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ABSTRACT
We present a novel definition of privacy in the framework of offline (retroac-
tive) database query auditing. Given information about thedatabase, a de-
scription of sensitive data, and assumptions about users’ prior knowledge,
our goal is to determine if answering a past user’s query could have led
to a privacy breach. According to our definition, an audited property A
is private, given the disclosure of propertyB, if no user can gain confi-
dence inA by learningB, subject to prior knowledge constraints. Privacy
is not violated if the disclosure ofB causes a loss of confidence inA. The
new notion of privacy is formalized using the well-known semantics for
reasoning about knowledge, where logical properties correspond to sets of
possible worlds (databases) that satisfy these properties. Database users are
modelled as either possibilistic agents whose knowledge isa set of possible
worlds, or as probabilistic agents whose knowledge is a probability distri-
bution on possible worlds.

We analyze the new privacy notion, show its relationship with the con-
ventional approach, and derive criteria that allow the auditor to test privacy
efficiently in some important cases. In particular, we provecharacteriza-
tion theorems for the possibilistic case, and study in depththe probabilistic
case under the assumption that all database records are considered a-priori
independent by the user, as well as under more relaxed (or absent) prior-
knowledge assumptions. In the probabilistic case we show that for certain
families of distributions there is no efficient algorithm totest whether an au-
dited propertyA is private given the disclosure of a propertyB, assuming
P 6= NP . Nevertheless, for many interesting families, such as the fam-
ily of product distributions, we obtain algorithms that areefficient both in
theory and in practice.
Categories and Subject Descriptors:H.2.7 [Database Manage-
ment] : Database Administration; F.2.1 [Analysis of Algorithms
and Problem Complexity] : Numerical Algorithms and Problems
General Terms: Algorithms, Security, Theory
Keywords: privacy, disclosure, auditing, query logs, reasoning
about knowledge, supermodularity, Positivstellensatz

1. INTRODUCTION
Today, privacy protection has become a popular and even fash-

ionable area of database research. This situation is, of course, quite
natural, given the importance of privacy in our social life and the
risks we face in the digital world. These risks were highlighted
by numerous recent reports of personal data theft and misappro-
priation, prompting many countries to enact data protection laws.
However, the current state of scientific knowledge still does not al-
low the implementation of a comprehensive privacy solutionthat
guarantees provable protection. In fact, the notion of privacy itself
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has many definitions and interpretations, some focused on theoret-
ical soundness, others on practical usefulness. This paperattempts
to reduce the gap between these two aspects by exploring more
flexible yet sound definitions.

One typical privacy enforcement problem, calledquery auditing,
is to determine if answering a user’s database query could lead to a
privacy breach. To state the problem more accurately, we assume
that the auditor is given:

• The database at the time of the user’s query, or some partial
knowledge about that database;

• A description of information considered sensitive, often
called theprivacy policyor theaudit query;

• Assumptions about the user’s prior knowledge of the
database, of the audit query/ privacy policy, and of the audi-
tor’s privacy enforcement strategy if it exists;

• The user’s query, or a range of queries.

The auditor wants to check whether answering a given query could
augment the user’s knowledge about some sensitive data, thereby
violating the privacy of that data. This problem has two extensions:
proactiveprivacy enforcement (also calledonline auditing[18]),
andretroactiveor offlineauditing.

In the proactive (online) privacy enforcement scenario, users is-
sue a stream of queries, and the database system decides whether
to answer or to deny each query. The denial, when it occurs, is
also an “answer” to some (implicit) query that depends on theau-
ditor’s privacy enforcement strategy, and therefore it maydisclose
sensitive data. The strategy has to be chosen in advance, before
the user’s queries become available. A strategy that protects pri-
vacy for a specified range of queries represents a solution tothis
auditing problem. An in-depth discussion of online auditing can be
found in [18, 23] and papers referenced therein.

In the retroactive (offline) scenario, the users issue theirqueries
and receive the answers; later, an auditor checks if a privacy viola-
tion might have occurred. The audit results are not made available
to the users, so the auditor’s behavior no longer factors into the dis-
closure of data, and this considerably simplifies the problem. This
also allows for more flexibility in defining sensitive information:
while in the proactive case the privacy policy is typically fixed and
open to the users, in the retroactive case the audit query itself may
be sensitive, e. g. based on an actual or suspected privacy breach [1,
22]. Retroactive auditing is the application that motivates this pa-
per, although our framework turns out to be fairly general.

To further illustrate the above, suppose Alice asks Bob for his
HIV status. Assume that Bob never lies and considers “HIV-
positive” to be sensitive information, while “HIV-negative” is for
him OK to disclose. Bob is HIV-negative at the moment; can he
adopt the proactive strategy of answering “I am HIV-negative” as
long as it is true? Unfortunately, this is not a safe strategy, because
if he does become HIV-positive in the future, he will have to deny



further inquiries, and Alice will infer that he contracted HIV. The
safest bet for Bob is to always refuse an answer.1

For the retroactive scenario, suppose that Bob contracted HIV
in 2006. Alice, Cindy and Mallory legitimately gained access to
Bob’s health records and learned his HIV status, but Alice and
Cindy did it in 2005 and Mallory did in 2007. Bob discovers that
his disease is known to the drug advertisers, and he initiates an au-
dit, specifying “HIV-positive” as the audit query. The audit will
place the suspicion on Mallory, but not on Alice and Cindy.

In legal practice, retroactive law enforcement has shown tobe
better suited to the complex needs of our society, although proactive
measures are used too, especially in simple or critical situations.
For example, a valuable item can be protected from theft by lock
and key (a proactive measure) or by the fear of being caught and
jailed (a retroactive measure). If it is simple to fence off the item
and distribute the keys to all authorized users, or if the item has
extraordinary value, then proactive defense is the best option, but
in less clear-cut cases this would be too cumbersome or intrusive.
After all, even an authorized user might steal or lose the item, and
even a stranger sometimes should be able to gain access to it,e. g.
in an emergency. Healthcare [2] is one area where the complexity
of data management is just too high to hope for a fully proactive
solution to privacy. The importance of offline disclosure auditing in
healthcare has been recognized by the U.S. President’s Information
Technology Advisory Committee [26], which recommended that
healthcare information systems have the capability to audit who has
accessed patient records. We believe in coexistence and importance
of both auditing approaches.

1.1 Privacy Definitions in Query Auditing
The art of encryption and cryptanalysis goes back to antiquity,

but the scientific maturity of privacy theory was made possible only
in modern times by mathematical modeling of the eavesdropper’s
knowledge. One of the first such models was proposed in 1949
by Claude Shannon [29], who introduced the notion ofperfect se-
crecy. Shannon suggested to represent the adversarial knowledge
by a probability distribution over possible private data values: prior
distribution before the cryptogram is revealed, and posterior dis-
tribution after the adversary sees the cryptogram (but not the key).
Perfect secrecy corresponds to the situation where the posterior dis-
tribution is identical to the prior, for every possible cryptogram.
This general idea has been later adapted and extended to manypri-
vacy frameworks and problems, including query auditing.

Denote byΩ the set of all possible databases, and byA andB
two properties of these databases; each databaseω ∈ Ω either has
or does not have each property. Assume that the actual database
satisfies bothA andB. Suppose that propertyA is sensitive, and
propertyB is what user Alice has learned by receiving the answer
to her query. Was the privacy ofA violated by the disclosure ofB?
This depends on what Alice knew before learningB; for example,
if she knew “B ⇒ A” (but did not knowA), thenB of course
revealedA to her. Miklau and Suciu [21] applied Shannon’s model
to this problem and declaredA to be private givenB if and only if

P [A |B] = P [A] (1)

for all probability distributionsP over Ω that might describe Al-
ice’s prior knowledge about the database. Unfortunately, if no con-
straints are placed onP , no pair(A,B) of non-trivial properties
will satisfy this privacy definition. Miklau and Suciu considered a
quite limiting, yet popular, constraint: that Alice treatsall database
recordsr ∈ ω independently, i. e.P is a product distribution:

P (ω) =
∏

r∈ω P [r] ×
∏

r/∈ω

(

1 − P [r]
)

1If Alice pays Bob for answers, he can balance privacy and profit by tossing
a coin and answering “I am HIV-negative” only if the coin falls heads.

