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Abstract Determining the exact tradeoff betweenk, r, andt is a
fundamental combinatorial problem with significant appli-
A family of subset& of [n] ef {1,...,n} is (r,t)- cations in cryptography. One of the most notable of these is
exclusive if for everys C [n] of size at leash — r, there information-theoretic broadcast encrypti¢h, 11]. In such
existS,...,S; € CwithS = S;US,U--- US;. Thesefam-  a scheme, there is a server sendimgadcaststo n users.

ilies, also known as complement-cover families, have cryp-Each broadcast consists bEncryptions of a session key,
tographic applications, and form the basis of information- with the property that any coalition of members from a re-
theoretic broadcast encryption and multi-certificate revoca- voked setR C [n] with |R| < r learns no information from
tion. We give the first explicit construction of such families the broadcast. Each encryption in the broadcast is done us-
with sizepoly(r, t)n"/¢, essentially matching a basic lower ing a different key, held by both the server and some specific

bound. Our techniques are algebraic in nature. set of users. Thug; is the number of keys in the scheme,
Whenr = O(t), as is natural for many applications, which is proportional to the storage complexity, afjdde-
we can improve our bound tpoly(r, t) (ﬁ)l/f_ Further, notes the users who hold the servétfskey. If a broadcast
whenr, ¢ are small, our construction is tight up to a fac- Consists of encryptions under kegs, , ..., S;,, it should
tor of r. We also provide @oly(r, ¢, log n) algorithm for ~ hold thatu;_, 5;; = [n] \ R. Then even if all the users in
finding S1, . .., S, which is crucial for efficient use in ap- £ collude, they collectively lack each key in the broadcast.

plications. Previous constructions either had much larger Since each subset t:zkeyi can coireselond tonat most one
size, were randomized and took super-polynomial time toSet[n] \ R, we need>=,_ (7) > i, (7) > (}). After
find Sy,...,S;, or did not work for arbitrary n,r, andt. some algebra, this gives the lower boune- Q(t(:f)l/t).
Finally, we improve the known lower bound on the number  Kumar and Russell [10] use the probabilistic method to
of sets containing eache [n]. Our bound shows that our  show that for sufficiently large and anyr < t, there ex-
derived broadcast encryption schemes have essentially opist exclusive set systems with sig&t?(nt)"/* Inn). This,
timal total number of keys and keys per user fousers, however, is only an existence result and has several draw-
transmission sizé and revoked set size backs. First, it is not known how to efficiently verify that
the randomly chosen sets do indeed form an exclusive set
system. Second, the sets have a large description size since
1. Introduction they are chosen at random. Third, the number of sets grows
asn"/! rather than(") Yt \which is important for large.
In [1], Aiello, Lodha, and Ostrovsky put forth the notion Finally, and perhaps most importantly, [10] does not pro-
of acomplement-cover familyvhich, informally speaking, ~ vide an efficient algorithm for generatirty, , . .., S;, with
is a family of sets for which every large subset of the uni- [2] \ R = S, U--- U S;,, which is equivalent to solving
verse can be written as the union of some small collection Set-Cover on a certain input distribution. As far as we are
of subsets from the family. This notion was rediscovered by aware, this problem has not been extensively studied, with
Kumar and Russell [10], who referred to such families as the only results appearing in [15, 16]. The strongest result

exclusive set systemrigore formally, is in [15], which shows how to obtain an additive, slightly

o ) sublogarithmic approximation factor poly(n)-time. Of-
Definition 1 A family of subset§ = {51, ..., Si} over[n] tentimes though, even time polynomialsinis considered
is (n, k, r,t)-exclusive if for any subsét C [n] with |[R| < {00 |arge, as, ¢ are usually much smaller. Hence, it is de-
r, we can writeln] \ R = U;_, S;, for somel <i; < k. sirable to have algorithms running in tifngoly (r, ¢, log n).

*Some of this research was done while the authors were all at DoCoMo  1This is the time to determine the members of a collection of sets that
Labs. form the desired union. However, it may not be enough time to output the



In this paper, we give amxplicit construction of an
(n, k,r,t)-exclusive set system withk = poly(r,t)n"/*
sets. Unlike previous constructions, our construction works
for any values ofr, ¢, andn. Further, assuming that =
O(t), this can be improved tpoly (r, ¢) () /! which is op-
timal up to thepoly(r,t) factor. In applications such as

can support arbitrary, r, andt. In fact, below we will see
that our schemes may even improve the parameters of these
specific schemes. Thus, our constructions significantly gen-
eralize the previous ones, and are almost tight.

Improved Cryptographic Applications: In the table
below, we have listed the previous results, as well as two

broadcast encryption, usually the communication is at leastsettings of parameters of our scheme. We stress that our re-

r since the server needs to describe thels&b the users.
Thus, it is likely thatr < ¢, and we can apply our improved
construction. For the case wherandt are slow-growing
functions ofn, as is the case for broadcast encryption, we

can optimize our storage complexity ko= O(rt(:f)l/t).
This improves the previous best known complexity of [10],
and is tight up to a factor af. Moreover, we provide a de-
terministicpoly (r, t, log n)-time algorithm, which giver®,
finds S;,,...,S;, with [n]\ R = S;, U---US,,. Thus,
broadcasting is extremely efficient.

In [13], Luby and Staddon derive lower bounds on the

sults are listed for general andr, and for small values of
r the degree of our polynomial factors is very small. Below
we also discuss the tradeoffs on the number of keys per user.

