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ABSTRACT

We present a novel definition of privacy in the framework dfiloé (retroac-
tive) database query auditing. Given information aboutdi®base, a de-
scription of sensitive data, and assumptions about users’ fnowledge,
our goal is to determine if answering a past user’s queryccbalve led
to a privacy breach. According to our definition, an auditedpprty A
is private, given the disclosure of proper®y, if no user can gain confi-
dence inA by learning B, subject to prior knowledge constraints. Privacy
is not violated if the disclosure dB causes a loss of confidence4n The
new notion of privacy is formalized using the well-known sertics for
reasoning about knowledge, where logical properties spmed to sets of
possible worlds (databases) that satisfy these propeBisbase users are
modelled as either possibilistic agents whose knowledgeséet of possible
worlds, or as probabilistic agents whose knowledge is agiitity distri-
bution on possible worlds.

We analyze the new privacy notion, show its relationshighwlite con-
ventional approach, and derive criteria that allow the mudo test privacy
efficiently in some important cases. In particular, we prokaracteriza-
tion theorems for the possibilistic case, and study in démtprobabilistic
case under the assumption that all database records aidareasa-priori
independent by the user, as well as under more relaxed (enghsrior-
knowledge assumptions. In the probabilistic case we shaivftn certain
families of distributions there is no efficient algorithmtést whether an au-
dited propertyA is private given the disclosure of a propefy assuming
P # NP. Nevertheless, for many interesting families, such as dne- f
ily of product distributions, we obtain algorithms that aféicient both in
theory and in practice.

Categories and Subject Descriptors:H.2.7 [Database Manage-
ment] : Database Administration; F.2.1 [Analysis of Alghms
and Problem Complexity] : Numerical Algorithms and Probdem
General Terms: Algorithms, Security, Theory

Keywords: privacy, disclosure, auditing, query logs, reasoning
about knowledge, supermodularity, Positivstellensatz

1. INTRODUCTION

has many definitions and interpretations, some focusedemreh
ical soundness, others on practical usefulness. This Eédfgenpts
to reduce the gap between these two aspects by exploring more
flexible yet sound definitions.

One typical privacy enforcement problem, caltpeery auditing
is to determine if answering a user’s database query coatlitea
privacy breach. To state the problem more accurately, wenass
that the auditor is given:

e The database at the time of the user’s query, or some patrtial
knowledge about that database;

e A description of information considered sensitive, often
called theprivacy policyor theaudit query

e Assumptions about the user’s prior knowledge of the
database, of the audit quefyrivacy policy, and of the audi-
tor’s privacy enforcement strategy if it exists;

e The user’s query, or a range of queries.

The auditor wants to check whether answering a given quarigco
augment the user’s knowledge about some sensitive datapthe
violating the privacy of that data. This problem has two agtens:
proactive privacy enforcement (also callezhline auditing[18]),
andretroactiveor offlineauditing.

In the proactive (online) privacy enforcement scenari@rsiss-
sue a stream of queries, and the database system deciddsemwhet
to answer or to deny each query. The denial, when it occurs, is
also an “answer” to some (implicit) query that depends oratle
ditor’s privacy enforcement strategy, and therefore it esglose
sensitive data. The strategy has to be chosen in advanaaebef
the user’s queries become available. A strategy that potwé
vacy for a specified range of queries represents a solutiohizo
auditing problem. An in-depth discussion of online augjtaan be

Today, privacy protection has become a popular and even fash found in [18, 23] and papers referenced therein.

ionable area of database research. This situation is, o§epguite
natural, given the importance of privacy in our social lifedahe
risks we face in the digital world. These risks were hightiegh
by numerous recent reports of personal data theft and misapp
priation, prompting many countries to enact data proteckiovs.
However, the current state of scientific knowledge stillsinet al-
low the implementation of a comprehensive privacy solutioat
guarantees provable protection. In fact, the notion ofgmitself
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In the retroactive (offline) scenario, the users issue tinadries
and receive the answers; later, an auditor checks if a priviata-
tion might have occurred. The audit results are not madédadlai
to the users, so the auditor’s behavior no longer factocsthé dis-
closure of data, and this considerably simplifies the probl&his
also allows for more flexibility in defining sensitive infoation:
while in the proactive case the privacy policy is typicallyefil and
open to the users, in the retroactive case the audit quely sy
be sensitive, e. g. based on an actual or suspected priveagtbfl,
22]. Retroactive auditing is the application that motigatieis pa-
per, although our framework turns out to be fairly general.

To further illustrate the above, suppose Alice asks Bob fsr h
HIV status. Assume that Bob never lies and considers “HIV-
positive” to be sensitive information, while “HIV-negagiis for
him OK to disclose. Bob is HIV-negative at the moment; can he
adopt the proactive strategy of answering “I am HIV-negdtias
long as it is true? Unfortunately, this is not a safe stratbggause
if he does become HIV-positive in the future, he will have eng



further inquiries, and Alice will infer that he contracted\HThe
safest bet for Bob is to always refuse an anster.

For the retroactive scenario, suppose that Bob contracte¥d H
in 2006. Alice, Cindy and Mallory legitimately gained acsds
Bob’s health records and learned his HIV status, but Alicd an
Cindy did it in 2005 and Mallory did in 2007. Bob discoversttha
his disease is known to the drug advertisers, and he irstateau-
dit, specifying “HIV-positive” as the audit query. The atglill
place the suspicion on Mallory, but not on Alice and Cindy.

In legal practice, retroactive law enforcement has showbeto
better suited to the complex needs of our society, althougiqgbive
measures are used too, especially in simple or criticahdns.
For example, a valuable item can be protected from theft bl lo
and key (a proactive measure) or by the fear of being caught an
jailed (a retroactive measure). If it is simple to fence bff item
and distribute the keys to all authorized users, or if theiteas
extraordinary value, then proactive defense is the besbrgpbut
in less clear-cut cases this would be too cumbersome orsiagu
After all, even an authorized user might steal or lose tha,i@nd
even a stranger sometimes should be able to gain accesgg.it,
in an emergency. Healthcare [2] is one area where the coiplex
of data management is just too high to hope for a fully preacti
solution to privacy. The importance of offline disclosureiging in
healthcare has been recognized by the U.S. Presidentisrafimn
Technology Advisory Committee [26], which recommended tha
healthcare information systems have the capability totaviah has
accessed patient records. We believe in coexistence aruttamge
of both auditing approaches.

1.1 Privacy Definitions in Query Auditing

The art of encryption and cryptanalysis goes back to artigui
but the scientific maturity of privacy theory was made pdssiinly
in modern times by mathematical modeling of the eavesdmgppe

knowledge. One of the first such models was proposed in 1949 pr

by Claude Shannon [29], who introduced the notiompeffect se-

crecy. Shannon suggested to represent the adversarial knowledg

by a probability distribution over possible private datéues: prior
distribution before the cryptogram is revealed, and pastetis-
tribution after the adversary sees the cryptogram (buthmkey).
Perfect secrecy corresponds to the situation where thenmsdis-
tribution is identical to the prior, for every possible ctggram.
This general idea has been later adapted and extended topmany
vacy frameworks and problems, including query auditing.

