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ABSTRACT

A compressive sampling algorithm recovers approxi-
mately a nearly sparse vector x from a much smaller
“sketch” given by the matrix vector product ®x. Dif-
ferent settings in the literature make different assump-
tions to meet strong requirements on the accuracy of
the recovered signal. Some are robust to noise (that
is, the signal may be far from sparse), but the matrix
® is only guaranteed to work on a single fixed x with
high probability—it may not be re-used arbitrarily many
times. Others require ® to work on all = simultaneously,
but are much less resilient to noise.

In this note, we examine the case of compressive
sampling of a RADAR signal. Through a combination
of mathematical theory and assumptions appropriate to
our scenario, we show how a single matrix ® can be used
repeatedly on multiple input vectors z, and still give the
best possible resilience to noise.

Index Terms— Privacy preserving, compressive
sampling, Forall/Foreach

1. INTRODUCTION

The goal of compressive sampling is to design an m x N
matrix ® (or distribution on matrices) with m << N so
that one can efficiently recover a nearly k-sparse vector
x € RY from the much smaller “sketch” &z of z. The
strongest guarantee is that the recovered vector T satisfy

17 = zlla < (1 + €)|lzx — 22, (D
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where x; is the largest k terms of z (in magnitude).
Equation (1) is not always achievable with nontrivial m,
and a variety of assumptions have been made to obtain
it. We give two extremal examples. Fix a length N, a
sparsity level k, and a distortion parameter e.

Definition 1 (Forall/Malicious) A compressive sam-
pling algorithm in the Forall model consists of a matrix
® a recovery algorithm R, and a constant C' such that,
for any x with

ok = 2lli < CVE|ar = 22, 2)
the recovered vector T = R(®x) satisfies Equation (1).

Algorithms in the Forall model were given by
Donoho and by Candes, Romberg, Tao [1, 2] (among
many others) with an optimal number of rows and re-
covery time polynomial in NV, and by Gilbert, Strauss,
Tropp, and Vershynin [3] with a slightly suboptimal
number of rows but sublinear recovery time.

Definition 2 (Foreach/Oblivious) A compressive sam-
pling algorithm in the Foreach model consists of a dis-
tribution Dy on matrices ® and a recovery algorithm
‘R, such that, for any x, with high probability over & ~
D, the recovered vector © = R(P, ®x) satisfies Equa-
tion (1).

There are many algorithms in the Foreach setting, in-
cluding the algorithm of Hassanieh, et al. [4] which sam-
ples a slightly suboptimal number of positions of a spec-
trally sparse signal, and, in nearly optimal time, returns
a strong approximation of the spectrum. This algorithm



is a direct descendant of that of Mansour [5], which we
will use as a representative algorithm in our result.

Both of these models make assumptions. The Forall
model imposes a geometric condition on the tail of z,
x, — . In the Foreach model, we assume that z is gen-
erated obliviously of ®, and ® cannot be “re-used” on a
different . Such assumptions are necessary. If the tail is
allowed to be larger and ® must work on all vectors si-
multaneously, then the number of measurements m must
be Q(N) [6], i.e., there is no non-trivial scheme.

1.1. Noise resilience

The Foreach model is much more resilient to noise than
the Forall model. With no restrictions on the tail, the
Forall model guarantees only

R(®2) — zfls < 3)

€
7 ok — 1,
which is generally much weaker than Equation (1) and
corresponds to much less resilience to noise.

As an example, suppose k < N and the largest £ el-
ements of z (the head) each have magnitude 1/k and the
other N — k =~ N elements of x (the tail) have the same
magnitude, a noise floor a, to be determined. The Forall
guarantee (3) becomes vacuous (i.e., zero is an accept-
able approximation to z) when a > 1/N. By contrast,
the Foreach guarantee (1) becomes vacuous only when

a>1/vEN > 1/N.

1.2. Models of adversarial interaction

On the other hand, the Forall model assumes less about
the interaction between parties that are constructing ®
and z. In the Forall model, a challenger Charlie presents
a matrix ®. An adversary Mallory may look at ® and
take unbounded time in constructing an input x satisfy-
ing Equation (2), and the recovery algorithm must still
succeed. By contrast, in the Foreach model, Mallory is
only allowed to see the distribution Dy (e.g., the word
“Gaussian”), not the outcome P itself, when construct-
ing x. In general, if Mallory sees @, she can find = (not
satisfying Equation (2)) that breaks the algorithm unless
the number of rows is nearly /N. For example, Mallory
may try to find an z whose tail transpose lies too close
to many rows of ®—in this case, ® would blow up the
noise, which may be problematic for a recovery algo-
rithm.

