
Coresets and Sketches for High Dimensional Subspace
Approximation Problems ∗

Dan Feldman† Morteza Monemizadeh‡ Christian Sohler§ David P. Woodruff¶

Abstract
We consider the problem of approximating a set P of n points
in Rd by a j-dimensional subspace under the `p measure, in
which we wish to minimize the sum of `p distances from each
point of P to this subspace. More generally, the Fq(`p)-subspace
approximation problem asks for a j-subspace that minimizes the
sum of qth powers of `p-distances to this subspace, up to a
multiplicative factor of (1+ ε).

We develop techniques for subspace approximation, regres-
sion, and matrix approximation that can be used to deal with
massive data sets in high dimensional spaces. In particular, we
develop coresets and sketches, i.e. small space representations
that approximate the input point set P with respect to the sub-
space approximation problem. Our results are:
• A dimensionality reduction method that can be applied to
Fq(`p)-clustering and shape fitting problems, such as those
in [8, 15].

• The first strong coreset for F1(`2)-subspace approximation
in high-dimensional spaces, i.e. of size polynomial in the
dimension of the space. This coreset approximates the
distances to any j-subspace (not just the optimal one).

• A (1 + ε)-approximation algorithm for the j-dimensional
F1(`2)-subspace approximation problem with running
time nd(j/ε)O(1) + (n+ d)2poly(j/ε).

• A streaming algorithm that maintains a coreset for the
F1(`2)-subspace approximation problem and uses a space

of d

(
2
√

logn

ε2

)poly(j)

(weighted) input points.

• Streaming algorithms for the above problems with
bounded precision in the turnstile model, i.e, when coor-
dinates appear in an arbitrary order and undergo multiple
updates. We show that bounded precision can lead to fur-
ther improvements. We extend results of [7] for approx-
imate linear regression, distances to subspace approxima-
tion, and optimal rank-j approximation, to error measures
other than the Frobenius norm.

1 Introduction
The analysis of high-dimensional massive data sets is an
important task in data mining, machine learning, statistics

∗Supported in parts by DFG project So 514/4-2.
†School of Computer Science; Tel Aviv University; Tel Aviv 69978,

Israel; dannyf@post.tau.ac.il
‡ Department of Computer Science, University of Dortmund, Ger-

many; morteza.monemizadeh@tu-dortmund.de
§ Department of Computer Science, University of Dortmund, Ger-

many; christian.sohler@tu-dortmund.de
¶ IBM Almaden Research Center, San Jose, CA;

dpwoodru@us.ibm.com

and clustering. Typical applications include: pattern
recognition in computer vision and image processing, bio-
informatics, internet traffic analysis, web spam detection,
and classification of text documents. In these applications,
we often have to process huge data sets that do not fit into
main memory. In order to process these very large data
sets, we require streaming algorithms that read the data in
a single pass and use only a small amount of memory. In
other situations, data is collected in a distributed way, and
shall be analyzed centrally. In this case, we need to find
a way to send a small summary of the data that contains
enough information to solve the problem at hand.

The second problem one has to overcome is the
dimensionality of the data. High-dimensional data sets are
often hard to analyze, and at the same time many data sets
have low intrinsic dimension. Therefore, a basic task in
data analysis is to find a low dimensional space, such that
most input points are close to it. A well-known approach
to this problem is principle component analysis (PCA)
which, for a given set of n points in d-dimensional space,
computes a linear j-dimensional subspace, such that the
sum of squared distances to this subspace is minimized.
Since this subspace is given by certain eigenvectors of the
corresponding covariance matrix, one can compute it in
O(min{nd2, dn2}) time.

However, for massive data sets this computation may
already be too slow. Therefore, the problem of approx-
imating this problem in linear time has been studied in
the standard and in the streaming model of computation.
Depending on the problem, it is also interesting to study
other error measures, like the sum of `p-distances to the
subspace or, more generally, the sum of qth powers of `p-
distances, and other related problems like linear regres-
sion [8] or low-rank matrix approximation [12].

For example, an advantage of the sum of distances
measure is its robustness in the presence of outliers when
compared to sum of non squared distances measure. How-
ever, unlike for the sum of squared errors, no closed for-
mula exists for the optimal solution, even for the case of
j = 1 (a line) in three-dimensional space [20].

In this extended abstract we mainly focus on the
problem of approximating the optimal j-dimensional sub-

space with respect to sum of distances. That is, we are
given a set P of n points with the objective to find a j-
space C that minimizes cost(P,C) =

∑
p∈P minc∈C ‖p−

c‖2. We call this problem the F1(`2)-subspace approxi-
mation problem. Most of our results generalize (in a non-
trivial way) to Fq(`p)-subspace approximations. Details
will be given in the full version of this paper. As dis-
cussed above, we are interested in developing algorithms
for huge high-dimensional point sets. In this case we need
to find small representations of the data that approximate
the original data, which allows us to solve the problem in
a distributed setting or for a data stream.