Denote by the set of all possible databases, and4gnd B
two properties of these databases; each databasé either has
or does not have each property. Assume that the actual databa
satisfies bothA and B. Suppose that property is sensitive, and
property B is what user Alice has learned by receiving the answer
to her query. Was the privacy of violated by the disclosure d3?
This depends on what Alice knew before learniBigfor example,
if she knew ‘B = A” (but did not know A), then B of course
revealedA to her. Miklau and Suciu [21] applied Shannon’s model
to this problem and declaredi to be private giverB if and only if

@)

for all probability distributionsP over 2 that might describe Al-
ice’s prior knowledge about the database. Unfortunatehg icon-

straints are placed off, no pair (A, B) of non-trivial properties
will satisfy this privacy definition. Miklau and Suciu codsired a
quite limiting, yet popular, constraint: that Alice treaitdatabase
recordsr € w independently, i. eP is a product distribution:

P(w) = [l e, Plrl x Tlg, (1= P[])

Lif Alice pays Bob for answers, he can balance privacy andtgfiossing
a coin and answering “l am HIV-negative” only if the coin falieads.

P[A|B] = P[A]

Under this constraint, they prove that propenyis private given
the disclosure ofB if and only if they share neritical records
(Theorem 3.5 in [21]). A database record, real or imaginary,
called “critical” for A (for B) if its presence or absence in some
database may decide the truth valueAofor B). One can see that,
even with prior knowledge restricted to product distribas, very
few practical queries would get privacy clearance: usuakycan
find an imaginary record and a pair of imaginary databasgdpr
A andwp for B, where inserting the record int@s (into wg) flips
the truth value ofA (of B). Perfect secrecy appears too demanding
to be practical.

A number of recent papers studied ways to relax condition (1)
and make it approximate. They follow the same principle:cier
tain pairs of numerical bound®1, p2), p1 < p2, require that

P[A] < p1 = P[A[B] < p2
whereP is a prior knowledge distribution. This idea is behind the
definition of p; -to-p2 privacy breach in [12]; Kenthapasdt al. [18]
use a slightly different version as part of their definition:
1—-X < P[A|B]/P[A] € 1/(1—=X)

The Sub-Linear Queries (SuLQ) framework developed in [5, 10
11] has a more sophisticated version with nice theoreticatac-
teristics:

PIAB

Pr\log 7= praT B 1
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While there is no space here to thoroughly review these frame
works, conceptually they all require that no user can gaichmu
confidence in the audited proper®y by learning the disclosed
operty B, subject to prior knowledge constraints.

Perhaps surprisingly, however, all papers known to us, éir th

eoroofs if not in their definitions, do not make any distinctibe-

tweengainingandlosingthe confidence inl upon learningB. For
example, the SuLQ results remain in force if the privacy digdin
of [5] is changed by placing the absolute value sign|” over the
difference in (2). In some papers [11] the.:|” appears in the def-
inition explicitly.

It turns out that taking advantage of the gain-vs.-lossrditibn
yields a remarkable increase in the flexibility of query &indi
To bring it into focus, we shall put aside the approximategmy
relaxations and replace Eq. (1) with inequality

PIA|B] < P[A] @3)
That is, we call property privategiven the disclosure of property
B when (3) holds for all distribution® that are admissible as a
user’s prior knowledge. One might call this “semiperfeatirsey,”
for it has the same sort of “absolute” form as perfect secréhys
and related notions are the subject of this paper.

Let us illustrate its flexibility with a simple example of Ak
(a user) and Bob (a patient). The hospital's datakades two
records:r; = “Bob is HIV-positive” andr. = “Bob had blood
transfusions.” The sensitive propertyis the presence aofy, i.e.
that Bob is HIV-positive. The propertys that Alice queries and
learnsis 1 € wimpliesr; € w,”i. e. that “if Bob is HIV-positive,
then he had blood transfusion$¥e make no constraints on Alice’s
prior knowledge distributionother than a nonzero probability of
the actual database. Could the disclosurdsofiolate the privacy
of A? Look at the following table of possible worlds:

| [ e€w [ méw |
m Ew || Aistrue | Aistrue %
ri ¢ w || Aisfalse| Alisfalse




For Alice, learningB has the effect of ruling out the cell marked have become interested in reasoning about knowledge [18¢ T
with a %, while leaving the other cells untouched. Whatever the focus of attention has shifted to pragmatic concerns abimute-

cells’ prior probabilities are, the odds of can only go down: lationship between knowledge and action. That is our foths:
P[A|B] < P[A]. Thus, A is private with respect td3, even effect of an action, such as the disclosure of certain infdiom, on
though A and B share a critical record;, and regardless of any  the knowledge of an agent.

possible dependence among the recérds. Worlds Let Q2 be a finite set of all possible databases. We shall

call a databaser € Q a world, and the entiré) the set of all
1.2 Summary of Results possible worlds. The actual world, denoteddy, represents the
real database. Every property of the database, or asseitbimut
its contents, can be formulated ag™ e A" where A C Q is the
set of all databases that satisfy the property. A suldsét Q) that
containsw™ shall be called &nowledge set

This paper studies a notion of database privacy that makes it
illegal for users to gain confidence about sensitive fa@sajlows
arbitrary confidence loss. We begin in Sections 2 and 3 bgdioir-
ing two novel privacy frameworks that implement the above-co
cept for two different knowledge representations: pofistm and

probabilistic. We outline some properties of our privacfinigons Agents  We shall think of database users agentswho know
that are relevant to the problem of testing privacy, and gisees- ~ Something about the worlds # and who try to figure out which
sary and sufficient conditions for privacy with no resticis onthe ~ w € €2 is the actual worldu™. An agent’s knowledge can be mod-
user’s prior knowledge. elled in different ways; we shall consider two approacheas.a |
Section 4 delves deeper into the possibilistic model. For ce Possibilisticagent, knowledge is represented by aSet (2 that
tain important cases, notably when the constraints on asysgor contains exactly all the worlds this agent considers péessib par-
knowledge are intersection-closed (i. e. not violated by dbllu- ticular,w™ € S. Here every world is either possible or not, with no
sion of users), we give necessary and sufficient criteridefsting ranking or score assigned. Inpgobabilistic agent, knowledge is
possibilistic privacy, which reduce the complexity of thimblem. represented by a probability distributiéh: @ — R that assigns

Sections 5 and 6 focus on the more complex probabilistic inode @ nonnegative weigh’(w) to every world. We denote the sum
over the se{0,1}" of Boolean vectors that represent subsets of >_.c P(w) by P[A], requiring thatP[2] = 1 andP(w") > 0.

database records. Section 5 studies two probabilistic friowl- We say that a possibilistic agent with knowledgjknowsa prop-
edge constraints: bit-wise independence (product digtdbs) and erty A C Q whenS C A. We say thatd is possiblefor this agent
log-supermodularity. The bit-wise independence constraias whenS N A # @, i. e. when the agent does not knéww— A. For
used also in [21] by Miklau and Suciu, so our work can be viewed a probabilistic agent with distributioR, to know A means to have
as an extension of theirs. Log-supermodularity is choseprae P[A] = 1, and to consided possible means to have[A] > 0.

vide a “middle ground” between bit-wise independence ared th A function @ that map< to another set shall be calledjaery;
unconstrained prior knowledge. We give simple combinatori if its range is{0, 1} then@ is aBooleanquery. For a given actual
necessary criteria and sufficient criteria for privacy urithe log- world w*, each queny corresponds to the knowledge set associ-
supermodular and the product distribution constraints. ated with the query’s “actual” outpu{w € Q | Q(w) = Q(w*)}.