Thus there are two ways in the current literature to
ensure that Mallory does not find a signal x that defeats
Charlie—ensure that Mallory does not see ®, so that =
cannot exploit weaknesses in @ at all, or require that the
tail of x be very small so that these weaknesses do not
exist. However, there is a middle ground, if Mallory has
partial information about ®. There is more than one way
for Mallory to get such information. In particular, after
Charlie recovers an approximation = of x, Charlie may
act on that information. In some situations, Charlie’s ac-
tion a can be observed by Mallory. In that way, Mallory
gets a limited view of ®, since a depends on = which
depends on ®, even conditioned on x. By analogy with
differential power attacks and differential timing attacks
in cryptography! , Mallory can use this information to
recover ® and/or to construct a new z’ that breaks the
algorithm; i.e., ' is not recovered properly.

Consider a missile launched by Mallory at a target
controlled by Charlie. The missile illuminates the tar-
get with RADAR. The target detects the RADAR using
a compressive sampling algorithm with matrix ¢ and
takes appropriate defensive action, neutralizing the mis-
sile. The action is observed by the enemy, who sends
a new missile with a new RADAR signal. The goal
is to guarantee that the defensive player can reuse the
same ® and get the good noise resilience guarantee of
Equation (1), even though the assumptions of the Fore-
ach case no longer hold. We assume that the RADAR
signal is a signal with sparse Fourier transform plus tail
noise, appropriate for compressive sampling to detect. 2

In this note, we give a formal definition for the pri-
vate model of compressive sampling and we present the
formal analysis of an algorithm (and assumptions) that
support reusing a single random ® with good noise re-
silience. While we do not address the efficiency of such
algorithms directly in this note, we are motivated by the
need for efficient algorithms and our comments apply to
algorithms with runtimes polynomial in k log IV, as well
as those algorithms that require time polynomial in V.

'In differential power or timing attacks, an adversary without a
secret key observes the amount of time or electrical power used by
a challenger in possession of the secret key to decrypt a secret mes-
sage. Unless obfuscatory steps are taken, processing a 0 in a secret
key can take less time or power than processing a 1. The adversary
thereby gets some information about the secret key.

“Many of our comments below also hold when there is measure-
ment noise, i.e., the compressive receiver sees = + v rather than
dz.



2. PRIVATE COMPRESSIVE SAMPLING

In this section, we give a formal definition of a private
compressive sampling scheme. We also illustrate how
existing schemes fail to retain private information (or
leak information) so that a malicious adversary Mal-
lory could learn enough information about the scheme
through a sequence signals (¥ to foil the algorithm.

Definition 3 (Private) A compressive sampling algo-
rithm in the private model consists of a distribution Dg
on matrices ® and a (possibly randomized) recovery
algorithm R with state S (e.g., the seed to generate ®),
such that, for any sequence =9 in which V) may de-
pend on the recoveries R (@x(<i), S), with high proba-
bility over ® ~ Dg and the coins of R, we have

IR@2, 8) — 2@y < (14 €)[|z — 2@]5.

This definition is an extension of definitions in [7]
and [8] to the dynamic setting, in which multiple queries
are made based on previous responses.

The following two examples that illustrate how com-
ponents of existing compressive sampling schemes are
not private: (1) estimation of the Fourier coefficient
Z(w) and (2) estimation of the power ||z||3. Charlie,
the challenger, generates a single random vector r from
a distribution D and then, upon receipt of a signal x
designed by Mallory, he estimates

B(w) = (™ r)(r,z) and ||z]* = [(z,r)(r, )],

Mallory knows the distribution but not the specific vec-
tor r, and she sees Charlie’s estimates. Mallory will
generate a sequence of signals z() that are designed
to leak information about the random vector r. Armed
with enough information about r, she can generate a sig-
nal 2’ that Charlie will not be able to recover from a
compressive sampling scheme. For example, Mallory
sets (") = §;, the i canonical basis vector and learns
r; = (r,z) in the first (Fourier coefficient) estimate.
For the second (power) estimate, she sets zB) = §,,
2B = 5, + 5,1, and 22 = §; — §;,| and learns
r; from an algebraic manipulation of the measurements.