Under this constraint, they prove that propertyA is private given
the disclosure ofB if and only if they share nocritical records
(Theorem 3.5 in [21]). A database record, real or imaginary,is
called “critical” for A (for B) if its presence or absence in some
database may decide the truth value forA (for B). One can see that,
even with prior knowledge restricted to product distributions, very
few practical queries would get privacy clearance: usuallywe can
find an imaginary record and a pair of imaginary databases,ωA for
A andωB for B, where inserting the record intoωA (into ωB) flips
the truth value ofA (of B). Perfect secrecy appears too demanding
to be practical.

A number of recent papers studied ways to relax condition (1)
and make it approximate. They follow the same principle: forcer-
tain pairs of numerical bounds(ρ1, ρ2), ρ1 < ρ2, require that

P [A] 6 ρ1 ⇒ P [A |B] 6 ρ2

whereP is a prior knowledge distribution. This idea is behind the
definition ofρ1-to-ρ2 privacy breach in [12]; Kenthapadiet al. [18]
use a slightly different version as part of their definition:

1 − λ 6 P [A |B] / P [A] 6 1/(1 − λ)

The Sub-Linear Queries (SuLQ) framework developed in [5, 10,
11] has a more sophisticated version with nice theoretical charac-
teristics:

Pr

[

log
P [A |B]

1 − P [A |B]
− log

P [A]

1 − P [A]
> ε

]

6 δ (2)

While there is no space here to thoroughly review these frame-
works, conceptually they all require that no user can gain much
confidence in the audited propertyA by learning the disclosed
propertyB, subject to prior knowledge constraints.

Perhaps surprisingly, however, all papers known to us, in their
proofs if not in their definitions, do not make any distinction be-
tweengainingandlosingthe confidence inA upon learningB. For
example, the SuLQ results remain in force if the privacy definition
of [5] is changed by placing the absolute value sign “|...|” over the
difference in (2). In some papers [11] the “|...|” appears in the def-
inition explicitly.

It turns out that taking advantage of the gain-vs.-loss distinction
yields a remarkable increase in the flexibility of query auditing.
To bring it into focus, we shall put aside the approximate privacy
relaxations and replace Eq. (1) with inequality

P [A |B] 6 P [A] (3)

That is, we call propertyA privategiven the disclosure of property
B when (3) holds for all distributionsP that are admissible as a
user’s prior knowledge. One might call this “semiperfect secrecy,”
for it has the same sort of “absolute” form as perfect secrecy. This
and related notions are the subject of this paper.

Let us illustrate its flexibility with a simple example of Alice
(a user) and Bob (a patient). The hospital’s databaseω has two
records:r1 = “Bob is HIV-positive” andr2 = “Bob had blood
transfusions.” The sensitive propertyA is the presence ofr1, i.e.
that Bob is HIV-positive. The propertyB that Alice queries and
learns is “r1 ∈ ω impliesr2 ∈ ω,” i. e. that “if Bob is HIV-positive,
then he had blood transfusions.”We make no constraints on Alice’s
prior knowledge distribution, other than a nonzero probability of
the actual database. Could the disclosure ofB violate the privacy
of A? Look at the following table of possible worlds:

r2 ∈ ω r2 /∈ ω

r1 ∈ ω A is true A is true F

r1 /∈ ω A is false A is false



For Alice, learningB has the effect of ruling out the cell marked
with a F, while leaving the other cells untouched. Whatever the
cells’ prior probabilities are, the odds ofA can only go down:
P [A |B] 6 P [A]. Thus, A is private with respect toB, even
thoughA andB share a critical recordr1, and regardless of any
possible dependence among the records.2

1.2 Summary of Results
This paper studies a notion of database privacy that makes it

illegal for users to gain confidence about sensitive facts, yet allows
arbitrary confidence loss. We begin in Sections 2 and 3 by introduc-
ing two novel privacy frameworks that implement the above con-
cept for two different knowledge representations: possibilistic and
probabilistic. We outline some properties of our privacy definitions
that are relevant to the problem of testing privacy, and giveneces-
sary and sufficient conditions for privacy with no restrictions on the
user’s prior knowledge.

Section 4 delves deeper into the possibilistic model. For cer-
tain important cases, notably when the constraints on a user’s prior
knowledge are intersection-closed (i. e. not violated by the collu-
sion of users), we give necessary and sufficient criteria fortesting
possibilistic privacy, which reduce the complexity of thisproblem.

Sections 5 and 6 focus on the more complex probabilistic model,
over the set{0, 1}n of Boolean vectors that represent subsets of
database records. Section 5 studies two probabilistic prior knowl-
edge constraints: bit-wise independence (product distributions) and
log-supermodularity. The bit-wise independence constraint was
used also in [21] by Miklau and Suciu, so our work can be viewed
as an extension of theirs. Log-supermodularity is chosen topro-
vide a “middle ground” between bit-wise independence and the
unconstrained prior knowledge. We give simple combinatorial
necessary criteria and sufficient criteria for privacy under the log-
supermodular and the product distribution constraints.

In Section 6, we study more general familiesΠ of distributions
over {0, 1}n that can be described by the intersection of a finite
number of polynomial inequalities in a finite number of real-valued
variables. We prove that even for certain very restrictedΠ , de-
ciding whether a setB ⊆ {0, 1}n violates the privacy of a set
A ⊆ {0, 1}n with respect to distributions inΠ cannot be done in
polynomial time, unlessP = NP .

We overcome this negative result in two ways. First, using some
deep results from algebraic geometry, we show that in certain inter-
esting cases, such as whenΠ is the family of product distributions,
there are provably efficient algorithms for deciding privacy. Sec-
ond, we describe the sum-of-squares heuristic for decidingprivacy
for any Π , which has been implemented and works remarkably
well in practice.

2. WORLDS AND AGENTS
Epistemology, the study of knowledge, has a long and honorable

tradition in philosophy, starting with the early Greek philosophers.
Philosophers were concerned with questions such as “What does it
mean to say that someone knows something?” In the 1950’s and
1960’s [17, 19, 33] the focus shifted more to developing anepis-
temic logic, a logic of knowledge, and trying to capture the inherent
properties of knowledge. Here there is a setΩ of possible worlds,
one of which is the “real world”ω∗. An agent’sknowledgeis a set
S ⊆ Ω of worlds that the agent considers possible. Since we are
modelingknowledgerather thanbelief, we require thatω∗ ∈ S.
If F is a (possible) fact, andA ⊆ Ω is the set of possible worlds
whereF is true, then we say that the agentknowsF iff S ⊆ A.

More recently, researchers in such diverse fields as economics,
linguistics, artificial intelligence, and theoretical computer science

2Note that if Bob proactively tells Alice “If I am HIV-positive, then I had
blood transfusions,” a privacy breach ofA may occur, because Alice may
learn more than justB.

have become interested in reasoning about knowledge [13]. The
focus of attention has shifted to pragmatic concerns about the re-
lationship between knowledge and action. That is our focus:the
effect of an action, such as the disclosure of certain information, on
the knowledge of an agent.

Worlds Let Ω be a finite set of all possible databases. We shall
call a databaseω ∈ Ω a world, and the entireΩ the set of all
possible worlds. The actual world, denoted byω∗, represents the
real database. Every property of the database, or assertionabout
its contents, can be formulated as “ω∗ ∈ A” whereA ⊆ Ω is the
set of all databases that satisfy the property. A subsetA ⊆ Ω that
containsω∗ shall be called aknowledge set.

Agents We shall think of database users asagentswho know
something about the worlds inΩ and who try to figure out which
ω ∈ Ω is the actual worldω∗. An agent’s knowledge can be mod-
elled in different ways; we shall consider two approaches. In a
possibilisticagent, knowledge is represented by a setS ⊆ Ω that
contains exactly all the worlds this agent considers possible. In par-
ticular,ω∗ ∈ S. Here every world is either possible or not, with no
ranking or score assigned. In aprobabilistic agent, knowledge is
represented by a probability distributionP : Ω → R+ that assigns
a nonnegative weightP (ω) to every world. We denote the sum
∑

ω∈A P (ω) by P [A], requiring thatP [Ω] = 1 andP (ω∗) > 0.

We say that a possibilistic agent with knowledgeS knowsa prop-
ertyA ⊆ Ω whenS ⊆ A. We say thatA is possiblefor this agent
whenS ∩ A 6= ∅, i. e. when the agent does not knowΩ − A. For
a probabilistic agent with distributionP , to knowA means to have
P [A] = 1, and to considerA possible means to haveP [A] > 0.

A functionQ that mapsΩ to another set shall be called aquery;
if its range is{0, 1} thenQ is aBooleanquery. For a given actual
world ω∗, each queryQ corresponds to the knowledge set associ-
ated with the query’s “actual” output:

{

ω ∈ Ω
∣

∣ Q(ω) = Q(ω∗)
}

.

