
that ` ∈ Ai ∩ Bj . Note that we perform at most nm2 such
tests, thus by a union bound all tests succeed with probability
1− 1/(nm3) · (nm2) = 1− 1/m.

Note that at the end of Algorithm 2, the setsAi∩Bj (i, j ∈
[m]) are disjointly distributed at Alice and Bob. They need to
spend another Õ(k) bits of communication in the worst case
if Alice (or Bob) would like to obtain all the witnesses.

Remark 2 (Not-Superset Join and Not-Subset Join) As men-
tioned in the introduction, the not-superset join (outputting
all (i, j) such that Ai 6⊇ Bj) can be thought as the com-
plement of the set-intersection join: one can convert A =
{A1, . . . , Am} toA′ = {A′1, . . . , A′m} such that A′i = [n]−
Ai for each i ∈ [m], and then solve the set-intersection join
on A′ and B. There is one issue: sets in A′ may not have
sparsity s (typically � n). However, we have noticed that
our upper bound in Theorem 3 still holds since Algorithm 1
only requires sets in B to have sparsity s (or only sets in A
by exchanging the positions of Alice and Bob). The above
argument also implies to not-subset join by symmetry.

Surprising as the above algorithm is, there is a matching
lower bound up to polylogarithmic factors:

Theorem 4 R1/3(SIJ) = Ω(min(ms,
√
skn) + n).

PROOF. For the Ω(n) lower bound, let s, k ≤ n and put
an instance of n-bit SI on the diagonal of P and Q. Here
we use m ≤ n. If m > n we only use the upper n × n
submatrix.

It remains to show a lower bound of min(ms,
√
skn). We

can assume sk > n, as otherwise this minimum is less than
the n lower bound just established. Notice that if ms =√
skn, then m =

√
kn/s. It therefore suffices to assume

that
√
kn/s < m and show a

√
skn lower bound. Indeed,

if m <
√
kn/s, then we can both reduce k and n by the

same multiplicative factor g, obtaining k′ and n′, so that
sk′ > n′ still holds and g is chosen large enough so that
m =

√
k′n′/s. Reducing n to n′ corresponds to restricting

to the first n′ columns of P and first n′ rows ofQ. As s is un-
changed, and when m =

√
k′n′/s we have ms =

√
sk′n′,

by showing a
√
sk′n′ lower bound we obtain the desired ms

lower bound.
Hence, it suffices to show a

√
skn lower bound under the

assumption that
√
kn/s < m. Set t =

√
nk/s. We con-

struct P and Q as follows: In P only the first t rows are
non-zero and in Q only the first t columns are non-zero. We
partition coordinates [n] into n/s disjoint groups each of size
s. We place the first SI instance on the first row of P and first
column of Q into the first group of s coordinates. We place
the second independent SI instance on the second row of P
and second column of Q into the second group of s coor-
dinates. After processing n/s independent SI instances, we
wrap back around to the first group of s coordinates, and sec-
ond group of s coordinates, and continue. Note in total we
plant t independent SI instances. Doing things in this way
ensures that the inner product of the i-th row of P with the
j-th column of Q is only non-zero if they both have SI in-
stances placed on the same group of s coordinates. For each
i, only an s/n fraction of the j have this property. As there
are t different choices of i and j, this makes the number of

Algorithm 3: (1 + ε)-Approximation Algorithm for Set-
Intersection Join

Input : Alice has P ∈ Nm×n with rows representing
A1, . . . , Am, and Bob has Q ∈ Nn×m with columns
representing B1, . . . , Bm.

Output: A (1 + ε)-approximation of |{(i, j) | Ai ∩Bj 6= ∅}|.
1 δ ← 1/m2;
2 Alice samples a random sketching matrix

M ∈ RO(1/ε2·log(1/δ))×m according to Lemma 2, and sends
Z ←MP to Bob;

3 Bob outputs
∑
j∈[m] Rec(ZQ∗,j).

non-zero entries of R equal to t2 ·s/n, which is at most k by
our choice of t.

If we can exactly determine nnz(R), then we can figure
out the number of the t planted SI instances which evaluated
to 0, since all cross-pairs (i, j) (i 6= j) of SI instances will
intersect with probability 1 − o(1) (similar to Claim 1 in
Section 3.3). We will know from the proof of Theorem 10
that just determining the OR of t SI instances has complexity
the same as solving a single SI instance of size t·s. Therefore
we obtain a lower bound of Ω(ts) = Ω(

√
skn).

3.2 Approximate Counting for Set-Intersection
Join

One-way Communication. We can use the `0-sketch (Lemma 2)
to design a simple one-way algorithm for approximating SIJ
to within 1 + ε, for every ε > 0:

Theorem 5 For all ε > 0, R→1/m((1 + ε)-SIJ) = Õ(n/ε2).

PROOF. The algorithm is described in Algorithm 3. Now
we give the analysis.

First, note that Rec(ZQ∗,j) = Rec(MPQ∗,j) = Rec(MR∗,j).
By Lemma 2, Rec(MR∗,j) computes nnz(R∗,j) up to a
multiplicative error (1 + ε) with probability (1− 1/m2) for
each j ∈ [m]. Therefore Algorithm 3 computes nnz(R)
up to (1 + ε)-approximation with probability (1 − 1/m)
by a union bound. Finally, note that Alice only needs to
send the matrix Z, which is O(n/ε2 · logm log(mn)) bits
by Lemma 2 (here we set N = O(m)).