Paper Communication complexity Number of Keys
[9] O(r3logn/logr) O(r3logn/logr)
[5] O(r?log® n/log?r) O(r?log® n/log?r)

[1, 11] rlogn/r 2n

[11](SD) 2r O(nlogn)
this paper rlogn/r poly(r,logn)
this paper 2r poly(r)nt/?

The first setting of parameters in this paper outperforms

number of sets in an exclusive set system which contain aj9] and [5] in terms of communication, while paying an ex-

given element € [n]. They show that there exists &g [n]

; sy 1/t ; ;
occurring in (T) /(rt) sets. In this paper, we improve
their bound to(’j)l/t/r using a variation of the sunflower

lemma. These bounds show that for broadcast encryption

thetotal numberof keys in our scheme is about the same as
the number of keys requirger userin any schemeThus,
our number of keys per user is also essentially optimal.
There have been many other constructions of exclu-
sive set systems. Aiello, Lodha, and Ostrovsky [1] con-
struct(n, n2¢/(c — 1), r,rlog,. n/r)-exclusive set systems
for any constant > 2. They also show how to use any
(n, k, r,t)-exclusive set system for efficiecgrtificate revo-
cation Heren refers to the number of useristhe number
of certificates held by the certificate authoritthe number
of revoked users, andhe communication complexity of an
update phase.
In the context of broadcast encryption, Gafni, Stad-
don, and Yin [5] provide an (n,(rlogn/logr)?,
r, (rlogn/logr)?)-exclusive set system. In the
same context, Lotspiech, Naor, and Naor [11] give
(n,2n,r,rlogn/r) and (n,nlogn,r, 2r)-exclusive set

systems based on binary trees. Using algebraic-geometric0
and Sahai [9] construct

codes, Kumar, Rajagopalan,

(n,73logn/logr, r,r3logn/log r)-exclusive set systems.
Although these schemes are equipped with efficient al-

gorithms for generating;,, ..., S;, with [n] \ R = S;; U

--- U S;,, a serious disadvantage of all of these schemes is

that oncen andr are chosen, both the broadcast siznd
the number of keys (certificateg)are determined. How-
ever, as pointed out in [10], it is clear that given- andt,
for sufficiently largek there exists arin, k, r, t)-exclusive

set system. In contrast with previous schemes, our scheme

members of each set, though for our applications this is not needed.

trapoly(r,logn) factor in the key complexity. This is use-
ful when communication is the bottleneck. This setting also
provides an exponential improvement to the key complexity
of [1] and [11] for smallr. Our improvement comes from

the fact that the schemes in [1] and [11] are not sensitive

tor, whereas we parameterize our complexity in terms, of
which is likely to be small in practice. We note that the num-
ber of keys per user in our scheme is ophly(r, logn),
which is comparable to that of previous schemes.

The second setting of parameters in our scheme is use-
ful for a comparison to another scheme proposed in [11],
known as the subset-difference (SD) scheme. For the same
n, r, andt, we achieve)(r?n'/?) keys, roughly the square-
root of the SD scheme for smail One may argue that the
SD scheme focuses instead on the number of keys per user.
At first glance, it appears that their scheme achieves only
O(log® n) keys per user, contradicting our lower bound.
A more careful inspection shows that their scheme only
providescomputational securityand thus is incomparable
with ours, which is information-theoretic. Making their
scheme information-theoretically secure requi2és) keys
er user, while ours only requirgsly(r)n'/2. We achieve
similar improvements over the LSD broadcast encryption
scheme of Halevy and Shamir [6].

Other Applications: Although the most immediate ap-
plications of our results are to broadcast encryption and cer-
tificate revocation, our results may also apply to data struc-
tures and group testing. We note that key distribution pat-
terns, a generalization of broadcast encryption, have been
studied in connection to group testing before [14].

Techniques: The idea behind our construction is to first
gonstruct exclusive set systems for the case wieerdt are
much smaller tham. We then create an exclusive system
for generaln, r, andt with a divide-and-conquer approach:



roughly speaking, we carefully partition the universe struction, anyu € [n] \ R occurs in some set, while any

into blocks and use our smaller set systems independentlyu € R does not.

on each block. The problem is therefore to find an explicit polynomial
The construction for smalt, ¢ is algebraic in nature.  collectionC with these properties. We consider the follow-

Namely, we associati] with points in affine space. Sets ing collection

then correspond to functions on this space. More pre-

cisely, a set corresponds to the points on whiathoes not

vanish. Then a point belongs to the set uniasy U- - - U .S,

’
r

¢ ={[[(Xo—1i;) |+ <r distinctiy,...,i. €F}

provided it does not vanish on all of the corresponding func- i=t
tions f1, ..., f,. Algebraically, this means thatis not in U {f(Xi) =Xt |[0<i<t—2, dedf) <r—1}
the variety of f1,..., f;. The main problem is to find a

small explicit collection of functions for which every set The number of polynomials of the forﬁj 1(Xo —ij)is

of at mostr points is the variety of some functions in Yo (’;) < >i_op" < 2p”,and the number of univari-

the collection. In this way, we have reduced the problem ate polynomialsf of degree at most — 1 is at mostp”, so

to a specific algebraic question. We find an explicit fam- |C| = O(tp").