The Auditor There is a special “meta-agent” calledthe audi-
tor whose task is to analyse the queries disclosed to the users and
determine which of these disclosures could breach privacy.The au-
ditor may or may not have complete information about the actual
world ω∗. For example, if the query disclosure occurred several
years ago, the record update logs may provide only a partial de-
scription of the database state at that moment. Even more impor-
tantly, the auditor does not know what the user’s knowledge of the
database was at the disclosure time. We characterize the auditor’s
knowledge by specifying which pairs of a databaseω and the user’s
knowledgeS (or P ) the auditor considers possible. Let us formally
define the auditor’s knowledge about a user:

Definition 2.1. (Possibilistic case) Apossibilistic knowledge
world is a pair(ω,S), whereω is a world andS is a knowledge
set, which satisfiesω ∈ S ⊆ Ω. The set of all possibilistic knowl-
edge worlds shall be denoted as

Ωposs :=
{

(ω,S)
∣

∣ ω ∈ S ⊆ Ω
}

Ωposs can be viewed as an extension ofΩ. For a given user whose
knowledge isS∗ ⊆ Ω, the pair(ω∗, S∗) ∈ Ωposs is called the
actual knowledge world. The auditor’s knowledge about the user
is defined as a non-empty setK ⊆ Ωposs of knowledge worlds,
which must include the actual knowledge world. We refer toK as
a second-level knowledge set.

Our knowledge worlds are similar to the 2-worlds of [14], except
that the 2-worlds of [14] would deal not only with the knowledge
that the user has of the world, but also with the knowledge that
the auditor has of the world, Also, our second-level knowledge sets
are similar to the 3-worlds of [14], except that the 3-worldsof [14]
would deal not only with the knowledge that the auditor has about
the user’s knowledge of the world, but also with the knowledge that
the user has about the auditor’s knowledge of the world.



Definition 2.2. (Probabilistic case) Aprobabilistic knowledge
world is a pair(ω,P ) whereP is a probability distribution over
Ω such thatP (ω) > 0. The set of all probabilistic knowledge
worlds shall be denoted as

Ωprob :=
{

(ω, P )
∣

∣ P is a distribution, P (ω) > 0
}

.

The actual knowledge world(ω∗, P ∗) ∈ Ωprob and the auditor’s
second-level knowledge setK ⊆ Ωprob are defined analogously to
the possibilistic case.

Remark 2.3.The requirement ofω ∈ S for every pair
(ω, S) ∈ Ωposs and ofP (ω) > 0 for every pair(ω,P ) ∈ Ωprob

represent our assumption that every agent considers the actual
world possible. All pairs that violate this assumption are excluded
as inconsistent. Note that a probabilistic pair(ω, P ) is consis-
tent iff the possibilistic pair

(

ω, supp(P )
)

is consistent, where
supp(P ) := {ω |P (ω) > 0}.

Remark 2.4.In practice, it may be computationally infeasible
to precisely characterize the auditor’s second-level knowledge and
to use this precisely characterized knowledge in the privacy defini-
tions. Instead, the auditor makes assumptions about the database
and the user’s knowledge by placing constraints on the possible
pairs(ω,S) or (ω, P ). These assumptions and constraints are also
represented by a second-level knowledge set, which must contain
the auditor’s precise knowledge set as a subset. From now on,when
we talk about the auditor’s knowledge set, we mean a supersetof
the actual knowledge set, unless stated otherwise.

Definitions 2.1 and 2.2 allow us to consider an auditor whose
assumptions about the user’s knowledge depend on the contents of
the database. For example, the auditor may assume that, if the hos-
pital database contains record “Bob’s doctor is Alice,” then Alice
knows Bob’s HIV status, but if there is no such record, then Alice
may or may not know it. However, in many situations we can sep-
arate the auditor’s knowledge about the database from the auditor’s
assumptions about the user. We do so by specifying two sets:

1. A non-empty setC ⊆ Ω that consists of all databases the
auditor considers possible, withω∗ ∈ C;

2. A family Σ of subsets ofΩ and/or a familyΠ of probability
distributions overΩ. The possibilistic agent’s knowledge has
to belong toΣ , the probabilistic agent’s knowledge has to
belong toΠ .

If the auditor knows the actual database exactly, e. g. by recon-
structing its state from the update logs, thenC = {ω∗}; if the
auditor has no information about the database or is unwilling to
take advantage of it, thenC = Ω. Some choices forΣ andΠ will
be discussed in the subsequent sections.

When we say that the auditor’s knowledge is represented byC
andΣ described above, we mean that all knowledge worlds(ω, S)
with ω ∈ C andS ∈ Σ , and none other, are considered possible
by the auditor. However, in most cases the auditor’s second-level
knowledge set cannot be the Cartesian productC × Σ , because it
contains inconsistent(ω,S) pairs (see Remark 2.3). The same is
true in the probabilistic case, forC andΠ . Let us then define a
product operation that excludes all inconsistent pairs:

Definition 2.5. Theproductof a setC ⊆ Ω and a familyΣ of
subsets ofΩ (a family Π of probability distributions overΩ) is a
second-level knowledge setC ⊗Σ (C ⊗Π ) defined by

C ⊗ Σ :=
{

(ω, S) ∈ C×Σ

∣

∣ ω ∈ S
}

= (C×Σ ) ∩ Ωposs

C ⊗ Π :=
{

(ω, P ) ∈ C×Π

∣

∣ P (ω)> 0
}

= (C×Π ) ∩ Ωprob

We call the pair(C,Σ ) or (C,Π ) consistentif their productC ⊗ Σ

or C ⊗ Π is non-empty, because∅ is not a valid second-level
knowledge set.

3. PRIVACY OF KNOWLEDGE
This section introduces the definition of privacy for the possi-

bilistic and the probabilistic knowledge models. LetA,B ⊆ Ω
be two arbitrary non-empty subsets ofΩ; as a shorthand, write
Ā = Ω − A andAB = A ∩ B. SetsA andB correspond to two
Boolean queries on the databaseω∗; e. g. queryA returns “true” iff
ω∗ ∈ A and “false” otherwise.

We shall study the following question: When could the disclo-
sure ofB violate the privacy ofA? In our model, a positive result
of queryA is considered private and needs protection, whereas a
negative result (that asserts̄A) is not protected. Neither the user
nor the auditor are assumed to know ifA is true, andA may ac-
tually be false. On the other hand,B represents the disclosed fact,
and thereforeB has to be true. The auditor knows thatB is true;
the user transitions from not knowingB to knowingB.

Conceptually, we say that propertyA is private, given the disclo-
sure of propertyB, if the user could not gain confidence inA by
learningB. Below we shall make this notion precise for the two
knowledge models, possibilistic and probabilistic. From now on,
we shall use pronoun “he” for the user and “she” for the auditor.

3.1 Possibilistic Privacy
Let us suppose first that the auditor knows everything: the actual

databaseω∗ such thatω∗ ∈ B, and the actual knowledge setS∗ of
the user at the time of the disclosure. In the possibilistic model, the
user may have only two “grades of confidence” in propertyA: he
either knowsA (S∗ ⊆ A), or he does not (S∗ 6⊆ A). The user gains
confidence iff he does not knowA before learningB (i. e.S∗ 6⊆ A)
and knowsA after learningB (i. e. S∗ ∩ B ⊆ A). Therefore,
the privacy ofA is preserved iff¬ (S∗ 6⊆ A & S∗ ∩ B ⊆ A), or
equivalently, iff

S∗ ∩ B ⊆ A ⇒ S∗ ⊆ A. (4)

Now, suppose that the auditor does not knowω∗ and S∗ pre-
cisely, but has a second-level knowledge setK ⊆ Ωposs such
that (ω∗, S∗) ∈ K. Then the auditor makes sure thatA is pri-
vate givenB by checking condition (4) for all pairs inK. Before
doing so, the auditor must discard fromK all pairs(ω,S) such that
ω /∈ B, because they are inconsistent with the disclosure ofB. We
arrive at the following possibilistic privacy definition:

Definition 3.1. SetA ⊆ Ω is calledK-privategiven the disclo-
sure of setB ⊆ Ω, for K ⊆ Ωposs, iff

∀ (ω, S) ∈ K :
(

ω ∈ B & S ∩ B ⊆ A
)

⇒ S ⊆ A. (5)

We denote this predicate bySafeK(A, B).