We can prove a matching lower bound for this approxima-
tion problem (up to polylog factors):

Theorem 6 R→1/3((1 + ε)-SIJ) = Ω(n/ε2).

We need the following lemma of Jayram et al. [19]. Let
∆(a, b) be the hamming distance between two bitstrings a, b ∈
{0, 1}1/ε2 .

Lemma 5 ([19]) Let x be a random bitstring of length γ =
1/ε2, and let i be a random index in [γ]. Choose γ public
random bitstrings r1, . . . , rγ , each of length γ. Create γ-
length bitstrings a, b as follows:

• For each j ∈ [γ], aj = majority{rjk | indices k for which
xk = 1}.
• For each j ∈ [γ], bj = rji .

Then with success probability 1/2 + δ for a constant δ >
0, we can determine the value of xi from any c

√
∆(a, b)-

additive approximation to ∆(a, b), provided c > 0 is a suffi-
ciently small constant.

PROOF. We give a reduction from Indexing. Alice has a
random bitstring y of length (n−γ) ·γ, which is partitioned
to n − γ contiguous groups y1, . . . , yn−γ . She creates her
matrix P ∈ {0, 1}γ×n as follows: she uses public coins to
choose random bitstrings r1, . . . , rγ , each of length γ. For
the leftmost γ × γ submatrix of P , in the i-th column for
each i ∈ [γ], Alice uses r1, . . . , rγ and the value i to create
the γ-length bitstring b according to Lemma 5 and assigns
it to this column. Next, in the remaining n − γ columns of
P , in the j-th column for each j ∈ {γ + 1, . . . , n}, Alice
uses yj−γ and r1, . . . , rγ to create the γ-length bitstring a
according to Lemma 5 and assigns it to this column.

Bob has an index ` = i + (j − γ − 1) · γ (i ∈ [γ], j ∈
{γ + 1, . . . , n}), and he wants to learn the `-th coordinate
of y. This is a standard Indexing problem, and by Lemma 3
Alice has to send Ω(|y|) = Ω(n/ε2) bits to get a success
probability (1/2 + δ) for any constant δ > 0. For the reduc-
tion, Bob creates his matrix Q ∈ {0, 1}n×γ in which all but
the first column is 0. In the first column, he puts a 1 in the
i-th position and the j-th position. Then in P ·Q all but the
first column is 0, and the first column is equal to P∗,i+P∗,j .
Note that (P∗,i, P∗,j) corresponds to a pair of (a, b) created
from r1, . . . , rγ and x = yj−γ (and xi = (yj−γ)i = y`) in
Lemma 5. Also note that (P∗,i + P∗,j)t = 1 if and only if
Pt,i 6= Pt,j . Therefore from a (1 + cεε)-approximation of
nnz(PQ) = nnz(P∗,i + P∗,j) for a sufficiently small con-
stant cε, and exact values nnz(P∗,i),nnz(P∗,j) (Alice can
send Bob all nnz(P∗,k (k ∈ [n])) using O(n log(1/ε)) =
o(n/ε2) bits which is negligible in the reduction), one can
compute ∆(P∗,i, P∗,j) up to an additive error cεε·nnz(PQ) ≤
c
√

∆(P∗,i, P∗,j) (note that both nnz(PQ) and ∆(P∗,i, P∗,j)
are in the order Θ(1/ε2)) for a sufficiently small constant cε,
and consequently y` with probability 1/2 + δ for a constant
δ by Lemma 5. This completes the reduction. The one-
way communication complexity of (1 + ε)-SIJ follows from
Lemma 3.

Two-way Communication. While we do not have a better
upper bound than given by Theorem 5, we can still prove a
non-trivial lower bound using the recent work [45].

Theorem 7 Rδ((1 + ε)-SIJ) = Ω(n/ε2/3) for a sufficiently
small constant δ.

PROOF. We start by choosing a hard input distribution ψ
for SIJ: for each i ∈ [m], we first choose (Ai, Bi) ∼ µ (see
its definition in Section 2), and then pick a special coordi-
nate ` ∈ [n] uniformly at random and replace (A`i , B

`
i) with

{0, 1}2 uniformly at random.
Let SUM(A,B) =

∑
i∈[m] SI(Ai, Bi). In [45] the follow-

ing is shown.

Lemma 6 ([45]) Any randomized algorithm that computes
SUM up to an additive error

√
m/2 with probability δ for a

sufficiently small constant δ needs Ω(mn) bits of communi-
cation.

We now establish a relationship between SIJ and SUM:
For a fixed pair (i, j), i 6= j, the probability thatAi∩Bj = ∅

is at most (1−1/16)n−1 ≤ 2−Ω(n) (ignoring the special co-
ordinate `). By a union bound, with error probability at most
m2 · 2−Ω(n) = o(1) (assuming n = Ω(logm)), we have
SIJ(A,B) = SUM(A,B) + m(m − 1). By this equality
and Lemma 6, we conclude that any randomized algorithm
that computes SIJ up to an additive error

√
m/2 with prob-

ability δ′ for a sufficiently small constant δ′ needs Ω(mn)
bits of communication. Since SIJ(A,B) ≤ m2, the theorem
follows by setting m = ε−2/3.