ily using multivariate polynomials together with certain ex- Intuition: The idea we use is that polynomials of the

panders and MDS codes. form f(X;) — X,y implement an AND operation be-
Our improved lower bound for the number of sets con- tween adjacent coordinates. Since the polynomials have

taining each € [n] is based on the sunflower lemma with degreer — 1, we can only use a given polynomial to im-

relaxed disjointness. plementr constraints. By chainingof the polynomials to-
Organization: In section 2, we develop our polynomial- gether, we can exclude exactly those point®jrcoordinate

based system for smatlandt. In section 2.1 we use ex- by coordinate. Finally, we need polynomials of the form

panders to improve the first construction. In section 2.2 H (X0 —1;) for the base case, that is, to begin the chain-

we use a small amount of randomness for further i Improve- |ng One |mportant observation is that by usmg polynom|a|5

ments, while preserving deterministic, efficient broadcast. to implement these local constraints, we greatly reduce the

In section 2.3 we balance the different types of sets that wetotal number of sets. The reason is that the mapping from

use, giving further improvements. In section 3, we con- sets ofr constraints to polynomials is many-to-one.

struct an exclusive set system for generat, andt. For We start with the following lemma, which formalizes this

readability, we give our lower bound on the keys per user in intuition.

Appendix A. We also give more intuition for the scheme in
section 2 in Appendix B. Lemma 2 Suppose that for eachin [t], no two points

in R have the sameéth coordinate. Then we can find

2. The Polynomial System fo,---, ft_1 € CforwhichVar(fy,..., fi_1) =R

Proof:  Since the coordinates have distinct values and
Recall thatn is the universe sizeyp — r is the size of  |R| <, we can choosgy = ][], z(Xo — uo). Fori > 1,
the setdn] \ R we wish to cover, and the number of sets  we find a univariate polynomiaj; by interpolating from
we use to cover each sgt] \ R. We start by describing a  g;(u;) = u;41 for eachu € R, and then setting the mul-

simplified scheme under the assumption that tivariate polynomialf; = ¢;(X;) — X;+1. For any point
x ¢ R,if x € Var(fo,..., fi—1), then fo(z¢) = 0, so
rot? < pt/t thatzy = ug for someu € R. It inductively follows that

y wir1 = gi(u;) = gi(x;) = 41, Where the first equality
for a constanty > 2 to be specified. For now the reader follows from the definition ofy;, the second equality fol-

should just think of- and¢ as being much smaller than lows from the inductive hypothesis, and the last equality

Letp > n'/ be prime, and leF = F,,. Forz € [n], we  from the fact thatf;(z) = g;(2:) — 2411 = 0. Thusz = u,

identify z with a point(zo, . .., z:-1) € F". a contradiction. On the other handyife R, then it is easy
Our scheme works by choosing a small collection to see that: € Var(fy, ..., fi_1). [ ]

C of polynomials in the ringF[Xo,..., X;_1], where

Xo,...,X;_1 are formal variables. For each € C, we The remaining problem is how to handle the case when

create a sef; consisting of all the points in F* for which points in R share coordinates. One idea is to carefully

f(u) # 0. Given a selR C [n] with |R| < r, we will find ¢ choose a small set of invertible linear transformations

functionsfy, ..., fi—1 € C forwhichVar(fy,..., fi—1) = Ly, ..., L, onthe spac&Xy,..., X;_; so that for any set

R, whereVar(fy,..., fi—1) denotes the common zeros of R, there is some inde® for which each row ofL 5 R con-

fo,-.., fi_1, thatis, the variety of these functions. By con- sists of distinct entries. We then proceed as before in this



new coordinate system. In this case we say thais good
for R. Here,L g is interpreted as & x t matrix andR as a
t x r matrix. We then defin€ to beU,_,Cp, whereCp is
given by

/

Cp = {H(LBXO —ij) | ' <r, distinctiy,... i € F}
j=1
U{f(LpXi)—LpX;41|0<i<t—2 deqf) <r—1}.

The size ofC is O(mtp"). For a givenR with |R| < r,
we find aB for which L is good for R, and then apply
the previous scheme using the set€jn To complete the
specification, we use the following lemma.

Lemma 3 There is an explicit set of, = 2t linear trans-
formationsL,, ..., L,, such that for allR C [n] of size at
mostr, there is somé. 5 that is good forR.

Proof:  Divide FF into m = r?t disjoint blocks B =
{b1,...,b;} each containing distinct elements. This is
possible since?t?> < n'/t < p. Define the linear trans-
formations

1 b b bt
p—| 1 b b2 it
1 b b it
The Ly are invertible, and Lp(z) =

Pe(01), 02 (02), - .., pu(by), Wherep, (V) = S0z v0.
As two distinct degree — 1 polynomials can agree on
at mostt — 1 points, it follows that for any giverR, at
most (5)(t — 1) < r*t elementsv of F can be such that
pz(v) = py(v) for distinctz, y € R. Therefore, one of the
Lg is good forR. |

We summarize our findings thus far. We use the teroad-
castto mean, given a seR of cardinality at mostr, find
i1,...,4 forwhich[n]\ R = S;, U---US;,. We refer to
R as the set ofevokedpoints. This terminology coincides

with that for broadcast encryption, where points are users.

Theorem 4 Leta >
« 2t2)

525 be any constant, and assume

max(r =0(n 1/t). For sufficiently largen, there is
an explicit(n, O((rt)?n"/t), r, t)-exclusive set system. Fur-
ther, broadcasting can be donejwly(r, t,logn) time.