Remark 3.2.It is easy to see from (5) thatSafeK(A,B) and
K′ ⊆ K imply SafeK′ (A,B). Therefore, the auditor may assume
less than she actually knows, i. e. consider more knowledge worlds
possible, and still catch all privacy violations, at the expense of
restricting more queries.

When the auditor wants to separate her knowledge about the
database from her assumptions about the user’s knowledge, she
represents her second-level knowledge setK as a productC ⊗ Σ ,
where C ⊆ Ω and Σ is a family of subsets ofΩ. In this
case we shall use the term “(C,Σ )-private” and the notation
Safe C,Σ (A, B), which is defined asSafe C⊗Σ (A,B); let us also
useP (Ω) to denote the power set ofΩ.

PROPOSITION 3.3. For a consistent pair(C,Σ ) such that
C ⊆ Ω andΣ ⊆ P (Ω), the privacy predicateSafe C,Σ (A,B) can
be equivalently defined as follows: (denotingS ∩B ∩C asSBC)

∀S ∈ Σ :
(

SBC 6= ∅ & SB ⊆ A
)

⇒ S ⊆ A. (6)



3.2 Probabilistic Privacy
Once again, suppose first that the auditor knows the actual

databaseω∗ ∈ B and the actual probability distributionP ∗ that
represents the user’s knowledge prior to the disclosure. Asopposed
to Section 3.1, in the probabilistic model the user has a continuum
of “grades of confidence” inA, measured byP ∗[A]. The user gains
confidence iff hisprior probability ofA before learningB, which
is P ∗[A], is strictly smaller than hisposteriorprobability ofA after
B is disclosed, which isP ∗[A |B]. Therefore, the privacy ofA is
preserved iff

P ∗[A |B] 6 P ∗[A]. (7)

The conditional probabilityP ∗[A |B] is well-defined since
P ∗[B] > P ∗(ω∗) > 0.

When the auditor does not knowω∗ andP ∗, but has a second-
level knowledge setK ⊆ Ωprob such that(ω∗, P ∗) ∈ K, she has
to check inequality (7) for all possible pairs(ω,P ) in K. Before
doing so, she must discard all pairs(ω, P ) such thatω /∈ B. We
obtain the following probabilistic privacy definition:

Definition 3.4. SetA ⊆ Ω is calledK-privategiven the disclo-
sure of setB ⊆ Ω, for K ⊆ Ωprob, iff

∀ (ω,P ) ∈ K : ω ∈ B ⇒ P [A |B] 6 P [A]. (8)

As before, we denote this predicate bySafeK(A,B).

Remark 3.5.In the probabilistic case, too,SafeK(A, B) and
K′ ⊆ K imply SafeK′(A,B). Thus, Remark 3.2 applies here.

When the auditor’s knowledge can be represented as a product
C ⊗ Π for someC ⊆ Ω and some familyΠ of probability dis-
tributions overΩ, we shall use the term “(C,Π )-private” and the
notationSafe C,Π (A,B), which is defined asSafe C⊗Π (A,B). In
this case the following proposition can be used:

PROPOSITION 3.6. For a consistent pair(C,Π ) whereC ⊆ Ω
and Π is a family of distributions overΩ, the privacy predicate
Safe C,Π (A, B) can be equivalently defined as follows:

∀P ∈ Π : P [BC] > 0 ⇒ P [AB] 6 P [A]P [B]. (9)

In fact, the definition of privacy given by (9) can be further sim-
plified, for many familiesΠ that occur in practice:

Definition 3.7. We shall call a familyΠ ω-liftable for ω ∈ Ω
when ∀P ∈ Π such thatP (ω) = 0 it satisfies the condition

∀ ε > 0 ∃P ′ ∈ Π : P ′(ω) > 0 & ||P − P ′||∞ < ε. (10)

FamilyΠ is calledS-liftable for a setS ⊆ Ω iff Π is ω-liftable for
∀ω ∈ S. The norm||P − P ′||∞ := maxω∈Ω |P (ω) − P ′(ω)|.

PROPOSITION 3.8. For a consistent pair(C,Π ) such that fam-
ily Π is C-liftable, and givenBC 6= ∅ (since ω∗ ∈ BC), predi-
cateSafe C,Π (A,B) is equivalent toSafeΠ (A, B) defined as

SafeΠ (A,B)
def
⇐⇒ ∀P ∈ Π : P [AB] 6 P [A] P [B]. (11)

3.3 Knowledge Acquisition
An agent (a database user) modifies his knowledge when he re-

ceives a disclosed query result. The disclosed property is aknowl-
edge setB ⊆ Ω, telling the agent that every world inΩ − B is
impossible. We model the agent’s acquisition ofB as follows. A
possibilistic agent with prior knowledgeS ⊆ Ω, upon receivingB
such thatS ∩ B 6= ∅ (becauseω∗ ∈ S ∩ B), ends up with poste-
rior knowledgeS∩B. A probabilistic agent with prior distribution
P : Ω → R+, upon receivingB such thatP [B] > P (ω∗) > 0,
ends up with posterior distributionP (· |B) defined by

P (ω |B) =

{

P (ω)/P [B], ω ∈ B

0, ω ∈ Ω − B

The acquisition ofB1 followed by B2 is equivalent to the acqui-
sition of B1B2 = B1 ∩ B2. When the auditor’s second-level
knowledge setK represents her assumption about the user’s knowl-
edge, rather than her knowledge of the user’s knowledge (seeRe-
mark 2.4), she may want to require thatK remains a valid assump-
tion after each disclosure. This property is formalized below:

Definition 3.9. Let K be a second-level knowledge set, which
may be possibilistic (K ⊆ Ωposs) or probabilistic (K ⊆ Ωprob).
A set B ⊆ Ω is calledK-preservingwhen for all (ω,S) ∈ K
or (ω,P ) ∈ K such thatω ∈ B we have(ω,S ∩ B) ∈ K or
(

ω, P (· |B)
)

∈ K.

Suppose that knowledge setsB1 and B2 are individually safe
to disclose, while protecting the privacy ofA, to an agent whose
knowledge satisfies the constraints defined byK. If, afterB1 is dis-
closed, the updated agent’s knowledge still satisfies the constraints,
then it is safe to discloseB2 too. Thus, it is safe to disclose both sets
at once—as long as at least one of them preserves the constraints:

PROPOSITION 3.10. For every second-level knowledge setK,
possibilistic or probabilistic, we have:

1. B1 andB2 areK-preserving⇒ B1 ∩B2 is K-preserving;
2. If SafeK(A,B1) and SafeK(A, B2) and if at least one of

B1, B2 is K-preserving, thenSafeK(A, B1 ∩ B2).

3.4 Unrestricted Prior Knowledge
What is the characterization of privacy when the auditor knows

nothing? More formally, which knowledge setsA and B sat-
isfy K-privacy for K = Ωposs = Ω ⊗ P (Ω) and for
K = Ωprob = Ω ⊗ Pprob(Ω), wherePprob(Ω) is the set of all
probability distributions overΩ? Also, what is the answer to this
question if the auditor has complete information about the actual
world ω∗, but knows nothing about the user’s knowledge, i. e. for
K = {ω∗} ⊗ P (Ω) and for K = {ω∗} ⊗ Pprob(Ω)? Here is a
theorem that answers these questions:

THEOREM 3.11. For all setsA,B ⊆ Ω and for allω∗ ∈ B the
following four conditions are equivalent:

1. EitherA ∩ B = ∅, or A ∪ B = Ω ;
2. SafeK(A, B) for K = Ωposs ;
3. SafeK(A, B) for K = Ωprob ;

4. SafeK(A, B) for K = {ω∗} ⊗ Pprob(Ω) .

Also, the following two conditions are equivalent (againω∗ ∈ B):

1. A ∩ B = ∅, or A ∪ B = Ω, or ω∗ ∈ B −A ;
2. SafeK(A, B) for K = {ω∗} ⊗ P (Ω) .

Remark 3.12.In the auditing practice, the interesting case is
ω∗ ∈ A ∩ B, i. e. when the protected and the disclosed properties
are both true. In this caseA ∩ B 6= ∅ andω∗ /∈ B −A. Uncondi-
tional privacy can thus be tested by checking whetherA ∪ B = Ω,
i. e. whether “A or B” is always true.