3.3 Other Types of Joins
Set-Equality Join. Consider the EQJ problem where Alice
has sets A1, . . . , Am, and Bob has sets B1, . . . , Bm. They
want to compute all pairs (i, j) such that Ai = Bj (or count
the number of such pairs, which has the same complexity).
This is just the problem of computing the intersection of sets
A = {A1, . . . , Am} and B = {B1, . . . , Bm}, where the ele-
ments of setsA and B are themselves sets. The communica-
tion complexity of set intersection is known, with near-tight
upper and lower bounds in terms of the number of rounds.
We can assume that A and B are sets, rather than multisets,
and the players can each locally solve the EQJ problem by
also exchanging the multiplicities of each of their sets Ai
and Bj , which can be done by each communicating O(m)
bits (since the sum of the multiplicities is m).

Theorem 8 ([8]) R(r)
1/3(EQJ) = O(m ilogrm + log log n),

where ilogr = log log · · · logm (with r logs). denotes the
log function iterated r times.

The upper bound is almost matched by the following lower
bound.

Theorem 9 ([40])R(r)
1/3(EQJ) = Ω(m ilogcrm+log log n),

where c > 0 is a fixed constant.

Let c-EQJ denote the problem of approximating the num-
ber of pairs (i, j) such that Ai = Bj up to a multiplicative
factor of c. We notice that the above lower bound for EQJ in
fact holds just to check if A∩ B = ∅, and therefore implies:

Corollary 2 R
(r)
1/3(c-EQJ) = Ω(m ilogcrm+ log log n) for

a fixed constant c > 0.

Set-Disjoint Join, Subset Join and Superset Join. In the
Set-Disjoint-Join (SDJ) problem, where Alice and Bob wish
to compute all pairs (i, j) such that Ai ∩Bj = ∅. We show
that for SDJ there is no better algorithm than the trivial one in
which Alice just sends all her data to Bob. The lower bound
in fact holds for the case where Alice and Bob just want
to count the number of such pairs (i, j), or even whether
there exists a pair (i, j) such that Ai ∩ Bj = ∅, and thus
any constant multiplicative approximation of counting the
number of such pairs has the same complexity.

Theorem 10 R1/3(SDJ) = Ω(mn). The lower bound also
holds for any multiplicative approximation of SDJ.

Due to the equivalence of SDJ and subset join (SubJ) and
superset join (SupJ), (e.g., Ai ⊇ Bj ⇔ Ai ∩ Bj = ∅), we
have the following corollary.

Corollary 3 R1/3(SubJ) = R1/3(SupJ) = Ω(mn). The
lower bound also holds for any multiplicative approxima-
tions of SubJ and SupJ.

PROOF. Due to the space constraints, we delay the proof
to Appendix B.1.

At-Least-T Join. We will show the following two results
for At-Least-T Join (ATJ) and its c-approximation counting
version c-ATJ. We comment that Algorithm 1 and 2 for SIJ
can also be used to solve ATJ since they can output (thus
count the number of) all the witnesses of each intersecting
pair (Ai, Bj) (i, j ∈ [m]).

Theorem 11 For T ≥ logm, R→1/3(c-ATJ) = Ω(mn).

Theorem 12 There is a constant κ > 0 so that for any
κ logm ≤ T ≤ 99n/100 it holds that R1/3(c-ATJ) =

Ω(m
√
nT).

Due to the space constraints, we delay this section to Ap-
pendix A.

4. IMPROVED ALGORITHM FOR OUTPUT-
SENSITIVE MATRIX MULTIPLICATION,
AND TRANSITIVE-CLOSURE

In this section we show that the algorithm for computing
the non-zero entries of P ·Q in Section 3 can be further im-
proved to algorithmically compute the transitive closure for
sparse graphs very efficiently, when the output of the transi-
tive closure (i.e., the number of edges in the transitive clo-
sure) is sparse.

Output-sensitive matrix multiplication algorithms have been
studied in several prior works. The standard column-row ap-
proach to matrix multiplication takes time O(kn+ n2) [41]
where n is the dimension of the matrices, and k is the num-
ber of nonzeroes in the output. Pagh [34] improved this to
Õ(nnz(P) + nnz(Q) + kn) time over the real numbers
with a randomized algorithm. Williams and Yu [44] show
that Alice and Bob (with separate matrices) can compute
their product with an Õ(kn) communication algorithm; their
construction works over any field. Lingas [25] shows how to
compute output-sensitive Boolean matrix multiplication in
Õ(n2 · kω/2−1) ≤ O(n2 · k0.19) time, which is useful when
the input matrices and output matrix are dense.