Proof: By lemma 3 we can set. = 72t in the discussion
above. Thus: = O((rt)?p"). It remains to find a small
primep with p > n'/t. Using a result of [3], we can find a
primep with n'/t < p < n'/* 4 nB/* for any constant >
525 and sufficiently large:'/*. Sincet < n'/*, we have

t = O(1 i ) and thusn!/t = Q( ) so that
oglogn

log n
loglogn

n'/t — 0o asn — co. Therefore we can find such a prime
for sufficiently largen. The number of sets is bounded by

O((rt)*p") = O((rt)*(n'/* +n/1)")

= O((rt)*n"/t(1 + nB=—D/tyr)
= O((rty*n/rer/m

= O((rt)'n""),

where we have used the bound ento conclude that

r < n(1=A)/t_ The time for broadcasting is dominated by
the search for a good s and thet — 1 degreefr — 1)
polynomial interpolations, each of which can be done in
poly(r, t,logn) time. |

2.1. Using expanders

We can do a bit better with a slightly different way of
handling points ink that share coordinates.

Intuition: The previous scheme hadt coordinate sys-
tems, each of which was good for a different collection of
R C [n]. In each system we interpreted a paint F* as
a polynomial, and evaluated it grelements off. The sys-
tem was good for if for each of thef elements, each of the
at mostr polynomials inR had different evaluations. The
disadvantage is that even if only one pair of polynomials
collided on one element in a coordinate system, the system
could not be used faR. In the worst case this happer’
times, so we needft systems.

But only r2¢ elements can have collisions, and so if we
hadr?t + t elements, for any? we could findt elements
to use for a coordinate system. However, if we allow any
two elements to occur together in a system, the number of
sets in our overall system would be too large. Interpreting
the elements as nodes of a graph and pairs of elements that
can occur together as edges, the property we want is that the
graph is well-connected and has low degree. This is exactly
the property of an expander graph. We will find a connected
component of sizeé amongst collision-free elements and
use this as a coordinate system.

Choosem = ~r2%t elementsl,...,m C F for some
constanty > 2 to be determined, and say an element
is goodfor a setR if, using the notation of lemma 3, for
distinctz, y € R, p,(v) # p,(v). From the proof of lemma
3, for anyR we can find(y — 1)r?t good elements foR.

The idea is to consider graplswith constant degreé,
vertex sefm|, and the property that any induced subgraph
on a large constant fraction of vertices has a connected com-
ponent of size at least/2 > ¢. This property holds for cer-
tain expander graphs. Recall that a grépls an(m, d, ¢)-
expandeif it has m-vertices, each vertex has degrgand
for every set of verticel” C V with |[IW| < m/2, there are
at leastc|W| vertices inV \ W adjacent to some vertex in
w.



Lemmab5 Let G be an(m,d, c)-expander. Then any in-
duced subgraph on more thaﬁid vertices ofG has a con-
nected component of size at least2.

Proof: Let H be an arbitrary subgraph on more thg%ﬁl
vertices, and lef’y, . . ., C}, be its connected components. If
any of theC; containm /2 vertices, we are done. Otherwise,
sinceG is an expander and’;| < m/2, C; is incident to at
leastc|C;| distinct vertices irG'\ C;, and thus irG\ H. The
multiset of vertices irG \ H connected td has cardinality
more thanc4™  which is impossible since each of the (at

c+d’
most) <% vertices inG \ H can occur at mosttimes. W

cm
c+d

For an explicit family of expanders, we use the following.

Fact 6 [2, 12] There is an explicit family ofm;, 6, 2 — Vg))
expanders withn; < m; 1 = O(m;).

1

Theorem 7 Leta > 1—== be any constant, and assume
max(r®, r?t) = O(n'/?). For sufficiently largen, there is
an explicit (n, O(r*tn"/?), r, t)-exclusive set system. Fur-
ther, broadcasting can be donegly(r, t,logn) time.

Choose the remaining-1 polynomials as follows: for each
w # v, find g; by interpolating from

t—1 t—1
gz(z whug) = Zpar(w)iui
i=0 i=0

foru € R, and set

t—1 t—1
fi= gi(z w'X;) — Zpar(w)lXi.
=0 =0

Everyu € R vanishes on thesefunctions. To see that
no other pointr vanishes, observe thatfﬁ(ZZ;é viz) =
0, then Zf;é vix; = p,(v) for someu € R since f
has only|R| zeros. By induction on the height of the tree,
S s wiz; = S22 wiu, for all verticesw. As there are
vertices angh,,, p,, are degredt—1) polynomialsp,, = p,,
sox = u, a contradiction.

The time complexity is dominated by the search for good
vertices forR, the breadth-first search, and the polynomial
interpolations, all of which can be donewoly(r, ¢,logn)
time.

Proof: In order to apply lemma 5, we choose our constant 2.2, Using randomness

V5

v and use fact 6 to construct &m = yr’t, 6, % — %2)-

expander, subject to

Identify G = (V, E))'s verticesV with [m] C F, and define

rot—1
¢ ={[] O vixi—ij) |+ <r, distincti; € F, be V}

j=1 =0

t—1 t—1
U{fOQO_ b X)) =Y ' X; | deg(f) <r—1, (bc) € E}.
=0 =0

The size ofC, and thusk, is O(mdp”). As in the proof
of theorem 4, we can chooge so that this quantity is
O(r2tn"/t).