4. POSSIBILISTIC CASE
In this section, we shall focus exclusively on the possibilistic

case; thusK ⊆ Ωposs. Proposition 4.1 below gives a necessary
and sufficient condition forK-preserving setsB to satisfy the pri-
vacy predicateSafeK(A, B), for a given and fixed setA. It asso-
ciates every worldω ∈ A with a “safety margin”β(ω) ⊆ Ω−A
which depends only onω, A andK. GivenB, the condition ver-
ifies whether everyω ∈ A occurs inB together with its “safety
margin,” or does not occur inB at all. The “safety margin” en-
sures that thisω will not revealA to the agent, no matter what prior
knowledgeS ∈ π2(K) the agent might have. (Byπi we denote
the projection operation.)



PROPOSITION 4.1. Let K ⊆ Ωposs be an arbitrary second-
level knowledge set, and letA ⊆ Ω. There exists a function
β : A → P (Ω−A) such that∀B ⊆ Ω

(

∀ω ∈ AB : β(ω) ⊆ B
)

⇒ SafeK(A, B), (12)

and ifB is K-preserving, then the converse holds:

SafeK(A, B) ⇒
(

∀ω ∈ AB : β(ω) ⊆ B
)

. (13)

Remark 4.2.In Proposition 4.1, the condition ofB being
K-preserving is essential for the converse implication (13). In-
deed, letΩ = {1, 2, 3}, K = Ω ⊗ {Ω}, andA = {3}. Then both
B1 = {1, 3} andB2 = {2, 3} protect theK-privacy of A, yet
B1 ∩ B2 = {3} does not. So, there is no suitable value forβ(3).
However, see Corollary 4.14 for more on this subject.

The characterization in Proposition 4.1 could be quite useful for
auditing a lot of propertiesB1, B2, . . . , BN disclosed over a period
of time, using the same audit queryA. GivenA, the auditor would
compute the mappingβ once, and use it to test everyBi. This
comment applies to Section 4.1 as well.

4.1 Intersection-Closed Knowledge
Motivation. When two or more possibilistic agents collude, i. e.
join forces in attacking protected information, their knowledge sets
intersect: they jointly consider a world possible if and only if none
of them has ruled it out. Therefore, if the auditor wants to ac-
count for potential collusions, she must consider knowledge world
(ω, S1 ∩ S2) possible whenever she considers both(ω, S1) and
(ω, S2) possible. This motivates the following definition:

Definition 4.3. A second-level knowledge setK ⊆ Ωposs is
intersection-closed, or ∩-closedfor short, iff ∀ (ω, S1) ∈ K and
∀ (ω,S2) ∈ K we have(ω, S1 ∩ S2) ∈ K. Note that we intersect
the user’s knowledge sets(ω, S1) and(ω, S2) only when they are
paired with the same worldω.

One way to obtain a second-level knowledge setK ⊆ Ωposs

that is∩-closed is by taking an∩-closed familyΣ of subsets ofΩ
(such that∀S1, S2 ∈ Σ : S1 ∩S2 ∈ Σ ) and computing the product
K = C ⊗ Σ with some knowledge setC.

Intervals. When the auditor’s knowledge is∩-closed, the notion
of an “interval” between two worlds becomes central in character-
izing the privacy relation:

Definition 4.4. Let K ⊆ Ωposs be∩-closed, and letω1, ω2 ∈ Ω
be two worlds such that

ω1 ∈ π1(K), ω2 ∈
⋃

{

S
∣

∣ (ω1, S) ∈ K
}

. (14)

The K-interval from ω1 to ω2, denoted byIK(ω1, ω2), is the
smallest setS such that(ω1, S) ∈ K andω2 ∈ S, or equivalently:

IK(ω1, ω2) :=
⋂

{

S
∣

∣ (ω1, S) ∈ K, ω2 ∈ S
}

.

If the worldsω1, ω2 do not satisfy conditions (14), we shall say that
intervalIK(ω1, ω2) does not exist.

The following proposition shows that we need to know only the
intervals in order to check whether or notSafeK(A, B) holds:

PROPOSITION 4.5. For an∩-closed setK ⊆ Ωposs and for all
A, B ⊆ Ω, we haveSafeK(A,B) if and only if

∀ IK(ω1, ω2) : ω1 ∈ AB & ω2 /∈ A

⇒ IK(ω1, ω2) ∩ (B − A) 6= ∅. (15)

Figure 1: An example of an∩-closedK ⊆ Ωposs where the
worlds are the pixels inside the14 × 7 rectangle (such asω1,
ω2 and ω′

2), and the permitted user’s knowledge sets are the
integer sub-rectangles (i. e. composed of whole squares). Set Ā
is the complement of the privacy-sensitive knowledge set. See
Example 4.9 for details.

Remark 4.6.As implied by Proposition 4.5, there is no need
to store the entire∩-closed second-level knowledge setK (which
could require|Ω| · 2|Ω| bits of data) in order to test the possibilistic
privacy. It is sufficient to store one setIK(ω1, ω2) ⊆ Ω, or the fact
of its non-existence, for each pair(ω1, ω2) ∈ Ω × Ω, i. e. at most
|Ω|3 bits of data.

Minimal intervals. In fact, in Proposition 4.5 we do not even
have to check all intervals; it is enough to consider just “minimal”
intervals defined as follows:

Definition 4.7. For an ∩-closed second-level knowledge set
K ⊆ Ωposs, for a world ω1 ∈ Ω and for a setX ⊆ Ω not con-
tainingω1, an intervalIK(ω1, ω2) is called aminimalK-interval
fromω1 to X iff ω2 ∈ X and

∀ω′
2 ∈ X ∩ IK(ω1, ω2) : IK(ω1, ω

′
2) = IK(ω1, ω2).

PROPOSITION 4.8. For an ∩-closed setK ⊆ Ωposs and for
∀A,B ⊆ Ω, we haveSafeK(A,B) if and only if the formula (15)
holds over all intervalsIK(ω1, ω2) that are minimal from a world
ω1 ∈ AB to the setΩ−A.

Example 4.9.Let Ω be an area of the plane that is bounded by
a rectangle and discretized into pixels to ensure finiteness(the area
within the14×7 rectangle on Figure 1). Let the worlds be the pix-
els. Consider an auditor who does not know the actual databaseω∗

and who assumes that the user’s prior knowledge setS ∈ Σ is an
integer rectangle, i. e. a rectangle whose four corners haveinteger
coordinates (corresponding to the vertical and horizontallines in
the picture). The familyΣ of integer rectangles is∩-closed, and so
is the auditor’s second-level knowledge setK = Ω ⊗ Σ .

Given ω1, ω2 ∈ Ω, the intervalIK(ω1, ω2) is the smallest in-
teger rectangle that contains bothω1 and ω2. For ω1 and ω2 in
Figure 1, the intervalIK(ω1, ω2) is the light-grey rectangle from
point (1, 1) to point (4, 4); forω1 andω′

2, the intervalIK(ω1, ω
′
2)

is the rectangle from point(1, 1) to point(9, 3).
The intervalIK(ω1, ω2) shown on the picture is one of the

three minimal intervals fromω1 to set Ā (the area bounded
by the ellipse). The other two minimal intervals are the rect-
angles(1, 1)−(5, 3) and (1, 1)−(6, 2). Every setS such that
(ω1, S) ∈ K andS  A, e. g. the intervalIK(ω1, ω

′
2), must con-

tain at least one of the three minimal intervals, implying Proposi-
tion 4.8 for the case of the actual worldω∗ = ω1.

Interval-induced partitions of Ā. Let us have a closer look at
the minimalK-intervals from a given worldω1 ∈ A to the set



Ā = Ω−A. For everyω2 ∈ Ā, the intervalIK(ω1, ω2), if it
exists, is either minimal or not; if it is not minimal, thenω2 cannot
belong to any minimal interval fromω1 to Ā. Now, take some
pair ω2, ω

′
2 ∈ Ā such that bothIK(ω1, ω2) andIK(ω1, ω

′
2) are

minimal. There are two possible situations:

1. IK(ω1, ω2) = IK(ω1, ω
′
2), or

2. IK(ω1, ω2) ∩ IK(ω1, ω
′
2) ∩ Ā = ∅.

Indeed, if∃ω′′
2 ∈ IK(ω1, ω2)∩ IK(ω1, ω

′
2)∩ Ā, then by Defini-

tion 4.7 the intervalIK(ω1, ω
′′
2 ) equals both of the minimal inter-

vals, making them equal. We have thus shown the following

PROPOSITION 4.10. Given an∩-closed setK ⊆ Ωposs, a set
A ⊆ Ω, and a world ω1 ∈ A, the minimalK-intervals from
ω1 to Ā partition setĀ into disjoint equivalence classes

Ā = D1 ∪ D2 ∪ . . . ∪ Dm ∪ D′

where two worldsω2, ω
′
2 ∈ Ā belong to the same classDi iff they

both belong to the same minimal interval, or (classD′) when they
both do not belong to any minimal interval.