Theorem 13 There is a randomized algorithm for the Boolean
matrix multiplication ofP ∈ {0, 1}m×n andQ ∈ {0, 1}n×m
that runs in Õ(k+ k1/2(nnz(P) +nnz(Q))) time and suc-
ceeds with probability 1 − 1/n, where k = nnz(PQ), that
is, the number of nonzero entries in the output.5

PROOF. The algorithm is similar to the two-way algo-
rithm for SIJ in Section 3. We first estimate the number
of non-zero entries kj in each column of R∗,j up to a fac-
tor of 2; using the approximation algorithm for SIJ (The-
orem 5), this can be done in Õ(nnz(P) + nnz(Q) + k)

time. Following the notations in Algorithm 1, let k̃j be
5The algorithm can be implemented in any reasonable computa-
tional model with random access to the input, such as the RAM
model.

the 2-approximation of kj . Let H = {j | k̃j >
√
k} and

L = [n]\H . That is, we divide the columns of the prod-
uct R∗,j into two types: those which are “dense” (in the set
H) and those which are “sparse” (in the set L). Note that
|H| = O(

√
k), by a counting argument.

For those j ∈ H (those column indices with a “dense”
number of non-zeroes), we compute the non-zero entries
in R∗,j by directly multiplying Q∗,j with each Pi,∗ (i ∈
[n]), which can be done in O(nnz(P) + nnz(Q)) time.
Since |H| ≤ O(

√
k), the total running time of computing

{R∗,j | j ∈ H} is at most O(
√
k · (nnz(P) + nnz(Q)).

For those j ∈ L (with a “sparse” number of non-zeroes),
we build a Count-Sketch matrix S with

√
k log2 n rows; in

particular, we set κ =
√
k log n and δ = 1/n10 in Lemma 1.

Then we compute Z = (S · P) · Q. Next, for each j ∈ L
we try to reconstruct the non-zero entries in R∗,j from Z∗,j
using Lemma 1 (note that Z = S · R). It is easy to see that
the running time of computing the non-zero entries in Z is
bounded by Õ(

√
k(nnz(P)+nnz(Q)), by first multiplying

S · P and then multiplying Q with the result. However, the
recovery procedure Rec(·) for Count-Sketch in Lemma 1 is
slow, a priori: the naive way to recover each xi in the n-bit
vector x has running time at least Ω(n). In the following,
we show how to augment the sketching step to speed up the
recovery using a dyadic interval trick which has been used
before in several places (for example, [11]).

We first recall the definition of dyadic intervals of [n]. As-
sume that n is a factor of 2, otherwise we can always pad
dummy items. The dyadic intervals are L = log n+ 1 parti-
tions of [n]: I0 = (1, 2, . . .), I1 = ({1, 2}, {3, 4}, . . .), I2 =
({1, 2, 3, 4}, {5, 6, 7, 8}, . . .), . . . , Ilogn = ({1, 2, . . . , n}).
We have the following lemma regarding Count-Sketch and
dyadic intervals.

Lemma 7 Let x ∈ Nn be a vector with at most κ non-zero
entries. Let I = {I0, . . . , Ilogn} be dyadic intervals of [n].
Denote xI0 = (x), xI1 = (x1 + x2, x3 + x4, . . .), xI2 =
(x1 + x2 + x3 + x4, . . .) and so on. For 0 ≤ ` ≤ log n, let
S` ∈ Rκ log(n10)×2`

be a Count-Sketch matrix. There exists
an algorithm that can recover x from S0 ·xI0 , . . . , SL ·xIlog n

with probability 1− 1/n7, using Õ(κ) time.

PROOF. The algorithm is as follows:

1. Consider a binary tree whose leaves are {1, 2, . . . , n},
with each interval node corresponding to the interval
formed by the leaves of its subtree. That is, the root
corresponds to xI01 , the left child of the root corre-
sponds to xI11 , the right child of the root corresponds
to xI12 , and so on.

2. Recover xI01 from S0x
I0 ; if xI01 > 0 then mark the

root red.

3. Start from the root and proceed level by level top-down.
For each red node in this level, for each of its two child
nodes (say the child node is the i-th node at level `),
mark it red if xI`i > 0, which can be recovered from
SLx

I` .

4. All leaves marked red correspond to non-zero entries
in x.

Note that the above algorithm essentially probes κ root-
leaf paths in the tree each of length at most O(log n); and
for each path, the time spent on each node in the path is
Õ(1) by Lemma 1. Also by Lemma 1, we can recover xI`i ’s
at each probed node with probability 1 − 1/n10 (recall that
we have set δ = 1/n10). The overall success probability
follows from a union bound on all probed nodes.

In our setting, we view each R∗,j (j = 0, 1, . . . , log n)

as a vector of sparsity at most ` =
√
k. However we can-

not create (R∗,j)
I0 , . . . , (R∗,j)

Ilog n directly and then apply
Count-Sketch matrices S0, . . . , SL, since R∗,j = P · Q∗,j
is the vector we want to compute. We can instead sum up
the corresponding rows of P according to dyadic intervals,
obtaining P0, P1, . . . , Plogn where Pi is a 2i×nmatrix, and
then apply S0, S1 . . . , Slogn on Pi’s. We can apply Lemma 7
to recover non-zero entries of each R∗,j from the sketches
S0 · P0 · Q∗,j , S1 · P1 · Q∗,j , . . ., Slogn · Plogn · Q∗,j . In
this way we can recover all non-zero entries in R with suc-
cess probability 1− 1/n10 · Õ(n2) ≥ 1− 1/n7, by a union
bound.