In Section 6, we study more general familigsof distributions The Auditor  There is a special “meta-agent” calléite audi-

oo e e s oo o1 o sk f 1o analy e queris icosed o e s an
variables. We prove that even for certain very restrici&dde- d_etermlne which of these disclosures _could bn_each privElcg.au-
ciding wHether aseB C {0,1}" violates the privacy of a set ditor may or may not have complete information about theaictu
A C {0,1}" with respe& to distributions Wil cannot be done in world w*. For example, if the query dlsclosu_re occurred se_veral
polynorﬁial time. unles® — NP yegr? ago,f me gecioLd updztit? Io??hmtay provu:e Ié)nly a pamaI d
o . Lo . . scription of the database state at that moment. Even morerimp
de\gﬁrcé\ﬂ?;)P:;n:h;fgg%?;ivgeerg;ﬂttry \t/:,/\leosvr\llg\)//vst.h':tr?r:,ccﬁtltgfo tantly, the auditor does not know what the user’s knowledge®
esting cases, such as whans the fami’ly of product distributions database was at the disclosure time. We characterize tfi@sid
! ' knowledge by specifying which pairs of a databasand the user’s

there are provably efficient algorithms for deciding privaSec- . ; .
ond, we describe the sum-of-squares heuristic for decipliivgcy Iéreuf:)i\;]v(lee&geegu(girt(i)sttﬁgxﬁelé%recggzﬂe;suzgiable. Letus formally

for any 17, which has been implemented and works remarkably

well in practice. Definition 2.1. (Possibilistic case) Apossibilistic knowledge
world is a pair(w, S), wherew is a world andS' is a knowledge

2. WORLDS AND AGENTS set, which satisfies € S C . The set of all possibilistic knowl-

Epistemologythe study of knowledge, has a long and honorable ©dge worlds shall be denoted as

tradition in philosophy, starting with the early Greek pisibphers. o c

Philosophers were concerned with questions such as “Wieatitio Doss = {(w.5)|weSCO}

mean to say that someone knows something?” In the 1950's and),.., can be viewed as an extensionsaf For a given user whose

1960's [17, 19, 33] the focus shifted more to developingepis- knowledge isS* C €, the pair(w*, S*) € Qs is called the

temic logic a logic of knowledge, and trying to capture the inherent  actual knowledge world. The auditor's knowledge about the user

properties of knowledge. Here there is a Qatf possible worlds is defined as a non-empty sBt C Q. Of knowledge worlds,

one of which is the “real worldiv™. An agent'sknowledges a set which must include the actual knowledge world. We refektas
S C Q of worlds that the agent considers possible. Since we are asecond-level knowledge set
modelingknowledgerather tharbelief we require thatv* € S.
If Fis a (possible) fact, and C ( is the set of possible worlds
whereF is true, then we say that the agémiowsF' iff S C A.

More recently, researchers in such diverse fields as ecasomi
linguistics, artificial intelligence, and theoretical cputer science

Our knowledge worlds are similar to the 2-worlds of [14], ept
that the 2-worlds of [14] would deal not only with the knowded
that the user has of the world, but also with the knowledgé tha
the auditor has of the world, Also, our second-level knogkedets
are similar to the 3-worlds of [14], except that the 3-worbd$14]
2Note that if Bob proactively tells Alice “If | am HIV-positis, then | had would deal not only with the knowledge that the auditor hasuab
blood transfusions,” a privacy breach dfmay occur, because Alice may  the user’s knowledge of the world, but also with the knowtetigat
learn more than jusB. the user has about the auditor’s knowledge of the world.




Definition 2.2. (Probabilistic case) Aprobabilistic knowledge
world is a pair(w, P) where P is a probability distribution over
Q such thatP(w) > 0. The set of all probabilistic knowledge
worlds shall be denoted as

Qprob = {(w, P) | P is adistribution P(w) > 0}.

The actual knowledge worl@w™, P*) € Qo1 and the auditor’s
second-level knowledge sat C Q.1 are defined analogously to
the possibilistic case.

Remark 2.3.The requirement ofw € S for every pair
(w,S) € Qposs and of P(w) > 0 for every pair(w, P) € Qprob
represent our assumption that every agent considers tlal act
world possible. All pairs that violate this assumption axeleded
as inconsistent. Note that a probabilistic péir, P) is consis-
tent iff the possibilistic pair(w,supp(P)) is consistent, where
supp(P) := {w| P(w) > 0}.

Remark 2.4.In practice, it may be computationally infeasible
to precisely characterize the auditor's second-level kedge and
to use this precisely characterized knowledge in the pyidadini-
tions. Instead, the auditor makes assumptions about tladoalse
and the user’s knowledge by placing constraints on the plessi

pairs(w, S) or (w, P). These assumptions and constraints are also

represented by a second-level knowledge set, which musaioon
the auditor’s precise knowledge set as a subset. From nowtam
we talk about the auditor's knowledge set, we mean a supefset
the actual knowledge set, unless stated otherwise.

Definitions 2.1 and 2.2 allow us to consider an auditor whose

assumptions about the user’s knowledge depend on the ¢tomten
the database. For example, the auditor may assume tha,hibgy
pital database contains record “Bob’s doctor is Alice, rtlAdice
knows Bob’s HIV status, but if there is no such record, theitél

may or may not know it. However, in many situations we can sep-

arate the auditor’'s knowledge about the database from thitoas
assumptions about the user. We do so by specifying two sets:

1. A non-empty seC C Q that consists of all databases the
auditor considers possible, with* € C;

2. Afamily X of subsets of2 and/or a family II of probability
distributions ovef2. The possibilistic agent’s knowledge has
to belong toX, the probabilistic agent’s knowledge has to
belong tolTl.

If the auditor knows the actual database exactly, e.g. bgrrec
structing its state from the update logs, then= {w™*}; if the
auditor has no information about the database or is ungilt;m
take advantage of it, thefi = 2. Some choices foE' and IT will
be discussed in the subsequent sections.

When we say that the auditor’s knowledge is represented’ by
andX described above, we mean that all knowledge woddsS)

with w € C andS € X, and none other, are considered possible

by the auditor. However, in most cases the auditor’s sedevl-
knowledge set cannot be the Cartesian product X, because it
contains inconsister(tv, S) pairs (see Remark 2.3). The same is
true in the probabilistic case, far and I7. Let us then define a
product operation that excludes all inconsistent pairs:

Definition 2.5. The productof a setC' C © and a familyX of
subsets of2 (a family IT of probability distributions ovef) is a
second-level knowledge sét® X (C' ® IT) defined by

CRY = {(wS)eCxL|weS} = (CxX)N Qposs
C®I = {(w,P) € CxII | P(w)>0} = (CxII) N Qpron

We call the paiC, X') or (C, II') consistentf their productC @ X
or C' ® I is non-empty, because is not a valid second-level
knowledge set.

3. PRIVACY OF KNOWLEDGE

This section introduces the definition of privacy for the geos
bilistic and the probabilistic knowledge models. L&tB C Q
be two arbitrary non-empty subsets Qf as a shorthand, write
A=Q - AandAB = AN B. SetsA and B correspond to two
Boolean queries on the databask e. g. queryA returns “true” iff
w™ € A and “false” otherwise.

We shall study the following question: When could the disclo
sure of B violate the privacy ofA? In our model, a positive result
of query A is considered private and needs protection, whereas a
negative result (that assett§ is not protected. Neither the user
nor the auditor are assumed to knowdifis true, andA may ac-
tually be false. On the other han®, represents the disclosed fact,
and thereforeB has to be true. The auditor knows thatis true;
the user transitions from not knowirg to knowing B.