Definition 4.11. In the assumptions and in the notation of
Proposition 4.10, denote

∆K(Ā, ω1) := {D1, D2, . . . , Dm}.

In other words,∆K(Ā, ω1) is the disjoint collection of all sets
formed by intersectinḡA with the minimal intervals fromω1 to Ā.

COROLLARY 4.12. Given an∩-closed setK ⊆ Ωposs, for all
A, B ⊆ Ω we haveSafeK(A,B) if and only if

∀ω1 ∈ AB, ∀Di ∈ ∆K(Ā, ω1) : B ∩ Di 6= ∅. (16)

As Figure 1 illustrates for Example 4.9, the three minimal in-
tervals fromω1 to Ā formed by integer rectangles(1, 1)−(4, 4),
(1, 1)−(5, 3) and(1, 1)−(6, 2) are disjoint insideĀ. Their inter-
sections withĀ, shown hatched in Figure 1, constitute the collec-
tion ∆K(Ā, ω1). A disclosed setB is private, assumingω∗ = ω1,
iff B intersects each of these three intervals insideĀ.

The case of all-singleton∆K ’s. If set K satisfies the property
defined next, privacy testing is simplified still further:

Definition 4.13.An ∩-closed setK ⊆ Ωposs hastight intervals
iff for every K-intervalIK(ω1, ω2) we have

∀ω′
2 ∈ IK(ω1, ω2) : ω′

2 6= ω2 ⇒ IK(ω1, ω
′
2)  IK(ω1, ω2).

WhenK has tight intervals, every minimal intervalIK(ω1, ω2)
from ω1 ∈ A to Ā hasexactly oneof its elements inĀ, namelyω2:
Ā ∩ IK(ω1, ω2) = {ω2}. Then all equivalence classesDi in
∆K(Ā, ω1) are singletons, and Corollary 4.12 takes the form of
Proposition 4.1:

COROLLARY 4.14. LetK ⊆ Ωposs be an∩-closed set that has
tight intervals, letA ⊆ Ω. Then∃β : A → P (Ω−A) given by

∀ω1 ∈ A : β(ω1) :=
⋃

∆K(Ā, ω1)

such that∀B ⊆ Ω

SafeK(A, B) ⇔ (∀ω1 ∈ AB : β(ω1) ⊆ B) .

Having tight intervals is essential for Corollary 4.14 to hold; see
Remark 4.2 for a counterexample where an∩-closedK does not
have tight intervals.

5. MODULARITY ASSUMPTIONS FOR
PROBABILISTIC KNOWLEDGE

In the previous section we clarified some general propertiesof
possibilistic knowledge; now we turn to the more complex prob-
abilistic case. Rather than studying arbitrary probabilistic knowl-
edge families, here we shall focus on a few specific, yet important,
families of distributions. Later, in Section 6, we present more so-
phisticated approaches that extend beyond these families.

From now on, we assume thatΩ = {0, 1}n for some fixedn.
Let ω1 ∧ ω2 (ω1 ∨ ω2, ω1 ⊕ ω2) be the bit-wise “AND” (“OR”,
“XOR”), and define the partial orderω1 6 ω2 to mean “∀ i =
1 . . . n: ω1[i] = 1 ⇒ ω2[i] = 1.” A set S ⊆ Ω shall be called an
up-set(a down-set) when∀ω1 ∈ S, ∀ω2 > ω1 (∀ω2 6 ω1) we
haveω2 ∈ S.

Definition 5.1. A probability distributionP over Ω is called
log-supermodular(log-submodular)3 when the following holds:

∀ω1, ω2 ∈ Ω : P (ω1) P (ω2) 6 (>) P (ω1 ∧ ω2) P (ω1 ∨ ω2)

The family of all log-supermodular distributions shall be denoted
by Π

+
m

, the family of all log-submodular distributions byΠ−
m

.
A distributionP is called aproduct distributionif it makes every

coordinate independent. Every product distribution corresponds to
a vector(p1, . . . , pn) of Bernoulli probabilities, eachpi ∈ [0, 1],
such that

∀ω ∈ {0, 1}n : P (ω) =
∏n

i=1 p
ω[i]
i · (1 − pi)

1−ω[i] (17)

The family of all product distributions shall be denoted byΠ
0
m

. It
is easy to show thatΠ 0

m
= Π

−
m

∩ Π
+
m

[20]. In fact,P is a product
distribution if and only if

∀ω1, ω2 ∈ Ω : P (ω1)P (ω2) = P (ω1 ∧ ω2)P (ω1 ∨ ω2) (18)

Supermodular and submodular functions occur often in mathe-
matics and have been extensively studied [15, 20]. Our goal in con-
sidering these assumptions was to substantially relax bit-wise inde-
pendence while staying away from the unconstrained case. Besides
that, the log-supermodular assumption (as implied by Theorem 5.3
below) describes situations where no negative correlations are per-
mitted between positive events—something we might expect from
knowledge about, say, HIV incidence among humans.

PROPOSITION5.2 (Π+
m

SAFETY: NECESSARY CRITERION).

For all A, B ⊆ Ω = {0, 1}n, we have:

Safe
Π

+
m

(A, B) ⇒ ∀ω1 ∈ AB, ∀ω2 ∈ ĀB̄ : (19)
(

ω1 ∧ω2 ∈ A−B
ω1 ∨ω2 ∈ B −A

)

or

(

ω1 ∧ω2 ∈ B −A
ω1 ∨ω2 ∈ A−B

)

Our sufficient criterion forΠ+
m

-safety has a very similar
form, and relies on the following well-known theorem [3] (see
also [6], §19):

THEOREM 5.3 (FOUR FUNCTIONS THEOREM). Let L be a
distributive lattice, and letα, β, γ, δ : L → R+. For all A, B ⊆ L
denotef [A] =

∑

a∈A f(a), A ∨ B = {a ∨ b | a ∈ A, b ∈ B},
andA ∧ B = {a ∧ b | a ∈ A, b ∈ B}. Then the inequality

α[A] · β[B] 6 γ[A ∨ B] · δ[A ∧ B]

holds for all subsetsA, B ⊆ L if and only if it holds for one-
element subsets, i. e. iff

α(a) · β(b) 6 γ(a ∨ b) · δ(a ∧ b)

for all elementsa, b ∈ L.
3The “log-” means that supermodularity is multiplicative, not additive. The
subscript “m” in Π

−
m , Π+

m etc. means “modular.”



PROPOSITION5.4 (Π+
m

SAFETY: SUFFICIENT CRITERION).

For all A, B ⊆ Ω = {0, 1}n, either one of the two conditions
below is sufficient to establishSafe

Π
+
m

(A, B) :

• AB ∧ ĀB̄ ⊆ A−B and AB ∨ ĀB̄ ⊆ B −A;
• AB ∨ ĀB̄ ⊆ A−B and AB ∧ ĀB̄ ⊆ B −A.

COROLLARY 5.5. If A is an up-set andB is a down-set (or vice
versa), thenSafe

Π
+
m

(A, B).

Remark 5.6.Thus, if the user’s prior knowledge is assumed to
be inΠ

+
m

, a “no” answer to a monotone Boolean query always pre-
serves the privacy of a “yes” answer to another monotone Boolean
query. Roughly speaking, it is OK to disclose a negative factwhile
protecting a positive fact. This observation is especiallyhelpful
when A andB are given by query language expressions, whose
monotonicity is often obvious.

5.1 Product Distributions
In this section we shall study the problem of checking the privacy

relation SafeΠ0
m

(A,B) for setsA, B ⊆ Ω = {0, 1}n over the
family Π

0
m

of product distributions. Theindependencerelation that
holds iff P [A]P [B] = P [AB] for all P ∈ Π

0
m

, and which we
denote byA⊥Π0

m

B, has been studied by Miklau and Suciu in [21]
who proved the following necessary and sufficient criterion:

THEOREM 5.7 (MIKLAU & SUCIU). For all A,B ⊆ Ω,
A ⊥Π0

m

B if and only if setsA and B “share no critical co-
ordinates,” i. e. when coordinates1, 2, . . . , n can be rearranged
so that onlyω[1], ω[2], . . . , ω[k] determine ifω ∈ A, and only
ω[k + 1], ω[k + 2], . . . , ω[k′], k′

6 n, determine ifω ∈ B.