Now let us analyze the running time for this modified re-
covery procedure in our setting. First, it takes O(nnz(P))
time to implicitly (that is, only specify non-zero entries) com-
pute each Pi (0 ≤ i ≤ log n), since P is sparse. Second,
applying Si on each Pi takes Õ(` · nnz(P)) = Õ(

√
k ·

nnz(P)) time each. Third, for each i = 0, 1, . . . , log n,
it takes Õ(

√
k · nnz(Q)) time to compute Si · Pi · Q. To

sum up, it takes Õ(
√
k(nnz(P) + nnz(Q)) time to com-

pute {S0 · P0 ·Q,S1 · P1 ·Q, . . . , Slogn · Plogn ·Q}, from
which we can recover each column of R.

Corollary 4 There is a randomized algorithm for computing
the transitive closure of an n × n Boolean matrix M which
runs in Õ(k1.5) time and succeeds with probability 1− 1/n,
where k is the number of edges in the transitive closure.

PROOF. Every power M i must contain at most k nonze-
ros, including M1 = M itself. Therefore, if we compute
Mn by repeated squaring for log n times using the algorithm
of Theorem 13, we can ensure a running time of

Õ
(
k + k1/2 ·

(
maxi=1,...,n nnz(M i)

))
≤ Õ(k1.5).

As noted by Borassi, Crescenzi, and Habib [7], efficient
algorithms for transitive closures have further applications
themselves, such as checking whether a given graph is a
comparability graph. Given any partial order P on n ele-
ments, the comparability graph of P is the undirected graph
with n nodes (one for each element in P) and an edge be-
tween two nodes if and only if they are comparable inP . The
class of comparability graphs is simply the class of all graphs
obtainable from a partial order P in this manner. Recogniz-
ing whether a given input graph can be modelled by some
partial order P in this way is called the comparability graph
recognition problem, and is very old (see discussion in [7]).
To our knowledge, the previous best known algorithms ran
in O(mn) time (m is the number of edges of the graph) by
Golumbic in 1977 [15], and O(nω) time where ω ≥ 2 is the
matrix multiplication exponent (cf. [27]).

Our algorithm implies a rather quick solution to this prob-
lem for sparse graphs, avoiding fast matrix multiply:

Corollary 5 There is a randomized algorithm for compara-
bility graph recognition running in Õ(m1.5) time, where m
is the number of edges in the given graph.

5. CONCLUDING REMARKS
In this section we discuss how to extend our results on set-

intersection join to multiparty, as well as a few problems left
open by our work and some future research directions.

We can generalize set-intersection join to the multiparty
setting. Let O1, . . . , Ot be t parties. We still have two col-
lections of sets A = (A1, ..., Am) and B = (B1, ..., Bm),
but they are distributed across t players. That is, eachOi has
Ai ⊆ A and Bi ⊆ B, where {A1, . . . , At} is a partition of
A and {B1, . . . , Bt} is a partition of B. The t parties want
to compute SIJ(A,B).

This generalization can be solved easily using the “lin-
earity” of Algorithm 1. Let P ∈ {0, 1}m×n be the matrix
representation of A, and let P i ∈ {0, 1}m×n (i ∈ [t]) be the
matrix representing the subset Ai ⊆ A (pad all ‘0’ in rows
do not correspond Ai). Similarly, let Q ∈ {0, 1}n×m be the
matrix representation ofB, and letQi ∈ {0, 1}n×m (i ∈ [t])
be the matrix representing the subset Bi ⊆ B. In the first
step, Player O1 sends SP 1 to player O2 (S is a Count-
Sketch same as that in Algorithm 1), and then O2 computes
S(P 1 +P 2) and sends it toO3, and so on. At the endOt can
compute SP where P = P 1 + · · ·+P t. In the second step,
Ot sends SP to each party O1, . . . , Ot−1, and the t parties
use the same way to compute SP · Q. Next, the parties can
use the same way to compute MPQ where M is `0-sketch.
Given SPQ and MPQ, we run Algorithm 1 to recover the
columns with small number of non-zeros, and for remaining
columns have the parties who possess them directly transmit
these. The total communication cost is at most t times that
for the 2-party case (Theorem 3).

There are many problems left open by this work. The
biggest technical question left open is to close the gap be-
tween the upper bound Õ(n/ε2) and the lower bound Ω(n/ε2/3)
for (1 + ε)-SIJ in the 2-way communication model. Another
natural question is whether we can extend this line of re-
search to more expressive queries. Finally, it will be inter-
esting to investigate whether this line of work could lead to
asymptotically faster algorithms for Boolean matrix multi-
plication that do not rely on heavy un-implementable algebra
(like the last 30 years of work on the subject). That would
be a major advance for both theory and practice. There are
other potential applications which rely on Boolean matrix
multiplication as well (triangle detection/counting, context-
free grammar parsing, etc.) which are worth pursuing fur-
ther.

6. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. In EDBT, pages 99–110,
2010.

[2] R. Angles and C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv., 40(1), 2008.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[4] A. Badia and M. Dobbs. Supporting quantified queries
in distributed databases. IJPEDS, 29(5):421–459,
2014.