To broadcast with a revoked sBt find (y — 1)r%t ver-
tices inG which are good foR. Then, using lemma 5 and
the bound ony, find a connected compone@t of at least
m/2 > t vertices good foiR. This step can be done effi-
ciently using a breadth-first search. Lebe the root of the
BFS tree containing the firgtvertices visited inC'. For a
vertexw in the tree, lepar(w) be its parent. Set

fo= TTC 0% — pulv)).

ueR i=0

An unfortunate drawback of the construction in [10] is
that there is no efficient algorithm given to fisgl , . .., S;,
whose union ign] \ R. We removed this problem with our
explicit construction above. Further, our explicit construc-
tion achieved size)(r?tn"/*) versus theO(t3n™/*logn)
complexity of the randomized construction in [10], which
held only forr < ¢.

In this section we improve our complexity further to
O(rtn"/t) via a randomized construction. Although the
construction is randomized, it does not suffer from the ef-
ficiency problems of [10]. Rather, broadcasting can still be
done inpoly(r, t,logn) time, andC has a short description.

Intuition: The idea is to choose the setaf points in
section 2.1 randomly frofi. For a givenR it then becomes
unlikely that we will choose many points with collisions on
R. We show this allows us to choog#(rt) points rather
thanO(r?t).

Lemma 8 Lete > 0 andv > 1 be any constants. Assume

r2t < p(1=9/t,
and choose a set ofi = 2yrt/e elementsS uniformly at
random fromiF. With probabilityl — n=®(), for all R, the
setS contains2(y — 1)rt/e good elements faokR.

Proof: Fix a revoked seR C [n]. Fors € S, letv be
the probability thats is not good forR, that is, there exist



distinctz, y € R for whichp,(s) = p,(s). For fixedz # y, and those of the fornf(LgX;) — LpX; 11, wheref is a
we have polynomial of degree at most— 1. If m is the number
Prip,(s) = py(s)] < (t—1)/p, of linear combinationd.p, then the number of sets of the
° first type ism >";_, (). To apply theorem 4, we assume
r?t2 = O(n'/?), so thatr = O(p'/?). It follows tha?
r . my iy (!) = ©(m(?)). On the other hand, the number
vs <2) (t=1)/p<r’t/nt/t <n=e/t of sets[i)lg t?we seconél t)ype7izS(t —1)p".

Intuition: The complexity is dominated from sets of the
by the assumption of the lemma. The probability that more second type. We will reduce the alphabet size® some
than2rt/e elements ofS are not good for? is bounded by primeg, while including more alphabet symbols (other than

m just the first) in sets of the first type. This balances the con-
Z (m> Vil — )T < momy2rt/e tributipn to the complexity from the two types. .

Using [3], for large enough we can choose a primg
in the interval

and thus

i=2rt/e

< 22mn72r

— n72r+2m/logn. n 1/(rt) n 1/(7"t)+ n B/(rt)
r "\r r

For anyn=©(") < § < 1, this is less thadn " if

_ _ for any constan{3 > .525. This follows if we assume
2r+2m/logn < —r +log 9/ logn, max(r'te t) < n!/t for some constant > 0. Indeed,
or equivalently,logn > 2m + log1/5. By assumption, this impliesn/r = n®) andt = O(logn/loglogn), so
this holds for sufficiently large: becausen = O(rt) and (") > (n/7)1/%, and the latter tends teo. We will
§ > n~9") whilet = O(logn/loglogn) sincet < n'/t. showk = O(mtq"). Note that
Then the probability there exists aR for which more

than 2rt/e elements ofS are not good forR is less than . n\ Yt
Sy (F)on~" < n=00), n Omtq’) =0 (mt(")
Using the sef as the vertex set of an expander as in section (1-p)/t

2.1, we conclude, forr < (7) :

i r< (M < r i <
Theorem 9 Leta > —L_- ande > 0 be any constants, Since(n/r)" < (’”) < (ne/r)", there is a constart <

and assume 1-.525 ¢ < e, with (") = (nc/r)". We represenin] by points in
max(r®, r2t) < n(1=9/1, [/} x Fe-

There is an efficient algorithm that with probability — This allows elements to have distinct representations. For

n~=9(") generates arin, O(rtn"/*), r, t)-exclusive set sys- the moment, assume ou.r.revokedB.eis such that_ no two

tem. Broadcasting can be doneginly(r, ¢, log n) time. members ofR share theirith cooordinate for any > 1.

Sets of the first type contain those pointsvhose first two
Remark 10 We do not know how to derandomize the coordinates do not agree with those of any elemeng of
choice of S, and consider it an interesting research di- By the distinctness assumption, the number of such sets is
rection. For our construction, the derandomization comes

down to the following: find a se§ of O(rt) points of F a 1\ (q
such that any polynomial of the forf, _;(q; — ¢;) does Z([r/d) ;) =W/l (),
not vanish on a constant fraction 8f whereq, . .., ¢, are =0

arbitrary degred# — 1) polynomials inF[X]. since the fact that < (n)(l—ﬁ)/t implies thatr = O(/)

so that the binomial sum is dominated by the last term. Sets
of the second type have the forfitX;) — X1, wheref

has degree less thanand2 < i < ¢. Sincei > 2, these

) _ ) Wt polynomials do not involve the first coordinate. The number
O(rtn™/*). In this section we achieve = O(rt(7)""").  of sets of this type i§t — 1)¢”. To show that = O(tq"),