SinceA ⊥Π0
m

B impliesSafeΠ0
m

(A, B), the Miklau-Suciu cri-
terion is a sufficient criterion for our notion of privacy. Itis not a
necessary one, even forn = 2: we haveSafeΠ0

m

(X1, X̄1 ∪X2)

but notX1 ⊥Π0
m

(X̄1 ∪X2), whereXi = {ω ∈ Ω |ω[i] = 1}.

Another sufficient criterion is given by Proposition 5.4, ifwe
note thatΠ 0

m
⊂ Π

+
m

; it implies SafeΠ0
m

(A, B) wheneverA is an
up-set andB is a down-set, or vice versa (Corollary 5.5). A little
more generally,SafeΠ0

m

(A, B) holds if there exists a mask vector
z ∈ Ω such thatz ⊕A is an up-set andz ⊕B is a down-set. Let us
call this criterion themonotonicity criterion.

It turns out that both the Miklau-Suciu and the monotonicitycri-
teria are special cases of another simple yet surprisingly strong suf-
ficient criterion forSafeΠ0

m

(A, B). This sufficient criterion shall be
called thecancellation criterion, because its verification is equiva-
lent to cancelling identical monomial terms in the algebraic expan-
sion for the difference

P [AB̄] P [ĀB] − P [AB]P [ĀB̄] = P [A]P [B] − P [AB],

whereP is a product distribution written as in (17). In order to for-
mulate the criterion in combinatorial (rather than algebraic) terms,
we need the following definition:

Definition 5.8. The pairwise matching functionMatch(u, v)
maps a pair(u, v) of vectors fromΩ = {0, 1}n to a singlematch-
vectorw = Match(u, v) in {0, 1, ∗}n as follows:

∀ i = 1 . . . n : w[i] =

{

u[i] if u[i] = v[i];

∗ if u[i] 6= v[i].

For example, pair(01011, 01101) gets mapped into01∗∗1. We say
thatv ∈ Ω refinesa match-vectorw whenv can be obtained fromw
by replacing its every star with a 0 or a 1. For every match-vectorw,
define the following two sets:

Box(w) :=
{

v ∈ Ω
∣

∣ v refinesw
}

;

Circ(w) :=
{

(u, v) ∈ Ω×Ω
∣

∣ Match(u, v) = w
}

.

Now we are ready to state the cancellation criterion, which is a
sufficient criterion forSafeΠ0

m

(A, B), and also state a necessary
criterion of a similar form, for comparison:

PROPOSITION5.9 (CANCELLATION CRITERION). For all
A, B ⊆ Ω , in order to establishSafeΠ0

m

(A,B) it is sufficient to
verify the following∀w ∈ {0, 1, ∗}n :

∣

∣AB̄ × ĀB ∩ Circ(w)
∣

∣ >
∣

∣AB × ĀB̄ ∩ Circ(w)
∣

∣.

PROPOSITION5.10 (A NECESSARY CRITERION). For all
A, B ⊆ Ω , if SafeΠ0

m

(A, B) holds, then∀w ∈ {0, 1, ∗}n :

∣

∣AB̄ ∩ Box(w)
∣

∣ ·
∣

∣ĀB ∩ Box(w)
∣

∣ >

>
∣

∣AB ∩ Box(w)
∣

∣ ·
∣

∣ĀB̄ ∩ Box(w)
∣

∣.

We hope that the combinatorial simplicity of the criterion given
by Proposition 5.9 will allow highly scalable implementations that
apply in real-life database auditing scenarios, where setsA andB
are given via expressions in a query language. The theorem below
justifies our interest in the cancellation criterion:

THEOREM 5.11. If setsA, B satisfy the Miklau-Suciu criterion
or the monotonicity criterion, they also satisfy the cancellation cri-
terion.

Remark 5.12.The cancellation criterion is only sufficient, but
not necessary. Here is a pair of sets that satisfiesSafeΠ0

m

(A, B)

and does not satisfy the criterion:A = {011, 100, 110, 111} and
B = {010, 101, 110, 111}. Specifically, for these sets we have
∣

∣AB̄ × ĀB ∩Circ(∗∗∗)
∣

∣ = 0 and
∣

∣AB × ĀB̄ ∩ Circ(∗∗∗)
∣

∣ = 2.

6. GENERAL ALGEBRAIC APPROACHES
We use techniques from multivariate polynomial optimization to

test safety with respect to certain familiesΠ of prior distributions
on an agent’s knowledge. Recall that a setA ⊆ Ω is Π -safe given
B ⊆ Ω when for all distributionsP ∈ Π , we haveP [AB] 6

P [A] · P [B]. As in some previous sections, we identify the setΩ
of possible worlds with the hypercube{0, 1}n.

For eachx ∈ {0, 1}n, we create variablespx ∈ [0, 1]. We con-
sider those familiesΠ containing distributions(px)x∈{0,1}n which
can be described by the intersection of a finite numberr of polyno-
mial inequalities:

α1((px)x∈{0,1}n) > 0, . . . , αr((px)x∈{0,1}n) > 0,
∑

x∈{0,1}n px = 1, ∀x px > 0.

We call such a familyΠ algebraic. For example, if we had the
family of log-submodular distributions, then for allx, y ∈ {0, 1}n,
we would have the constraintαx,y = pxpy − px∧ypx∨y > 0.
For the family of log-supermodular distributions, we wouldinstead
haveαx,y = px∧ypx∨y − pxpy > 0. Finally, for the family of
product distributions, we would have bothpxpy − px∧ypx∨y > 0
andpx∧ypx∨y − pxpy > 0.

For setsA andB, and a family of distributionsΠ , we define the
setK(A, B,Π ) of distributions(px)x∈{0,1}n to be:

∑

w∈AB

pw >
∑

x∈A

px

∑

y∈B

py

α1((px)x∈{0,1}n) > 0, . . . , αr((px)x∈{0,1}n) > 0
∑

x∈{0,1}n px = 1, ∀x px > 0.

The following proposition is an equivalent algebraic formulation
of the fact that in order forSafeΠ (A,B) to hold, there cannot be a
single distributionP ∈ Π for whichP [AB] > P [A] · P [B].



PROPOSITION 6.1. SafeΠ (A,B) iff the set K(A, B,Π ) is
empty.

We are interested in algorithms that decide emptiness of

K(A, B,Π ) in time polynomial or nearly polynomial inN
def
= 2n.

Note thatN does not need to be the number of possible worlds, but
rather only the potentially much smaller number of possiblerel-
evant worldsin the desired application. For example, if the agent
executes a combination of PROJECT and SELECT queries in SQL,
he may be left only with a subsetS of possible records with a small
number of attributes and values for those attributes. In this case,
the numberN of possible relevant worlds could by very small, and
algorithms for testing safety of additional queries onS which run
in time polynomial or quasi-polynomial inN would be efficient.

As the following theorem shows, even when the numberN of
possible relevant worlds is small, we may need to restrict the class
of distributionsΠ that we consider in order to efficiently test safety.

THEOREM 6.2. If P 6= NP , there is an algebraicΠ for which
r = poly(N), eachαi has degree at most2, and for which decid-
ing SafeΠ (A,B) cannot be done inpoly(N) time.

PROOF. (sketch) The main idea is a reduction from a restricted
version of the decision problem ofMAX-CUT. We carefully choose
constraints defining the familyΠ so that given a graphG on t
vertices, we can encodeG into setsA, B ⊆ {0, 1}n so that
the constraints definingΠ together with the constraintP [AB] >
P [A] ·P [B] define a non-empty setK(A, B,Π ) iff the maximum
cut size inG is sufficiently large. We need to suitably restrict the
decision version ofMAX-CUT so that this is possible. Here we
requireN = poly(t). We defer the details of the proof to the full
paper.

Despite this negative result, for certain interesting families Π we
obtain efficient algorithms, as we now discuss.

6.1 Specific Distributions
We first obtain a necessary and sufficient condition forA,B ⊆

{0, 1}n to be safe with respect to the familyΠ of product dis-
tributions by providing a deterministic algorithm. Its running
time is NO(lg lg N), which is essentially polynomial for all prac-
tical purposes. The key observation is that whileK(A, B,Π ) is
N = 2n-dimensional for general families of distributions, for prod-
uct distributions it can be embedded intoRn.