[5] A. Badia, D. VanGucht, and M. Gyssens. Querying
with generalized quantifiers. In Applications of Logic
Databases, pages 235–258, 1993.

[6] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A comparison of join algorithms
for log processing in mapreduce. In SIGMOD, pages
975–986, 2010.

[7] M. Borassi, P. Crescenzi, and M. Habib. Into the
square - on the complexity of quadratic-time solvable
problems. CoRR, 2014.

[8] J. Brody, A. Chakrabarti, R. Kondapally, D. P.
Woodruff, and G. Yaroslavtsev. Beyond set
disjointness: the communication complexity of finding
the intersection. In PODC, pages 106–113, 2014.

[9] J. Claußen, A. Kemper, G. Moerkotte, and K. Peithner.
Optimizing queries with universal quantification in
object-oriented and object-relational databases. In
VLDB, pages 286–295, 1997.

[10] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, 1970.

[11] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its
applications. J. Algorithms, 55(1):58–75, 2005.

[12] G. Cormode and S. Muthukrishnan. Combinatorial
algorithms for compressed sensing. In SIROCCO,
pages 280–294, 2006.

[13] M. Dadashzadeh. An improved division operator for
relational algebra. Inf. Syst., 14(5):431–437, 1989.

[14] G. H. L. Fletcher, M. Gyssens, D. Leinders,
J. VandenBussche, D. VanGucht, S. Vansummeren,
and Y. Wu. Relative expressive power of navigational
querying on graphs. In ICDT, pages 197–207, 2011.

[15] M. C. Golumbic. The complexity of comparability
graph recognition and coloring. Computing,
18(3):199–208, 1977.

[16] G. Graefe and R. L. Cole. Fast algorithms for
universal quantification in large databases. ACM
Trans. Database Syst., 20(2):187–236, 1995.

[17] S. Helmer and G. Moerkotte. Evaluation of main
memory join algorithms for joins with set comparison
join predicates. In VLDB, pages 386–395, 1997.

[18] P. Hsu and D. S. P. Jr. Improving SQL with
generalized quantifiers. In ICDE, pages 298–305,
1995.

[19] T. S. Jayram, R. Kumar, and D. Sivakumar. The
one-way communication complexity of hamming
distance. Theory of Computing, 4(1):129–135, 2008.

[20] D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements problem.
In PODS, pages 41–52, 2010.

[21] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 32(4):422–469, 2000.

[22] E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge: Cambridge Univ, 1997.

[23] D. Leinders and J. VandenBussche. On the complexity
of division and set joins in the relational algebra. J.
Comput. Syst. Sci., 73(4):538–549, 2007.

[24] G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[25] A. Lingas. A fast output-sensitive algorithm for
boolean matrix multiplication. In ESA, pages
408–419, 2009.

[26] N. Mamoulis. Efficient processing of joins on
set-valued attributes. In SIGMOD, pages 157–168,
2003.

[27] R. M. McConnell and J. Spinrad. Linear-time modular
decomposition and efficient transitive orientation of
comparability graphs. In SODA, pages 536–545, 1994.

[28] S. Melnik and H. Garcia-Molina. Adaptive algorithms
for set containment joins. ACM Trans. Database Syst.,
28:56–99, 2003.

[29] P. Mishra and M. H. Eich. Join processing in relational
databases. ACM Comput. Surv., 24(1):63–113, 1992.

[30] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, New York,
NY, USA, 1995.

[31] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[32] I. Newman. Private vs. common random bits in
communication complexity. Inf. Process. Lett., 39(2),
1991.

[33] A. Okcan and M. Riedewald. Processing theta-joins
using mapreduce. In SIGMOD, pages 949–960, 2011.

[34] R. Pagh. Compressed matrix multiplication. In ITCS,
pages 442–451, 2012.

[35] V. R. Pratt. Origins of the calculus of binary relations.
In LICS, pages 248–254, 1992.

[36] K. Ramasamy, J. M. Patel, J. F. Naughton, and
R. Kaushik. Set containment joins: The good, the bad
and the ugly. In VLDB, pages 351–362, 2000.

[37] R. Rantzau. Query processing concepts and
techniques for set containment tests. PhD thesis,
University of Stuttgart, 2004.

[38] S. Rao, A. Badia, and D. VanGucht. Providing better
support for a class of decision support queries. In
SIGMOD, pages 217–227, 1996.

[39] A. A. Razborov. On the distributional complexity of
disjointness. Theor. Comput. Sci., 106(2):385–390,
1992.

[40] M. Saglam and G. Tardos. On the communication
complexity of sparse set disjointness and exists-equal
problems. In FOCS, pages 678–687, 2013.

[41] C. Schnorr and C. R. Subramanian. Almost optimal
(on the average) combinatorial algorithms for boolean
matrix product witnesses, computing the diameter
(extended abstract). In RANDOM, pages 218–231,
1998.

[42] B. ten Cate and M. Marx. Navigational xpath: calculus
and algebra. SIGMOD Record, 36(2):19–26, 2007.

[43] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD,
pages 495–506, 2010.

[44] R. Williams and H. Yu. Finding orthogonal vectors in
discrete structures. In SODA, pages 1867–1877, 2014.