Conceptually, we say that propetyis private, given the disclo-
sure of propertyB, if the user could not gain confidence ihby
learning B. Below we shall make this notion precise for the two
knowledge models, possibilistic and probabilistic. Froawron,
we shall use pronoun “he” for the user and “she” for the audito

3.1 Possibilistic Privacy

Let us suppose first that the auditor knows everything: theshc
database,* such thatv* € B, and the actual knowledge sgt of
the user at the time of the disclosure. In the possibilistclet, the
user may have only two “grades of confidence” in propettyhe
either knowsA (S* C A), or he does not{* Z A). The user gains
confidence iff he does not know before learning3 (i.e. 5™ Z A)
and knowsA after learningB (i.e. S* N B C A). Therefore,
the privacy ofA is preserved iff- (S* ¢ A & S* N B C A), or
equivalently, iff

S*NBCA = S CA. 4)

Now, suppose that the auditor does not kneW and S™ pre-
cisely, but has a second-level knowledge B6tC Q08 SUCh
that (w*, S*) € K. Then the auditor makes sure thétis pri-
vate givenB by checking condition (4) for all pairs iK. Before
doing so, the auditor must discard frashall pairs(w, S) such that
w ¢ B, because they are inconsistent with the disclosute.olVe
arrive at the following possibilistic privacy definition:

Definition 3.1. SetA C Q is called K-private given the disclo-
sure of setB C Q, for K C Qposs, iff
V(w,S) e K:

(weB & SNBCA) = SCA. (5

We denote this predicate Bafex (A, B).

Remark 3.2.1t is easy to see from (5) tha&lafex (A, B) and
K' C K imply Safex- (A, B). Therefore, the auditor may assume
less than she actually knows, i. e. consider more knowledgtels/
possible, and still catch all privacy violations, at the exge of
restricting more queries.

When the auditor wants to separate her knowledge about the
database from her assumptions about the user's knowletige, s
represents her second-level knowledgefseds a producC ® X,
where C C Q and X is a family of subsets of2. In this
case we shall use the term{(C, X)-private” and the notation
Safe ¢, (A, B), which is defined aSafe cg (A, B); let us also
useP () to denote the power set ©6f.

PropPoOsITION 3.3. For a consistent pair(C, X) such that
C C QandX C P(Q), the privacy predicat€afe ¢, > (A, B) can
be equivalently defined as follows: (denotisigy BN C asSBC)

VSex: (SBC#@ & SBCA) = SCA.  (6)



3.2 Probabilistic Privacy
Once again, suppose first that the auditor knows the actual

databasevs™ € B and the actual probability distributioff™ that
represents the user’s knowledge prior to the disclosur@pfissed

to Section 3.1, in the probabilistic model the user has aiconin

of “grades of confidence” irl, measured by’*[A]. The user gains
confidence iff higprior probability of A before learningB, which

is P*[A], is strictly smaller than hiposteriorprobability of A after

B is disclosed, which i°*[A | B]. Therefore, the privacy ofl is

preserved iff
P[A|B] < P'[A] )

The conditional probability P*[A| B] is well-defined since
P*[B] > P*(w*) > 0.

When the auditor does not knaw* and P*, but has a second-
level knowledge sel C Q.01 Such thafw®, P*) € K, she has
to check inequality (7) for all possible paifs, P) in K. Before
doing so, she must discard all paits, P) such thatv ¢ B. We
obtain the following probabilistic privacy definition:

Definition 3.4. SetA C Q is called K -private given the disclo-
sure of setB C Q, for K C Qprob, iff
V(w,P)e K: we B = P[A|B] < P[A].

As before, we denote this predicate ®yfex (A, B).

Remark 3.5.In the probabilistic case, todafex (A, B) and
K' C K imply Safeg: (A, B). Thus, Remark 3.2 applies here.

®)

The acquisition ofB; followed by B is equivalent to the acqui-
sition of B1B: = Bi N Bz. When the auditor’s second-level
knowledge seK represents her assumption about the user’s knowl-
edge, rather than her knowledge of the user’s knowledgeRsee
mark 2.4), she may want to require tHdtremains a valid assump-
tion after each disclosure. This property is formalizedbel

Definition 3.9. Let K be a second-level knowledge set, which
may be possibilistic & C Qp0ss) Or probabilistic i C Qpron).
A set B C Q is called K-preservingwhen for all (w, S) € K
or (w,P) € K such thatv € B we have(w,S N B) € K or
(w,P(-|B)) € K.

Suppose that knowledge sdis and B; are individually safe
to disclose, while protecting the privacy df, to an agent whose
knowledge satisfies the constraints definedhyf, after B is dis-
closed, the updated agent’s knowledge still satisfies thstcaints,
then it is safe to disclosB; too. Thus, itis safe to disclose both sets
at once—as long as at least one of them preserves the coistrai

PrRoOPOSITION 3.10. For every second-level knowledge $€t
possibilistic or probabilistic, we have:

1. B; and B, are K-preserving= B N B; is K-preserving;
2. If Safex (A, By) and Safex (A, B2) and if at least one of
Bi1, B; is K-preserving, thebafex (A, B1 N Bs).

3.4 Unrestricted Prior Knowledge

When the auditor's knowledge can be represented as a product \What is the characterization of privacy when the auditorvksio

C ® II for someC C Q and some familyll of probability dis-
tributions over(2, we shall use the term(C, IT)-private” and the
notationSafe ¢, ;7 (A, B), which is defined aSafe cgr (A, B). In

this case the following proposition can be used:

ProPOSITION 3.6. For a consistent paiC, IT) whereC' C Q
and I7 is a family of distributions ovef?, the privacy predicate
Safe ¢, (A, B) can be equivalently defined as follows:

VPell: P[BC]>0 = P[AB] < P[A]P[B]. (9)
In fact, the definition of privacy given by (9) can be furthams
plified, for many families/T that occur in practice:

Definition 3.7. We shall call a family/l w-liftable for w € Q
whenV P € II such thatP(w) = 0 it satisfies the condition

Ve>0 3P €ll: P(w)>0 & ||P - P'|l <e. (10)

Family IT is calledS-liftable for a setS C Q iff IT is w-liftable for
Vw e S. The norm||P — P'||x = maxwecq |P(w) — P'(w)].

PROPOSITION 3.8. For a consistent paiC, II) such that fam-
ily II is C-liftable, and givenBC' # @ (sincew™ € BC), predi-
cateSafe ¢, ;7 (A, B) is equivalent t&afe; (A, B) defined as

def,

Safer (A, B) &% vPeIl: P[AB] < P[A]P[B]. (11)

3.3 Knowledge Acquisition

An agent (a database user) modifies his knowledge when he re-
ceives a disclosed query result. The disclosed propertkimel-
edge setB C Q, telling the agent that every world i — B is
impossible. We model the agent’s acquisition®fs follows. A
possibilistic agent with prior knowledgg C €2, upon receivingB
such thatS N B # @ (becausev™ € S N B), ends up with poste-
rior knowledgeS N B. A probabilistic agent with prior distribution
P : Q — R4, upon receivingB such thatP[B] > P(w*) > 0,
ends up with posterior distributioR (- | B) defined by

P(w)/P[B],
0,

w€eB
weN—B

PlwlB) = {

nothing? More formally, which knowledge sets and B sat-
isfy K-privacy for K Qposs Q ® P(Q) and for

K = Qprob = Q @ PPP(Q), where PP () is the set of all
probability distributions ovef2? Also, what is the answer to this
question if the auditor has complete information about tttea
world w*, but knows nothing about the user’s knowledge, i.e. for
K ={w'}®P(Q) and for K = {w*} @ PP"(Q)? Here is a
theorem that answers these questions:

THEOREM 3.11. For all setsA, B C Q and for allw* € B the
following four conditions are equivalent:

1. EitherANB=@,orAUB =Q;
2. Safex (A, B) for K = Qposs ;
3. Safex (A, B) for K = Qprob ;
4. Safer (A, B) for K = {w*} @ PP™"(Q).
Also, the following two conditions are equivalent (agaih € B):
1. AnB=@g,orAUB=Q,orw* e B—A;
2. Safex (A, B) for K = {w*"} @ P(Q).