To illustrate the technique, we first apply it to the scheme
of theorem 4. There are two types of sets, those of the form  *To see this, for any constant (7)) /(. 7_,) = ©(y/p), so that

H;':l(LBXO —ij) for’ < randdistinctis, ..., ir € F, S0 (0) = (P + X0 () = o)

2.3. Balancing the key complexity

We have shown how to achieve complexity =




we bound the sets of the first type. Up to a constant factor,the proof of lemma 8, it is not hard to show that the proba-

this number is, bility v that somes € S is not good forR can be bounded
above byg—¢. By our assumption that!*c < n!/* we
[CT (q> [qr (E)T haven/r = n*(1) so thaty—¢ = n~*(/) and the proof of
c r c r lemma 8 goes through (with larger constants).
r qcN\"
< ((E+1) 7) Theorem 13 Leta > ﬁ+%,ﬁ > .525, ande > 0 be

any constants, and assume that we have

C T
< (1+5) ¢ eq =00,
) ! @) max(r®, r2 =9/t < p=a/t,
where we used the constrair{ts) = (nc/r)" andg < nto

Then there is an efficient algorithm that with probability
deduce that?) < (qc/r)".

1-n~9("), generates afn, O(rt(7) 1/t), r,t)-exclusive set
Theorem 11 Leta > 25 + § and3 > .525 be any con-  System. Broadcasting takes timely (r, ¢,logn).
stants, and assume
3. The General System
Inax(r",r2+1/tt2) = O(nl/t).
We reduce the case of arbitranyr, t to the schemes of
o 1/1 i section 2. We construct many small exclusive set systems

(n,O((rt)*(7) "), r.t)-exclusive set system.  Further, on gifferent subsets o] and take their union to obtain
broadcasting can be done joly(r, ¢, log n) time. the final explicit exclusive set system. Each of the small
systems will be constructed with parameteysr;, ¢; satis-
fying the requirements of the schemes in section 2.

The size of our final system will bgoly(r,t)n"/?,
matching the lower bound up to thely(r,t) factor and
the optimizations in section 2.3. At the end of the section

i L/t
If points in R share theitith coordinate for some > 1, we show how to replace the /* term with (7)) " when
we simply proceed as in lemma 3, ignoring the first coordi- 7 = O(t), and sketch how to improve thely (r, ¢) factor.

nate. However, now we need the stronger assumption that /e may assume thak| = r because for eadh< i <r
22 < g, we can construct an exclusive set system for th@seith

All that is left to show is that our three assumptions in |1t = % @nd then take their union. The complexity is largest
the discussion above when|R| = r, so the union will be at most-1 times larger.
Define,

Then for sufficiently largen, there is an explicit

Proof: If the revoked seR is such that no two members
share theirith coordinate for any > 1, then if a point

x doesn't appear in the broadcast its first two coordinates
must agree with those of some € R. It follows from
distinctness and our construction that v.

1. I+e 4) < 1/t,
max(r*,t) < n d = ©(logn/logr?), and letg = ©(r*d) be prime.

ny(1=5)/t
2.1 < (r) ' Then for an appropriate choice of constants.

3. %2 <q ° qd+1 > n, and
follow from max(r®,7**1/%*) = O(n'/*). The deriva- o for any r degreed polynomials inF,[X] there is a
tions are straightforward and are omitted. | point inF, on which the polynomials all differ.

To apply the technique to the construction of theorem 7, we We construcy different coordinate systems. For each sys-
proceed as before, ignoring the first coordinate. The only tem we treat the set] as a collection of distinct univariate
assumption in the proof of theorem 11 that changes is thePolynomials and represent them by their evaluation e

third one, which is now?t = O(q). One can now show, points inF,. To identify the coordinate system, we choose
the evaluation on the field elemento be the first coordi-

Theorem 12 Leta > =5 + ; and3 > .525 be any con-  nate of members in thith system, and when broadcasting
stants, and assumeax(r®, r>+1/t) = O(n'/*). For suf- to a setin] \ R, we use a system for which the polynomials

ficiently largen, there is an explici(n, O(r%(f)l/t, r,t)- R all differ on their first coordinate.

exclusive set system. Further, broadcasting can be done in Each of theg coordinate systems will correspond to a
poly(r, ¢, log n) time. set system which is the union gf exclusiveset systems.

When broadcasting to a s&t we choose a coordinate sys-
To adapt theorem 9, we just need to change the third astem for which each element dt has a different first coor-
sumption tor?t = O(q'~¢) for somee > 0. Indeed, asin  dinate inF,. For each coordinate system, for each interval



[i, j] with ¢ < j € F,, we restrict to points whose first co- have(p,7) = (r,t). Otherwise, consider the last time for
ordinate lies infi, j]. Let p, 7 be integer parameters to be which p*r > n'/(?7), Supposer = |t/i], and letr’ =
determined. The idea is to partition the lifie ¢ into in- [t/(i + 1)| be the value ofr in the next iteration. Note
tervals each containing € {p — 1, p} elements ofR and thatr, 7 > 1. Thent'/7 = |t/(i + 1)]/|t/i]. Suppose
consumingt; € {7,7 + 1} encryptions in the broadcast. |t/(i+1)| =c. Then
For an appropriate choice pfandr, this allows us to use
the exclusive set systems of section 2 independently on each t<(c+1)(i+1) -1,
interval.
— Lo so that
The number of points in a given interval may be as small

asp — 1, but is certainly less than. We make the simplify- . i+1 1 .
ing assumption that it is exactly by artificially increasing [t/ < | E (c+1)~ {J = le+1+c/i).
the universe size. When we take the union over all of these

set systems, we delete these extra points. Thus,

Since the numbers of sets for a given intervalas the
formpoly(r;, t;)n"/% for r; € {p—1,p} andt; € {7,7+
1}, we V\gill chooser; /t; ~ r/t. Ifitis alregdy the case that sincec, i > 1 are integers. We also claim that> p/4. In-
rit < n2, we may use the scheme of either theorem 12 or geed, if < 4, this follows from the fact that' is a positive
theorem 13. Otherwise, if possible, we will chogsandr integer. On the other hand, if for > 4 we hady’ < p/4,