[45] D. P. Woodruff and Q. Zhang. An optimal lower
bound for distinct elements in the message passing
model. In SODA, pages 718–733, 2014.

[46] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In WWW,
pages 131–140, 2008.

[47] A. C.-C. Yao. Probabilistic computations: Toward a
unified measure of complexity (extended abstract). In
FOCS, pages 222–227, 1977.

APPENDIX
A. AT-LEAST-T JOIN

Consider the ATJ problem where Alice has setsA1, . . . , Am,
and Bob has sets B1, . . . , Bm all from a universe [n]. They
want to compute the number of (i, j) pairs for which |Ai ∩
Bj | ≥ T , for a parameter T > 0. By padding each set with
T − 1 common elements, Theorem 10 implies an Ω(mn)
lower bound on the two-way randomized communication
complexity of this problem, that is, no non-trivial algorithm
exists.

The situation becomes more interesting if we want to ap-
proximate the number of (i, j) pairs for which |Ai∩Bj | ≥ T
up to a multiplicative factor of c > 1, which we call c-ATJ.
To obtain a lower bound for the randomized communication
of this problem for any approximation factor c, it suffices to
obtain a lower bound for the problem of determining if there
exists a pair (i, j) for which |Ai∩Bj | ≥ T . We call the latter
problem ∃-ATJ. We give tight bounds for the one-way com-
munication of this problem below, as well as a lower bound
for the two-way communication of this problem which is
tight if T = Ω(n) and m and n are polynomially related. By
the aforementioned connection, we obtain the same lower
bounds for c-ATJ.

Theorem 14 (restatement of Theorem 11) For T ≥ logm,
R→1/3(c-ATJ) = Ω(mn).

PROOF. We reduce from the Indexing problem to ∃-ATJ.
In our reduction, Bob has a single non-empty set B1. In
each of Alice’s sets Ai, in its characteristic vector on the
first r = 2T coordinates, she places a new distinct vector
with T − 1 ones. Assuming T ≥ logm, it is possible to do
this, since in that case there are

(
2T
T−1

)
> m such vectors.

This ensures that the characteristic vectors of any two sets
Aj , Aj′ with j 6= j′ agree on at most T − 2 ones among the
first r coordinates. On the remaining n − r coordinates of
the characteristic vectors of each of herm sets she places her
input bits to the Indexing problem. Hence, we can embed an
instance of Indexing on (m − r)n = Ω(mn) bits in Alice’s
vectors.

If Bob is interested in the i-th bit of the characteristic vec-
tor of Aj in the Indexing problem, in his set B1 he puts the
prefix corresponding to Aj in the first r coordinates, then he
adds the single coordinate i to Aj . Then the only set this can
intersect in T positions is Aj . But this happens if and only
if i occurs in Aj .

Theorem 15 (restatement of Theorem 12) There is a con-
stant κ > 0, so that for any κ logm ≤ T ≤ 99n/100, it
holds that R1/3(c-ATJ) = Ω(m

√
nT).

PROOF. We reduce from SI on size m
√
nT/8 sets. That

is, Alice is given x ∈ {0, 1}m
√
nT/8, while Bob is given

y ∈ {0, 1}m
√
nT/8, and the players would like to determine

if there exists an ` for which x` = y` = 1 (see Section 2 for
a definition and discussion of SI).

We can partition x into m contiguous substrings

x1, . . . , xm ∈ {0, 1}
√
nT/8,

and similarly partition y into m contiguous substrings

y1, . . . , ym ∈ {0, 1}
√
nT/8.

For each i ∈ [m], we use the public randomness to define
a random injection f i : [

√
nT/8] → [n − 48T], where we

assume
√
nT/8 ≤ n − 48T (we remove this assumption

below). The f i are independent for the different i.
We define the following event Ei,j for i 6= j ∈ [m]:
|f i(xi) ∩ f j(yj)| > T/2, where |f i(xi) ∩ f j(yj)| denotes
the number of coordinates ` for which f i(xi)` = f j(yj)` =
1. Since f i is an injection, the number of coordinates ` ∈
[n − 48T] for which f i(xi)` = 1 is at most

√
nT/8, and

similarly the number of coordinates ` in [n−48T] for which
f j(xj)` = 1 is at most

√
nT/8.

We compute Pr[|f i(xi) ∩ f j(yj)| > T/2]. This prob-
ability cannot decrease if f i(xi) and f j(yj) are 1 on the
maximum possible number of coordinates, namely,

√
nT/8.

Then the probability |f i(xi) ∩ f j(yj)| exceeds T/2 can be
upper bounded by the following process: we choose the√
nT/8 ones of f j(yj) one at a time. Each time we choose

a one, there are at most
√
nT/8 positions it could collide

with in f i(xi), out of at least n− 48T −
√
nT/8 ≥ n/2 re-

maining positions, where we assume 48T +
√
nT/8 ≤ n/2

(we remove this assumption below). Hence, Pr[|f i(xi) ∩
f j(yj)| > T/2] is upper bounded by Pr[Z > T/2], where
Z is the sum of

√
nT/8 independent indicator random vari-

ables each with success probability
√
nT/8/(n/2). Hence,

E[Z] = T/4. By a Chernoff bound,

Pr[Z > T/2] ≤ exp(−Θ(T)) ≤ 1

10m2
,

where the second inequality uses that T ≥ κ logm for a
sufficiently large constant κ > 0. By a union bound Pr[E] >
9
10 , which we condition on.