Remark 3.12In the auditing practice, the interesting case is
w™ € AN B, i.e. when the protected and the disclosed properties
are both true. In this casé N B # @ andw™ ¢ B — A. Uncondi-
tional privacy can thus be tested by checking whether B = 2,

i.e. whether A or B” is always true.

4. POSSIBILISTIC CASE

In this section, we shall focus exclusively on the posshi
case; thusK C Qp.ss. Proposition 4.1 below gives a necessary
and sufficient condition foK -preserving set® to satisfy the pri-
vacy predicatsSafex (A, B), for a given and fixed sed. It asso-
ciates every worldv € A with a “safety margin’g(w) C Q — A
which depends only ow, A and K. Given B, the condition ver-
ifies whether everyw € A occurs inB together with its “safety
margin,” or does not occur i at all. The “safety margin” en-
sures that this) will not reveal A to the agent, no matter what prior
knowledgeS € w2 (K) the agent might have. (By; we denote
the projection operation.)



PropPOSITION 4.1. Let K C be an arbitrary second-

onss
level knowledge set, and let C . There exists a function
B: A— P(Q2— A)suchthatvB C Q

(Vwe AB: B(w) C B) = Safex(A,B), (12)
and if B is K-preserving, then the converse holds:
Safex(A,B) = (Ywe AB: B(w) C B). (13)

Remark 4.2.In Proposition 4.1, the condition o3 being
K-preserving is essential for the converse implication .(1B)-
deed, lef? = {1, 2,3}, K = Q ® {Q}, andA = {3}. Then both
B: = {1,3} and B, = {2, 3} protect theK-privacy of A, yet
B1 N B2 = {3} does not. So, there is no suitable value #¢B).
However, see Corollary 4.14 for more on this subject.

The characterization in Proposition 4.1 could be quiteuldef
auditing a lot of propertie®; , Bs, . . ., By disclosed over a period
of time, using the same audit quedy Given A, the auditor would
compute the mapping once, and use it to test evefy;. This
comment applies to Section 4.1 as well.

4.1 Intersection-Closed Knowledge

Motivation. When two or more possibilistic agents collude, i. e.
join forces in attacking protected information, their kredge sets
intersect: they jointly consider a world possible if andyoifilnone

of them has ruled it out. Therefore, if the auditor wants te ac
count for potential collusions, she must consider knowdedgrld
(w, S1 N S2) possible whenever she considers bth S1) and
(w, S2) possible. This motivates the following definition:

Definition 4.3. A second-level knowledge s&t C Qposs IS
intersection-closedor N-closedfor short, iff vV (w, S1) € K and
vV (w, S2) € K we have(w, S1 N S2) € K. Note that we intersect
the user’s knowledge sets), S1) and(w, S2) only when they are

paired with the same world.

One way to obtain a second-level knowledge EetC Qposs
that isN-closed is by taking am-closed familyX' of subsets of2
(such thatv Sy, Sz € X: S1 NS, € X) and computing the product
K = C ® X with some knowledge s&t.

Intervals. When the auditor’s knowledge fis-closed, the notion
of an “interval” between two worlds becomes central in chtaa
izing the privacy relation:

Definition 4.4. Let K C Q,0ss ben-closed, and leb,,ws € Q
be two worlds such that

wi € m(K), wr€|J{S|w,8)eK} (14

The K-interval from w1 to w2, denoted bylx (w1,w2), is the
smallest sef such thafwi, S) € K andws € S, or equivalently:

Ig(wi,w2) = m {S|(w1,98) € K, ws € S}.

If the worldsw: , w2 do not satisfy conditions (14), we shall say that
interval I (w1, w2) does not exist.

The following proposition shows that we need to know only the
intervals in order to check whether or rfbifex (A, B) holds:

PROPOSITION 4.5. For ann-closed setX’ C Q,,ss and for all
A, B C Q, we haveSafex (A, B) if and only if

VIg(wi,w2): w1 € AB & w2 ¢ A

= Ix(wi,w) N (B—A) £ . (15)
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Figure 1: An example of ann-closed XK' C Qposs Where the
worlds are the pixels inside thel4 x 7 rectangle (such asv1,
w2 and ws), and the permitted user’s knowledge sets are the
integer sub-rectangles (i. e. composed of whole squaresketSi
is the complement of the privacy-sensitive knowledge set.e8
Example 4.9 for details.

Remark 4.6.As implied by Proposition 4.5, there is no need
to store the entire)-closed second-level knowledge gét(which
could requirdQ| - 2190 pits of data) in order to test the possibilistic
privacy. It is sufficient to store one st (w1, w2) C Q, or the fact
of its non-existence, for each pdiv,w2) € Q x €, i.e. at most
|©2)3 bits of data.

Minimal intervals. In fact, in Proposition 4.5 we do not even
have to check all intervals; it is enough to consider justriimial”
intervals defined as follows:

Definition 4.7. For an N-closed second-level knowledge set
K C Qposs, for aworldw; € © and for a setX C Q not con-
tainingws, an intervall x (w1, w2) is called aminimal K-interval
fromw; to X iff we € X and

Vwy € X Nikg(wi,we): Ix(wi,wy) = Ix(wi,ws).

PROPOSITION 4.8. For an N-closed setK C Q.55 and for
vV A, B C Q, we haveSafex (A, B) if and only if the formula (15)
holds over all intervald x (w1, w2) that are minimal from a world
w1 € ABtothe sef2 — A.

Example 4.9.Let Q2 be an area of the plane that is bounded by
a rectangle and discretized into pixels to ensure finite(thesarea
within the 14 x 7 rectangle on Figure 1). Let the worlds be the pix-
els. Consider an auditor who does not know the actual datalfas
and who assumes that the user’s prior knowledgesset Y is an
integer rectangle, i. e. a rectangle whose four corners imieger
coordinates (corresponding to the vertical and horizolimaks in
the picture). The familyZ of integer rectangles i3-closed, and so
is the auditor’s second-level knowledge 6= Q ® X.

Givenwi, w2 € Q, the intervallx (w1, w2) is the smallest in-
teger rectangle that contains bath andw». Forw; andws: in
Figure 1, the interval x (w1, w2) is the light-grey rectangle from
point (1, 1) to point (4, 4); forw; andws, the intervall x (w1, w3)
is the rectangle from poirfil, 1) to point(9, 3).

The interval Ik (w1,w2) shown on the picture is one of the
three minimal intervals fromw; to set A (the area bounded
by the ellipse). The other two minimal intervals are the rect
angles(1,1)—(5,3) and (1,1)—(6,2). Every setS such that
(w1,8) € K andS ¢ A, e.g. the interval x (w1, w3), must con-
tain at least one of the three minimal intervals, implyingtsi-
tion 4.8 for the case of the actual wotld = w;.