Indeed, it is easy to see thatK(A, B,Π ) can be defined in vari-
ablesp1, . . . , pn ∈ R constrained bypi(1−pi) > 0, and for which
P [AB] > P [A] ·P [B], whereP (ω) =

∏n
i=1 p

ω[i]
i · (1−pi)

1−ω[i]

for all ω ∈ {0, 1}n. We can write this withn variables andn + 1
inequalities. We apply the following simplified form of Theorem 3
of Basu, Pollack, and Roy [4]:

THEOREM 6.3. Given a setK = {β1, . . . , βr} of r polyno-
mials each of degree at mostd in s variables with coefficients in
R, the problem of deciding whether there existX1, . . . , Xs ∈ R
for whichβ1(X1, . . . , Xs) > 0, . . . , βr(X1, . . . , Xs) > 0, can be
solved deterministically withτ (rd)O(k) bit operations, whereτ is
the number of bits needed to describe a coefficient inβ1, . . . , βr.

We apply this theorem to the setK = K(A, B,Π ). From the
program above it is easy to see thatτ, r, d, ands are all linear inn,
and so emptiness (and hence safety) for product distributions can
be decided innO(n) = NO(lg lg N) time.

The algorithm of Basu, Pollack, and Roy uses sophisticated ideas
from algebraic geometry overR, and we cannot do it justice here.
The general approach taken by such algorithms is to reduce a sys-
tem of polynomial inequalities into a system of polynomial equal-
ities by introducing slack variables, and then combining the mul-
tivariate polynomial equalitiespi(x) = 0 into a single equality

q(x)
def
=

∑

x p2
i (x) = 0. One finds the critical points ofq(x), that

is, the setVC of common zeros of its partial derivatives over the
complex fieldC. By perturbingq(x) and applying Bézout’s Theo-
rem, one can show that|VC| is finite. Various approaches are used
to find the subsetVR of VC of real-valued points. SinceVR is finite,
once it is foundq is evaluated on each of its elements and the min-
imum value is taken. The main step is findingVR, and approaches
based on Gröbner bases, resultant theory, and homotopy theory ex-
ist (see [25]). The algorithm of [4] may be practical. Indeed, a
similar algorithm of Canny was implemented [7].

This approach generalizes to other algebraic familiesΠ de-
scribed bypoly(n) constraints andO(n) variables. For instance, a
family of distributions for whichpx = py whenever the Hamming
weight ofx andy are equal is described byn + 1 variables.

Even when the familyΠ of distributions requiresN variables
to describe, in certain cases we can obtain a polynomial-time algo-
rithm for testing safety with respect toΠ . Indeed, if the constraints
αi defining Π have degree at most2 and there are only a con-
stant numberr of them, an algorithm in [16] shows how to decide
emptiness ofK(A, B,Π ) in NO(r) time. This algorithm makes
black-box use of the earlier algorithm of Basu, Pollack, andRoy
[4]. As an optimization, we note that if there are multiple linear
equality constraintsLi(X1, . . . , Xs) = 0, it is helpful to combine
them into a single quadratic constraint

∑

i L2
i = 0. This is because

the running time is exponential in the number of constraints.

6.2 Heuristics
For most families of distributions we will have to settle fora

heuristic or an approximation for testing safety. If the program
describingK(A, B,Π ) is multilinear (e.g., one can show this is
the case for log-submodular and log-supermodular distributions),
there are heuristics such as branch-and-bound or cutting-plane
techniques. See page 2 of [9].

Here we describe the arguably most practical heuristic, thesum-
of-squaresheuristic, introduced in [30, 31, 24], which works even
for systems that are not multilinear. This heuristic was imple-
mented with great success in [25].

The problem of minimizing a degree-d multivariate polynomial
f over a setK ⊆ Rs is equivalent to finding the maximumγ ∈ R
for which f(x) − γ > 0 for all x ∈ K. Let Pd

+(K) be the set
of all polynomials inR[x1, . . . , xs] of degree at mostd which are
non-negative on every point inK. Thus, our problem is to find the
maximumγ ∈ R for whichf(x) − γ ∈ Pd

+(K).
It is unknown how to optimize overPd

+(K) efficiently, and so
the following indirect route is taken. Define the setΣ2 :

Σ2 = {f(x) ∈ R[x1, . . . , xs] | ∃t, g1(x), . . . , gt(x)

∈ R[x1, . . . , xs] s.t.f(x) =
∑t

i=1 gi(x)2}.

Notice thatΣ2 is a subset of non-negative polynomials, as every
sum of squares of polynomials is non-negative. It turns out thatΣ2

is in fact a strict subset of the non-negative polynomials, as shown
non-constructively by Hilbert, and constructively by Motzkin who
provided the polynomial

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2.

Motzkin showedM(x, y, z) is non-negative onR3, yet inexpress-
ible as a sum of squares of polynomials. It turns out that every
non-negative polynomial can be written as a sum of squares ofra-
tional functions (functions of the formgi(x)/hi(x) for polynomi-
alsgi andhi), which was Hilbert’s 17th problem, solved by Artin in
1927. WhileΣ2 fails to capture all non-negative polynomials, the
following proposition is a compelling reason for studying it. The
proposition is proven using semidefinite programming.

PROPOSITION 6.4. For f ∈ R[x1, . . . , xs] of bounded degree,
the test “f(x) ∈ Σ2” can be done inpoly(s) time.



Let Σ2,d be thosef(x) ∈ Σ2 of degree at mostd. ThenΣ2,d ⊆

Pd
+(R). To minimizef(x) overRs, we find the largestλ ∈ R for

whichf(x)−λ ∈ Σ2,d via a binary search onλ and the proposition
above. The valueλ is a lower bound onf(x) and in practice almost
always agrees with the true minimum off [25].

To minimizef(x) over a setK constrained by polynomials, we
need a few more tools. We could reduce the problem to minimizing
a single polynomial, as mentioned in Section 6.1, but the following
may work better in practice. We follow the presentation in [8].

Definition 6.5. The Algebraic Cone generated by elements
β1, . . . , βt ∈ R[x1, . . . , xs] is the set,

A(β1, . . . , βt)
def
= {f ∈ R[x1, . . . , xl] | f = η +

∑

I⊆[t]

ηI

∏

i∈I

βi},

whereη and theηI are inΣ2, and[t] = {1, 2, . . . , t}.

Thus, the algebraic cone can be thought of as the set of all affine
combinations of all possible products of polynomialsβ1, . . . , βt,
where the coefficients of the affine combination are taken from Σ2.

Definition 6.6. The Multiplicative MonoidM(β1, . . . , βt) gen-
erated byβ1, . . . , βt ∈ R[x1, . . . , xs] is the set of finite products
of theβi, including the empty product which we set to1.
The key result is a simplified form of the Positivstellensatz[32]:

THEOREM 6.7. Given polynomials{f1, . . . , ft1}, {g1, . . . , gt2}
in R[x1, . . . , xs], the set

K
def
= {x ∈ Rs : fi(x) > 0, gj(x) 6= 0,∀i ∈ [t1], j ∈ [t2]}

is empty iff ∃F ∈ A(f1, . . . , ft1) and G ∈ M(g1, . . . , gt2) for
whichF + G2 is the zero polynomial.

Thus, for a setK described byfi, andgj of the form above, we
considerK′ = K ∩ {x ∈ Rs | γ − f(x) > 0, f(x)− γ 6= 0}. K′

is empty ifff(x) > γ for all x ∈ K.
Heuristics implemented in practice work by choosing a degree

boundD, generating allG ∈ M(f − γ, g1, . . . , gt2) of degree
at mostD (there are at mosttD

2 suchG), and checking if there
is an F ∈ A(γ − f, f1, . . . , ft1) for which F + G2 = 0 via
semidefinite programming. This is efficient for constantD, which
usually suffices in practice. Better algorithms for specialcases are
based on alternative forms of the Positivstellensatz; see [27, 28].

7. CONCLUSION
We presented a novel approach to privacy where only gaining

confidence in a sensitive fact is illegal, while losing confidence is
allowed. We showed that this relaxation is significant and permits
many more queries than with well-known approaches. In exchange,
this gave us an opportunity to strenghten prior knowledge assump-
tions beyond current standards. Our hope is that work in thisdi-
rection will help bridge the gap between theoretical soundness and
practical usefulness of privacy frameworks.

One possible future goal is to obtain a better understandingof the
families of sets and distributions that arise in practice, and to un-
derstand whether they admit efficient privacy tests. Another goal is
to apply the new frameworks to online (proactive) auditing,which
will require the modeling of a user’s knowledge about the auditor’s
query-answering strategy.

Acknowledgements: We thank Kenneth Clarkson for bringing
our attention to the Four Functions Theorem.
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