For each i ∈ [m], we also choose a random subset Si of
[48T] with |Si| = T − 1. Note that for i 6= j,

Pr[|Si ∩ Sj | ≥ T/2] ≤
(
T − 1

T/2

)(
1

48

)T/2
≤

(
2Te

T

)T/2(
1

48

)T/2
≤

(
2e

48

)T/2
<

(
1

4

)T
≤ 1

m2
,

where the fist inequality follows by a union bound over all
possibilities of intersecting in at least T/2 positions, the sec-
ond inequality follows from the inequality

(
n
k

)
≤ (ne/k)k,

and the final inequality uses that T ≥ logm. It follows by
a union bound that there exist sets S1, . . . , Sm with |Si| =
T − 1 and |Si ∩ Sj | < T/2 for all i 6= j ∈ [m]. We fix a
choice of S1, . . . , Sm which has this property. Note that our
choice of S1, . . . , Sm is done independently of our choice
of f1, . . . , fm.

For each i ∈ [m], we define Ai ⊆ [n] to be the set whose

characteristic vector is f(xi) on the first n − 48T coordi-
nates, and which equals Si on the remaining 48T coordi-
nates. Similarly, define Bi ⊆ [n] to be the set whose charac-
teristic vector is f(yi) on the first n− 48T coordinates, and
which equals Si on the remaining 48T coordinates.

For i 6= j, we have

|Ai∩Bj | = |f i(xi)∩f j(yj)|+|Si∩Sj | ≤
T

2
+
T

2
−1 < T.

On the other hand, we have

|Ai ∩Bi| = |xi ∩ yi|+ T − 1,

where |xi∩yi| denotes the number of coordinates ` for which
xi` = yj` = 1. It follows that the ∃-ATJ problem on in-
puts A1, . . . , Am and B1, . . . , Bm is equal to 1 if and only
if there is an ` for which x` = y` = 1. Hence, a protocol for
∃-SITJ which errs with probability 1/5 can be used to solve
SI with error probability at most 1/5 + 1/10 < 1/3, and so
R1/5(c-ATJ) ≥ R1/5(∃-ATJ) ≥ R1/3(SI) = Ω(m

√
nT).

Note that R1/3(c-ATJ) = Ω(R1/5(c-ATJ)) since a proto-
col which errs with probability 1/3 can be made to err with
probability 1/5 by repeating the protocol independentlyO(1)
times and outputting the majority outcome.

It remains to discuss the two assumptions in the above
proof, (1)

√
nT/8 ≤ n−48T and (2) 48T+

√
nT/8 ≤ n/2.

Both assumptions are satisfied provided that T ≤ cn for a
sufficiently small constant c > 0. This is always possible
to assume, since given T ≤ 99n/100 and n, we can replace
(n, T) with (n− (1−γ)T, γT) for arbitrarily small constant
γ > 0 and pad each of the sets Ai, Bj in the above with
(1 − γ)T common elements. Since T ≤ 99n/100, for suf-
ficiently small γ the ratio (γT)/(n − (1 − γ)T) is at most
c, while n and T change by constant factors, so the same
conclusion of the Ω(m

√
nT) lower bound holds.

B. OMITTED PROOFS

B.1 Proof for Theorem 10
We reduce from the SI problem with a universe of size

mn. That is, Alice and Bob have vectors x, y ∈ {0, 1}mn
and would like to determine if there is an ` ∈ [mn] for which
x` = y` = 1, in which case we say x and y intersect. We
use the distribution ν on (x, y) (see Section 2).

Break x into m contiguous strings x1, . . . , xm ∈ {0, 1}n,
and set Ai such that xi is the characteristic vector of Ai.
Similarly, break y into m contiguous strings y1, . . . , ym ∈
{0, 1}n and setBj such that yj is the characteristic vector of
Bj .

Claim 1 With probability 1−m2 · e−Ω(n) over (x, y) ∼ ν,
for all i 6= j, xi intersects yj .

PROOF. For fixed i and j, by a Chernoff bound, the Ham-
ming weights of xi and of yj are at least n/5 with probability
at least 1 − e−Ω(n). Conditioned on the Hamming weights
of xi and yj , the positions of the 1s in xi and yj are indepen-
dent, since i 6= j. Hence, for any fixing of Hamming weights
of value at least n/5, the probability xi does not intersect yj
is at most the probability that a random set B ⊂ [n] of size
n/5 does not contain an element in [n/5], which is at most

(4/5)n/5 = e−Ω(n). The claim follows by a union bound
over the

(
m
2

)
pairs (i, j).

If SI(x, y) = 1, then one additional pair (xi, yi) will in-
tersect, otherwise if SI(x, y) = 0, then all additional pairs
(xi, yi) will not intersect. These cases can be distinguished
by an algorithm for SDJ since by Claim 1, SDJ(A,B) =
m− SI(x, y) with probability 1− o(1). Lemma 4 states that
Dν
δ (SI) = Ω(mn), for a constant error probability δ > 0,

yielding the theorem.