Interval-induced partitions of A. Let us have a closer look at
the minimal K-intervals from a given worldv; € A to the set



A = Q- A. For everyw, € A, the intervallx (w1,ws), if it
exists, is either minimal or not; if it is not minimal, ther cannot
belong to any minimal interval from; to A. Now, take some
pair ws,wh € A such that both r (w1, w2) and Ix (w1, w)) are
minimal. There are two possible situations:

1. Ix(wi,w2) = Ix(whwé),or_
2. Ix(wi,w2) N Ix(wi,wy) N A = .

Indeed, if 3wy € Ix(wi,ws2) N Ik (wi,ws) N A, then by Defini-
tion 4.7 the intervall x (w1, w3 ) equals both of the minimal inter-
vals, making them equal. We have thus shown the following

PROPOSITION 4.10. Given ann-closed setk’ C Qp0ss, a Set
ACQ, and a worldw: € A, the minimal K-intervals from
w1 to A partition setA into disjoint equivalence classes

A= DiUDy;U...UD, UD
where two worldsus, w) € A belong to the same clags; iff they
both belong to the same minimal interval, or (cld3§ when they
both do not belong to any minimal interval.

Definition 4.11.In the assumptions and in the notation of
Proposition 4.10, denote
AK(A,Wl) = {D17 DQ, ey Dm}
In other words,Ak (A4, w:) is the disjoint collection of all sets
formed by intersectingl with the minimal intervals fronw, to A.

COROLLARY 4.12. Given ann-closed setk’ C .5, for all
A, B C Q we haveSafex (A, B) if and only if
Ywi € AB7 VD, e AK(A,UJl) :

BND; #@. (16)

As Figure 1 illustrates for Example 4.9, the three minimal in
tervals fromw; to A formed by integer rectanglgd, 1)—(4,4),
(1,1)—(5,3) and(1,1)—(6, 2) are disjoint insideA. Their inter-

sections with4, shown hatched in Figure 1, constitute the collec-

tion Ax (A, w1). Adisclosed seB is private, assuming”™ = wi,
iff B intersects each of these three intervals inslde

The case of all-singletonAk’s.  If set K satisfies the property
defined next, privacy testing is simplified still further:

Definition 4.13. An N-closed sefX C ;055 hastight intervals
iff for every K-interval I x (w1, w2) we have
Vwy € Ix(wi,we) 1 wh # w2 = Ix(wi,ws) & Ir(wr,ws).
When K has tight intervals, every minimal intervak (w1, w2)

fromw; € A to A hasexactly oneof its elements i, namelyws:
ANIg(wi,w2) ={w2}. Then all equivalence classds; in

Ak (A, w1) are singletons, and Corollary 4.12 takes the form of

Proposition 4.1:

COROLLARY 4.14. Let K C Q055 be ann-closed set that has
tight intervals, letA C Q. Then33: A — P (22— A) given by

Vor €A Blwr) = | Ax(4,w)
such thatvy B C Q
Safex(A,B) < (Vw1 € AB: B(w1) C B).
Having tight intervals is essential for Corollary 4.14 tddisee

Remark 4.2 for a counterexample whereraclosed KX does not
have tight intervals.

5. MODULARITY ASSUMPTIONS FOR
PROBABILISTIC KNOWLEDGE

In the previous section we clarified some general propedies
possibilistic knowledge; now we turn to the more complexbpro
abilistic case. Rather than studying arbitrary probatiilisnowl-
edge families, here we shall focus on a few specific, yet itapor
families of distributions. Later, in Section 6, we preserirenso-
phisticated approaches that extend beyond these families.

From now on, we assume th@t = {0,1}" for some fixedn.
Let wi A we (w1 V wa, w1 @ w2) be the bit-wise “AND” (“OR”,
“XOR"), and define the partial order; < ws to mean Vi =
1...ntwifi] =1 = wefi] = 1" AsetS C Q shall be called an
up-set(adown-sefwhenVw; € S, Vws > w1 (Vw2 < w1) we
havews € S.

Definition 5.1. A probability distribution P over Q is called
log-supermodulaglog-submodulay® when the following holds:

Vwi,w2 € Q: P(wi) Plw2) < (2) P(wi1 Awz) P(wi Vws)

The family of all log-supermodular distributions shall bendted
by I1;}, the family of all log-submodular distributions Y, .

A distribution P is called gproduct distributiorif it makes every
coordinate independent. Every product distribution spoads to
a vector(p, ..., pn) of Bernoulli probabilities, each; € [0, 1],
such that

Vwe{0,1}": P(w) = [[, p;_*’[’i], (1 _pi)lfw[i]
The family of all product distributions shall be denoted 5§ It
is easy to show thall) = Iy N I, [20]. In fact, P is a product
distribution if and only if

Vwi,we € Q: P(wi) P(w2) = P(w1 Aw2) P(w1 Vwz) (18)

Supermodular and submodular functions occur often in mathe
matics and have been extensively studied [15, 20]. Our gaadn-
sidering these assumptions was to substantially relawisig-inde-
pendence while staying away from the unconstrained cased&e
that, the log-supermodular assumption (as implied by Térads.3
below) describes situations where no negative correlat@oa per-
mitted between positive events—something we might expeaot f
knowledge about, say, HIV incidence among humans.

an

PROPOSITION5.2 (I} SAFETY: NECESSARY CRITERION.
Forall A,B C Q= {0,1}", we have:

Safen+(A7B) = VYw € AB, Yw; € AB:

wiAws € A—B or wiAws € B—A
w1\/w2€B—A w1\/w2€A—B

(19)

Our sufficient criterion for II-safety has a very similar
form, and relies on the following well-known theorem [3] ¢se
also [6], §19):

THEOREM5.3 (FOURFUNCTIONSTHEOREM). Let L be a
distributive lattice, and letv, 8,~v,6 : L — R4. Forall A, BC L
denotef[A] = > .4 f(a), AVB ={aVblac A be B},
andAAB={aAb|a€ A,bec B}. Then the inequality

a[A]- B[B] < 4[AV B]-S[A A B]

holds for all subsetsA, B C L if and only if it holds for one-
element subsets, i. e. iff

a(a) - B(b) < y(aVb)-b(anb)

for all elements:, b € L.

3The “log-" means that supermodularity is multiplicativetadditive. The
subscript ‘m”" in 1, , I etc. means “modular.”



PROPOSITIONS.4  (II;7 SAFETY. SUFFICIENT CRITERION.

Forall A,B C Q = {0,1}", either one of the two conditions

below is sufficient to establisBafe ;1 (A4, B) :
e ABANAB C A—B and ABV AB C B—A;
e ABV AB C A—B and AB A AB C B— A.

COROLLARY 5.5. If Aisan up-setand is a down-set (or vice
versa), therBafe 1 (A, B).

Remark 5.6.Thus, if the user’s prior knowledge is assumed to
be inII;}, a“no” answer to a monotone Boolean query always pre-
serves the privacy of a “yes” answer to another monotone ool
query. Roughly speaking, it is OK to disclose a negative fdute
protecting a positive fact. This observation is especibiypful
when A and B are given by query language expressions, whose
monotonicity is often obvious.

5.1 Product Distributions

In this section we shall study the problem of checking thegmy
relation Safe ;o (A, B) for setsA, B C Q = {0,1}" over the
family I12 of product distributions. Thimdependenceelation that
holds iff P[A] P[B] = P[AB] for all P € II3, and which we
denote byA L ;0 B, has been studied by Miklau and Suciu in [21]
who proved the following necessary and sufficient criterion

THEOREM5.7 (MIKLAU & Sucliu). For all A,B C Q,
A Lpe B if and only if setsA and B “share no critical co-
ordinates? i.e. when coordinates, 2, ...,n can be rearranged
so that onlyw[1],w[2],...,w[k] determine ifw € A, and only
wlk+ 1], wk+2],... 7w[k'], k" < n, determine ifw € B.