/Tt >c/(c+1+c¢/i)>1/1+1/c+1/i) >1/2,

to satisfy then
P _p/A _p/2 _p—1 _r
Q(ni) < ptr < 0, 1) N
subject to the constraint cont.r.adlctmg constraint 2, which holds because of step
3(b)ii. Thus,
p—1 _r _p
< - < = (2) . prr n&= §
T t T (p/) 7_12 T > m:Q(nF),
The idea is that when bounding the total number of sets, this
will help us pull out an extra factor of'/™ down into the which shows that constraint 1 holds. [ |

poly(r,t) factor. Note that due to integrality constraints our ) o )
bound may be of the formoly(r, t)n"/t+1/7 and thus we e can now, for instance, apply the explicit construction of
will needn!/ to be polynomial in- andt. We now give an ~ theorem 12.

efficient algorithmGenerate for doing this. The basic idea
behindGenerate is to keep decreasing and p until they
satisfy constraints 1 and 2, noting that@andr decrease
together, it is more likely that constraint 1 holds. (n, poly(r, t)n"/t r t)

Theorem 15 Letn, r, t be positive integers and suppose
is sufficiently large. There is an explicit

Generate(r, t): -exclusive set system. Broadcasting can be done in

1. Setinteger variablgs= r andt = t. poly(r;t, logn) time.

2.4=2. Proof:  To broadcast with a revoked s&; we first find
3. Whiler > 1, a coordinate system for which the polynomi&sall differ
. _ on their first coordinate. Then, we r@enerate to obtain
(@) If p'r < n27, then exit. pandr. If (p,7) = (rt), then we run the protocol of
(o) Else, theorem 12, which gives the desired complexity.

Otherwise, we arbitrarily partition the line, ¢ into in-
tervals such that each interval contajns- 1 or p revoked

i = [t/i].

1. Choosep 5o that’=* < § < 2. points. We also arbitrarily allocate eitheror 7 + 1 en-
i, i =1+ 1. cryptions in the broadcast to each interval, subject to the
constraint that their sum is
Lemma 14 If Generate outputs(p, 7) # (r,¢) andr # 1, Finally, for eac;h inte.rval, we use the exclusivg set system
thenp, 7 satisfy constraints 1 and 2. of theorem 12 with points,p — 1 or p revoked points, and

broadcast size or 7 + 1. Since the intervals for a given
Proof: Supposer # 1. Then in some iteration we have coordinate system concern disjoint points, the correctness
p*r < n'/7)_If this occurs in the first iteration, then we  of this scheme follows from that of the exclusive set system



of theorem 12. Moreover, singe < r» andr < t, itis
easy to see that broadcasting can be dopeln(r, ¢, logn)

that similar techniques can be used to achieve an exclusive
set system witlpoly (r, t) (:f)l/t sets even when = w(t),

time given that the schemes used in each interval have thighough we have not worked out the details.

property.
It remains to derive the size of our set system. There
are ¢ coordinate systems. For each system, theregare

intervals. Each interval corresponds to an exclusive set sys-

tem generated by theorem 12 arpoints with the number
of revoked points; € {p — 1, p} and the broadcast size
t; € {r, 7+ 1}. To analyze the number of sets per interval,
we divide the output ofSenerate into two cases (recall
that at this point we need only consider, 7) # (r, t)).

Case 1: 7 # 1.
interval is at most

In this case the number of sets per

nrilti poly(r, t)np/T

poly(r, t)yn"/",

poly (7, t;) <

<
poly(r, t)n"/tnt/T <

where the second inequality follows by constraint 2 and the
third by constraint 1.

Case 2: 7 1. Then by the analysis in lemma 14,
we havep® = Q(n'/*). We have the same sequence
of inequalities as in case 1, where the second inequality
follows by constraint 2, but now the third inequality follows
from the fact that > r; = n®*(1), so thatpoly(r) = n'/".

Thus, we haveg®poly(r, t)n"/t = poly(r,t)n"/* sets. M

Corollary 16 Letn,r,t be positive integers with = O(t)
andn sufficiently large. There is an explicit

o\ U
(n, poly(r, t)( ) )
T

-exclusive system witboly(r, ¢, log n) broadcasting time.