Note, however, that although (r, ) can leak infor-
mation about r, if Charlie uses (r, z) only in (y, 7)(r, =),
then an overall sign or phase for the vector r disappears
from the final result. Thus the overall result may be pri-
vate even if intermediate results are leaky, but additional
argument is needed.

3. MAIN RESULT

We assume that, through low-level hardware or oth-
erwise, the receiver Charlie can approximate the total
power ||z]|3 in a way that depends only on x. That
is, the receiver outputs a random variable X such that
X = (1 £ ¢€)||z||3 and that X comes from a distribu-
tion that is (computationally indistinguishable from a
distribution) parametrized by x. We say that the power
has been estimated privately. We also assume that Char-
lie can approximate specific Fourier coefficients of x
quickly and privately; i.e., in a way that depends only on
x. We suppose that this can be done using a hardware
matched filter.

Our goal is a private compressive sampling algo-
rithm with a small number of rows, makes a small num-
ber of private Fourier coefficient estimates, runs in sub-
linear time, and returns a result satisfying Equation (1).
We use the following result, which follows from [5].

Theorem 4 Fix k, N as above and fix T = c/k for some
constant c. There is a distribution Dg on matrices ® and
an intermediate algorithm S returning S = S(®, dx),
that runs in time k logo(l) N such that, for any x, with
high probability over ® ~ Dg, we have, if a,, is the w’th
Fourier coefficient of z,

o If|ay|? > 7||z||3 thenw € S;.
o [Sr[=0(1/7).
This gives a private compressive sampling scheme [7]:

Theorem 5 Under the assumptions above, there is a
compressive sampling algorithm in the private model.

Proof. The idea is as follows. In the 7’th iteration, write
x instead of z(?) for simplicity.

1. By assumption, estimate the power P = ||z||3 pri-
vately, as P.

2. Use a compressive sampling algorithm such as [5]
to generate a candidate set S of frequencies that
contains the frequencies with large amplitudes.

3. By assumption, privately estimate the amplitudes
of the frequencies in S.

4. Compare each such amplitude squared ]af with
P/k and keep only the terms with |a|> > P/k.



The correctness and efficiency of each step above fol-
lows either by assumption or from [5]. We now analyze
the privacy. The algorithm [5] can produce a set S con-
taining all terms with amplitude at least 7 (the 7-heavy
terms) and none with amplitude less than 7/2 (the 7/2-
light terms), with appropriate cost provided 72 ~ 1/k.
The trouble is that terms with amplitude in the range
[7/2, 7] may or may not be in S, and their presence or
absence leaks information to Mallory.

In the above algorithm, we can set 7 = \/]5/ k.
Then the algorithm of [5] will return all terms with am-

plitude magnitude at least \/]5 /k. We then privately
compute the amplitudes of these terms.

Mallory will see an action based on z. We assume
Mallory sees all of . To show that Mallory learns
nothing about ®, we now claim that Mallory effectively
knew Z in distribution already, without access to .
(This is known as a simulation proof in cryptography.)

Mallory knows x, so she can compute ||z|3 and
learn P. She also knows all the amplitudes in x, so she
can replicate Charlie’s exact computation of amplitudes.

Any term Charlie compares with \/]5 /k will be com-
pared in the same way by Mallory, independent of .
If Charlie were to test all N terms with his hardware
system alone, Mallory would not learn anything about
®. (Indeed, ¢ would not even be used.)

But Charlie will use ® to cut down the list of can-
didates to .S, and the set S; depends on ® in a non-
private way. Since S; is guaranteed to contain all large
terms and the comparison with \/P/k will be correct
on all terms in S, Mallory ends up with the same set of
frequencies and amplitudes as Charlie. |

Note that Charlie is deliberately discarding useful
information about z(!), namely, fairly reliable recovery
of the medium-sized terms. This is the right approach,
intuitively, because Charlie’s acting on this information
about (1) gives information to Mallory.

4. CONCLUSION

In this note, we have defined a private model for com-
pressive sampling, which allows for the best of both
worlds. In the private model, the matrix & may be re-
used on an arbitrary number of input vectors x, and yet
the guarantee of Equation (1) still applies. We present
an efficient recovery algorithm for private compressive

sampling. There’s no free lunch, and we must make
assumptions as well, but we hope that these assump-
tions are reasonable (more reasonable than those in the
Forall/Foreach models) in many practical situations, as
illustrated by our RADAR example.
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