SinceA 1 ;0 B implies Safe o (A, B), the Miklau-Suciu cri-
terion is a sufficient criterion for our notion of privacy. it not a
necessary one, even far= 2: we haveSafe ;o (X1, X1 U X2)

butnotX: Lo (X1 U X>), whereX; = {w € Q|wli] = 1}.

Another sufficient criterion is given by Proposition 5.4,wg
note that/Ty C I7,F; it implies Safe ;0 (A, B) wheneverA is an
up-set andB is a down-set, or vice versa (Corollary 5.5). A little
more generaIIySafeHo (A, B) holds if there exists a mask vector
z € Q such that: ® A'ls an up-set and @ B is a down-set. Let us
call this criterion thenonotonicity criterion

It turns out that both the Miklau-Suciu and the monotonicity
teria are special cases of another simple yet surprisinging suf-
ficient criterion forSafe ;o (A, B). This sufficient criterion shall be
called thecancellation criterion because its verification is equiva-
lent to cancelling identical monomial terms in the algebmipan-
sion for the difference

P[AB] P[AB] — P[AB] P[AB] P[A] P[B] — P|AB],

whereP is a product distribution written as in (17). In order to for-
mulate the criterion in combinatorial (rather than alge)reerms,
we need the following definition:

Definition 5.8. The pairwise matching functioiMatch(u, v)
maps a paifu, v) of vectors fromQ = {0, 1}" to a singlematch-
vectorw = Match(u,v) in {0, 1, *}™ as follows:

. ) q  Juld] if wld] = oli;
Vi=1l...n: wl[i] = {* it uli] 2 vfi]
For example, paif01011, 01101) gets mapped intd1xx1. We say
thatv € Q refinesa match-vectow whenv can be obtained fromw
by replacing its every star with a 0 or a 1. For every matcherag,
define the following two sets:

Box(w) = {v € Q| vrefinesw};
Circ(w) = {(u,v) € @xQ | Match(u,v) = w}.

Now we are ready to state the cancellation criterion, whéch i
sufficient criterion forSafe ;0 (A, B), and also state a necessary
criterion of a similar form, for comparison:

PROPOSITIONS5.9 (CANCELLATION CRITERION). For all
A, B C Q, in order to establishSafe ;o (4, B) itis sufficient to

verify the followingVw € {0, 1, %} :

|AB x AB N Circ(w)| > |AB x AB N Circ(w)|.

PROPOSITIONS5.10 (ANECESSARY CRITERION. For all
A, B C Q,if Safey (A, B) holds, thenvw € {0, 1,*}" :

’AB N Box(w ’ |AB N Box(w |

‘AB N Box(w ‘ ’AB N Box(w )’

We hope that the combinatorial simplicity of the criteriauen
by Proposition 5.9 will allow highly scalable implementats that
apply in real-life database auditing scenarios, where 4eiad B
are given via expressions in a query language. The theortow be
justifies our interest in the cancellation criterion:

THEOREM 5.11. If setsA, B satisfy the Miklau-Suciu criterion
or the monotonicity criterion, they also satisfy the catatén cri-
terion.

Remark 5.12.The cancellation criterion is only sufficient, but
not necessary. Here is a pair of sets that satisfids ;o (A, B)
and does not satisfy the criteriost = {011, 100, 110, 111} and
B = {010, 101, 110, 111}. Specifically, for these sets we have
|AB x AB N Circ(s*x | = Oand’AB x AB N Circ(** | = 2.

6. GENERAL ALGEBRAIC APPROACHES

We use techniques from multivariate polynomial optimiaatio
test safety with respect to certain famili&sof prior distributions
on an agent’s knowledge. Recall that a de€ (2 is IT-safe given
B C Q when for all distributionsP € II, we haveP[AB] <
P[A] - P[B]. As in some previous sections, we identify the Qet
of possible worlds with the hypercul§e, 1}".

For eache € {0,1}", we create variables, € [0, 1]. We con-
sider those familie¢/ containing distribution$p. ), ¢ (0,13» Which
can be described by the intersection of a finite numirpolyno-
mial inequalities:

a1((Pz)eefo,13n) 2 0,.. ., ar((Pz)weqo,13n) 2 0,

zwe{o,l}" Pz = 17 v Pz = 0.

We call such a familylT algebraic For example, if we had the
family of log-submodular distributions, then for ally € {0,1}",
we would have the constraifiz,y, = pepy — PeayPzvy = 0.
For the family of log-supermodular distributions, we woirdtead
haveas,y = peryPevy — P2py = 0. Finally, for the family of
product distributions, we would have bathp, — pzaypzvy = 0
andpzayPzvy — Papy = 0.

For setsA and B, and a family of distributiongZ, we define the
setK (A, B, IT) of distributions(ps) ,¢ (0,1}~ 10 be:

S > 0> py

weEAB TEA yeEB
a1((pz)wecto,13) 2 0,..., &r((Pz)wecqo,13n) = 0
Zwe{o,l}n pz = 1, Vz p. > 0.

The following proposition is an equivalent algebraic fotation

of the fact that in order fopafe; (A, B) to hold, there cannot be a
single distributionP € II for which P[AB] > P[A] - P[B].



PROPOSITION 6.1. Safers (A, B) iff the set K(A,B,II) is
empty.

We are interested in algorithms that decide emptiness of

K (A, B, IT) in time polynomial or nearly polynomial itV defon,

Note that/V does not need to be the number of possible worlds, but
rather only the potentially much smaller number of possibkle
evant worldsin the desired application. For example, if the agent
executes a combination of PROJECT and SELECT queries in SQL,
he may be left only with a subsstof possible records with a small
number of attributes and values for those attributes. Is thise,
the numberNV of possible relevant worlds could by very small, and
algorithms for testing safety of additional queries.®mvhich run
in time polynomial or quasi-polynomial itV would be efficient.

As the following theorem shows, even when the numbeof
possible relevant worlds is small, we may need to restreecthss
of distributionsIT that we consider in order to efficiently test safety.

THEOREM 6.2. If P # NP, there is an algebraidl for which
r = poly(NN), eacha; has degree at mogt and for which decid-
ing Safer (A, B) cannot be done ipoly (V) time.

PROOF. (sketch) The main idea is a reduction from a restricted
version of the decision problem MAX-CUT. We carefully choose
constraints defining the familyZ/ so that given a grapld on ¢
vertices, we can encod€' into setsA,B C {0,1}" so that
the constraints defining/ together with the constraif?[AB] >
P[A] - P[B] define a non-empty sét (A, B, II) iff the maximum
cut size inG is sufficiently large. We need to suitably restrict the
decision version oMAX-CUT so that this is possible. Here we
require N = poly(t). We defer the details of the proof to the full
paper. O

Despite this negative result, for certain interesting fawsill we
obtain efficient algorithms, as we now discuss.

6.1 Specific Distributions

We first obtain a necessary and sufficient condition4oB C
{0,1}" to be safe with respect to the familf of product dis-
tributions by providing a deterministic algorithm. Its ning
time is N©U&1eN) which is essentially polynomial for all prac-
tical purposes. The key observation is that whil€ A, B, IT) is
N = 2"-dimensional for general families of distributions, foogr
uct distributions it can be embedded ifR3.