Proof: Because we have= O(t),

o\ N
) rr/t( ) Spoly(r)< ) :
T T

and thus the system above hasy (r,¢) (") 1

n

r

r/t
<

nr/t — ,r,r/t (

t
sets. |

We defer a formal analysis which reduces the degree of the

poly(r,t) factor to the full version of this paper. The idea
there is to use randomness to spreadrthgoints evenly
across the lin€l, ¢] so that when broadcasting each interval
in the partition of[1,¢] has roughly the same number of
points. Although we use randomness, this randomness will

preserve efficient broadcast and description size. We alsoj15)

modify constraint 1, basing it on theorem 13 instead of
theorem 12, leading to slightly better bounds. We suspect

Open Questions: Can one achievepoly(r,t) (’;)l/t
family size when = w(t) (versus oupoly(r, t)n"/*)? For
smallr andt, is ourO(rt(’;)l/t) bound on the family size

tight? The known lower bound '@(t(’:)l/t). How small
can thepoly(r, t) factor be for generat, r, andt?
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A. A lower bound on the keys per user

Theorem 12 of [13] gives a lower bound on the number

of keys per user for the broadcast encryption schemes Wel)
consider. It is also a lower bound on the number of sets in

an(n, k,r, t)-exclusive set system that some integerust
occur in, and we restate their theorem in this language.

Theorem 17 ([13], restated) In any(n, k, r, t)-exclusive
set system, there is an integemwhich occurs in at least

((")l/t —1)/(rt) sets.

T

Whereas [13] use the Sunflower lemma [8] to prove their
bound, we use the following relaxation of a sunflower to a
flower, and a corresponding lemma.

Definition 18 A set systenf = {F},..., Fy} is a flower
with coreY andk petals if there is no set of size less than
which intersects every element in the fardily = {F Y |
FeF,YCF}.

Note that both the sé&t and the intersecting set are allowed
to be arbitrary. We use lemma ?7.8f [8], which was first
discovered in [7]:

Lemma 19 LetD be a family of sets, each of cardinality at
mosts. If |D| > (k — 1), thenD contains a flower wittk
petals.

Theorem 20 In any (n, k, r, t)-exclusive set system, there
is an integeri which occurs in at Ieas(t(’j)l/t —1)/r sets.

Proof: LetC be an(n, k, r, t)-exclusive set system. Define
the collectiorC’ as follows. For each sét] \ R with |R| =

r, find a setl” of at mostt sets inC whose union equals
[n]\ R. AddT toC’. It follows thatC’ is a collection of size

™M > (") Y _1)t, each of whose elements is a set of size
at mostt.

It follows thatC’ contains a flowerF with some cor&”
and (:})1 " petals. Fix some st € . Then the union of
sets inF' is [n] \ R for some sef? of sizer. We claim that
for any F’ # F with F/ € F, F/ — Y contains some set
S which intersectsk. Indeed, the union of elements in
F' equalsn] \ R’ for someR’ # R with |R'| = |R|, SOF’
contains a sebr that contains at least one elementRf
and this set cannot occur I sinceY is a subset of” and
the union of sets irF’ does not intersedk.

Now suppose the number of set€liimtersectingk were

less thar‘(:)l/t — 1. Then, taking all of these sets together

3We note that it is easy to modify the proof to handle families of sets
each of cardinalityat mosts, even though the original lemma is stated for
sets of size exactly.

with any element of'—Y gives a set of less thff) Yt sets
whichintersectd™”’ —Y for everyF” € F. This contradicts

the fact thatF is a flower with coreY” and (f)l/ k petals.
Hence, there are at least) '/t _1 sets inC which intersect

R. It follows that some element iR occurs in((ﬁ)l/t -
/r sets. This concludes the proof.

B. Intuition for the scheme in section 2

Here we give some intuition for the basic scheme of
section 2. Suppose that'/! is an integer (so in partic-
ular, this intuition only works fort O(logn)), and
that we only consider set® of size exactlyr, for some
r = o(n'/*). Then we can associafe] with points in
[n'/t]*. Suppose, for the moment, we are given a Ret
such that for every coordinate the points inR have dis-
tinct ith coordinates. Then the following construction has

sizeO(t("lr/t)n’“/t), which for smallr, ¢, is off by about a

factor of (”1/1') ~ (’T‘)m from that in section 2.

For every choice of distinct 1st coordinates, we form a
set which includes all points except those which have one of
thq:spr distinct 1st coordinates. The number of these sets is
(",). Next, for each coordinate1 < i < ¢, we form a set
by choosing- pairs ofith and(i + 1)st coordinategc;, d; ),
where thec; are all distinct and thé; are all distinct. We
exclude exactly those points which haifle coordinate and
(+1)st coordinate equal to sonfe;, d;) pair. The number
of these sets i(s”;/t)nl/t(nl/t —1)---(n'*—(r—1)). So
in total, the family size i) (tn"/t(")")).

Then it is easy to find sets to exclude a given sé&t
with distinct values for every coordinateand these sets
are unigue. Conversely, a simple induction shows that any
other point is included in one of thesesets.

The main idea of the first scheme in section 2 is to get
around this roughly quadratic blowup in size by using poly-
nomials. The source of the blowup is that we choosal-
ues for coordinaté, and map them te values for coordi-
nate:+1, while all other values for thih and(i+1)st coor-
dinates ara@inconstrainedIn the polynomial approach, we
also choose values for coordinatéand map them to val-
ues for coordinat¢; + 1), butone polynomial can be used
to implement many of these “sets of pairs” constraints at
once. This is because the polynomial simultaneously con-

strains the other coordinates. Thus, we still héﬁ/;ét) sets
for the 1st coordinate, but to implement constraints between
coordinate and coordinaté+ 1, we only have roughly.”/*
sets, corresponding to the number of degreel polyno-
mials over a field of size roughly!/*.

We then proceed as in section 2 to handle the case when
points inR agree on theifth coordinates for certaine [t].