Indeed, it is easy to see th&t(A, B, IT) can be defined in vari-
ablespi, ..., p,» € Rconstrained by;(1—p;) > 0, and for which
P[AB] > P[A]- P[B], whereP(w) = [T7_, p;" - (1 —pi)! 1!
forallw € {0,1}". We can write this withh variables anch + 1
inequalities. We apply the following simplified form of Theon 3
of Basu, Pollack, and Roy [4]:

THEOREM 6.3. Given a setK = {f4,...,3.} of r polyno-
mials each of degree at mogtin s variables with coefficients in
R, the problem of deciding whether there exiét, ..., X; € R
for whichB:1(X1,...,Xs) 2 0,...,6-(X1,...,Xs) > 0, can be
solved deterministically with (rd)°*) bit operations, where is
the number of bits needed to describe a coefficieptin. ., 3.

We apply this theorem to the s& = K (A, B, II). From the
program above it is easy to see that, d, ands are all linear inn,
and so emptiness (and hence safety) for product distrisitan
be decided im©™ = NOUgleN) time.

The algorithm of Basu, Pollack, and Roy uses sophisticateak
from algebraic geometry ové@&, and we cannot do it justice here.
The general approach taken by such algorithms is to redugs-a s
tem of polynomial inequalities into a system of polynomiglal-
ities by introducing slack variables, and then combining riul-
tivariate polynomial equalitiep;(z) = 0 into a single equality

q(z) = >, pi(z) = 0. One finds the critical points af(x), that

is, the setlz of common zeros of its partial derivatives over the
complex fieldC. By perturbingg(x) and applying Bézout's Theo-
rem, one can show th#ite| is finite. Various approaches are used
to find the subsel’r of V- of real-valued points. Sindér is finite,
once it is foundy is evaluated on each of its elements and the min-
imum value is taken. The main step is findilig, and approaches
based on Grobner bases, resultant theory, and homotopy tieo

ist (see [25]). The algorithm of [4] may be practical. Indeed
similar algorithm of Canny was implemented [7].

This approach generalizes to other algebraic familiede-
scribed bypoly(n) constraints and(n) variables. For instance, a
family of distributions for whictp, = p, whenever the Hamming
weight ofz andy are equal is described hy+ 1 variables.

Even when the familylT of distributions requiresV variables
to describe, in certain cases we can obtain a polynomiad-tilgo-
rithm for testing safety with respect @. Indeed, if the constraints
«; defining IT have degree at mogt and there are only a con-
stant number- of them, an algorithm in [16] shows how to decide
emptiness ofK (A, B, IT) in N°() time. This algorithm makes
black-box use of the earlier algorithm of Basu, Pollack, &uy
[4]. As an optimization, we note that if there are multipledar
equality constraintd; (X1, ..., Xs) = 0, itis helpful to combine
them into a single quadratic constrajn, L? = 0. This is because
the running time is exponential in the number of constraints

6.2 Heuristics

For most families of distributions we will have to settle far
heuristic or an approximation for testing safety. If the gmam
describingK (A, B, IT) is multilinear (e.g., one can show this is
the case for log-submodular and log-supermodular digtdbs),
there are heuristics such as branch-and-bound or cuttargep
techniques. See page 2 of [9].

Here we describe the arguably most practical heuristicstine-
of-squaresheuristic, introduced in [30, 31, 24], which works even
for systems that are not multilinear. This heuristic was lanp
mented with great success in [25].

The problem of minimizing a degreémultivariate polynomial
foverasetk C R? is equivalent to finding the maximume R
for which f(z) — v > Oforallz € K. Let P{(K) be the set
of all polynomials inR[z1, . .., zs] of degree at mos{ which are
non-negative on every point iif. Thus, our problem is to find the
maximum~y € R for which f(z) — v € P4 (K).

It is unknown how to optimize oveP$ (K) efficiently, and so
the following indirect route is taken. Define the 8t :

»? = {f(z) € Rlz1,...,zs] | TFt,91(x), ..., g:(x)
€ Rz, ...,z st f(z) = X0, gi(z)?}.

Notice that:? is a subset of non-negative polynomials, as every
sum of squares of polynomials is non-negative. It turns loatX>
is in fact a strict subset of the non-negative polynomiatsstzown
non-constructively by Hilbert, and constructively by Mkitz who
provided the polynomial

M(z,y, z) = a*y® + 2°y* + 2° — 32%y%2%
Motzkin showedM (x, y, z) is non-negative oiR3, yet inexpress-
ible as a sum of squares of polynomials. It turns out thatyever
non-negative polynomial can be written as a sum of squares-of
tional functions (functions of the formy; (x)/h: (x) for polynomi-
alsg; andh;), which was Hilbert's 17th problem, solved by Artin in
1927. WhileX? fails to capture all non-negative polynomials, the
following proposition is a compelling reason for studying The
proposition is proven using semidefinite programming.

PROPOSITION 6.4. For f € R[z1,...,z,] of bounded degree,
the test “f(x) € £2” can be done inpoly (s) time.



Let %% be thosef (z) € %? of degree at mosf. Thenx?? C
P{(R). To minimize f(x) overR*, we find the largesA € R for
which f(z)— X € ¥*% via a binary search ohand the proposition
above. The valug is a lower bound orf (x) and in practice almost
always agrees with the true minimum 6{25].

To minimize f (z) over a setK constrained by polynomials, we
need a few more tools. We could reduce the problem to miningizi
a single polynomial, as mentioned in Section 6.1, but theiohg
may work better in practice. We follow the presentation ih [8

Definition 6.5. The Algebraic Cone generated by elements
Bi,..., Bt € Rlz,...,xzs] is the set,

ABr, .. ) E{f €Rzr,...,z] [ f=n+ Y ur [[ 6}
IC[t] €l

wheren and then; are inX?, and[t] = {1,2,...,t}.

Thus, the algebraic cone can be thought of as the set of alkaffi

combinations of all possible products of polynomidls ..., 3,

where the coefficients of the affine combination are takem 3.
Definition 6.6. The Multiplicative MonoidM (g, ..., 8:) gen-

erated by, ..., Bt € R[z1,...,x4] is the set of finite products

of the 3;, including the empty product which we setto

The key result is a simplified form of the Positivstellend&82]:

THEOREM 6.7. Given polynomial§ f1, ..., ft, }, {91, -, 9ts }
inR[z1,...,z], the set

K ¥ {2 eR*: fi(z) >0,g;(x) #0,Vi € [t1],j € [t2]}

is empty iff 3F € A(f1,...,fr,) andG € M(g1,...,g:,) for
which F' + G? is the zero polynomial.

Thus, for a setk” described byf;, andg; of the form above, we
considerK’ = KN{z € R’ |y— f(z) > 0, f(z) —y # 0}. K’
is empty iff f(z) > yforallz € K.

Heuristics implemented in practice work by choosing a degre
bound D, generating allG € M(f — ~,91,...,9:,) Of degree
at mostD (there are at mosty suchG), and checking if there
isanF € A(y — f, fi,..., f;) for which F + G*> = 0 via
semidefinite programming. This is efficient for constantwhich
usually suffices in practice. Better algorithms for specades are
based on alternative forms of the Positivstellensatz; 2ée48].

7. CONCLUSION
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We presented a novel approach to privacy where only gaining (23]

confidence in a sensitive fact is illegal, while losing coefide is
allowed. We showed that this relaxation is significant andrits
many more queries than with well-known approaches. In exgpba
this gave us an opportunity to strenghten prior knowledgerap-
tions beyond current standards. Our hope is that work indhis
rection will help bridge the gap between theoretical so@sdrand
practical usefulness of privacy frameworks.

One possible future goal is to obtain a better understarafitiee
families of sets and distributions that arise in practice] to un-
derstand whether they admit efficient privacy tests. Anogoal is
to apply the new frameworks to online (proactive) auditiwgjch
will require the modeling of a user’s knowledge about theitau'd
query-answering strategy.
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