In this paper, we develop such representations and
apply them to develop new approximation and streaming
algorithms for subspace approximation. In particular, we
develop strong coresets and sketches, where the coresets
apply to the case of unbounded and the sketches to
bounded precision arithmetic.

A strong coreset [1, 16] is a small weighted set of
points such that for every j-subspace of Rd, the cost of
the coreset is approximately the same as the cost of the
original point set. In contrary, weak coresets [14, 12, 9]
are useful only for approximating the optimal solution.
One of the benefits of strong coresets is that they are
closed under the union operation, which is, for example,
desirable in a distributed scenario as sketched below.

Application scenarios. For an application of core-
sets and/or sketches, consider the following scenario. We
are aggregating data at a set of clients and we would like
to analyze it at a central server by first reducing its di-
mensionality via subspace approximation, projecting the
data on the subspace and then clustering the projected
points. Using such a client-server architecture, it is typ-
ically not feasible to send all data to the central server.
Instead, we can compute coresets of the data at the clients
and collect them centrally. Then we solve the subspace
approximation problem on the union of the coresets and
send the computed subspace to all clients. Each client
projects the points on the subspace and computes a core-
set for the clustering problem. Again, this coreset is sent
to the server and the clustering problem is solved.

Specific applications for the j-subspace approxima-
tion problems, include the well known “Latent Seman-
tic Analysis” technique for text mining applications, the
PageRank algorithm in the context of web search, or the
Eigenvector centrality measure in the field of social net-
work analysis (see [12, 9] and the references therein).

These problems also motivate the turnstile streaming
model that is defined below, which is useful when new
words (in latent semantic analysis) or new connections
between nodes (in social network analysis) are updated
over time, rather than just the insertion or deletion of

entire documents and nodes.
Results and relation to previous work.

• We develop a dimensionality reduction method that
can be applied to Fq(`p)-clustering and shape fitting
problems [15]. For example, the cluster centers can
be point sets, subspaces, or circles.

• We obtain the first strong coreset for F1(`p)-
subspace approximation in high-dimensional spaces,
i.e. of size djO(j2) · ε−2 · logn (weighted) points.
Previously, only a strong coreset construction with
an exponential dependence on the dimension of the
input space was known [11]. Other previous re-
search [9, 25, 10, 15] in this area constructed so-
called weak coresets. A weak coreset is a small set A

of points such that the span of A contains a (1 + ε)-
approximation to the optimal j-subspace. The au-
thors [9, 10, 15] show how to find a weak coreset
for sum of squared distances, and in [10] Deshpande
and Varadarajan obtain a weak coreset for sum of qth
power of distances. All of these algorithms are in fact
poly(j, ε−1)-pass streaming algorithms.

• Our next result is an improved (1+ε)-approximation
algorithm for the j-dimensional subspace approxi-
mation problem under the measure of sum of dis-
tances. The running time of our algorithm is
nd(j/ε)O(1) + (n + d)2(j/ε)O(1)). This improves
upon the previously best result of nd2(j/ε)O(1)

[25,
10].

• We then show that one can maintain a coreset
in a data stream storing Õ(d(j2

O(
√

logn)

ε2
)poly(j))

(weighted) points. From this coreset we can extract
a (1+ ε)-approximation to the optimal subspace ap-
proximation problem. We remark that we do not
have a bound on the time required to extract the sub-
space from the data points. Previously, no 1-pass
streaming algorithm for this problem was known, ex-
cept for the case of the F2(`2) objective function [7].

• We also study bounded precision in the turnstile
model, i.e., when coordinates are represented with
O(log(nd)) bits and encode, w.l.o.g., integers from
−(nd)O(1) to (nd)O(1). The coordinates appear
in an arbitrary order and undergo multiple updates.
Bounded precision is a practical assumption, and us-
ing it now we can extract a (1 + ε)-approximation
to the optimal j-space in a data stream in polynomial
time for fixed j/ε. Along the way we extend the re-
sults of [7] for linear regression, distance to subspace
approximation, and best rank-j approximation, to er-
ror measures other than the Frobenius norm.

Techniques. In order to obtain the strong coreset, we
first develop a dimensionality reduction technique for sub-
space approximation. The main idea of the dimensionality
reduction is to project the points onto a low-dimensional
subspace and approximate the difference between the pro-
jected points and the original point set. In order to do
so, we need to introduce points with negative weights in
the coreset. While this technique only gives an additive
error, we remark that for many applications this additive
error can be directly translated into a multiplicative er-
ror with respect to cost(P,C). The non-uniform sampling
technique we are using to estimate the difference between
the projected points and the original point set is similar to
that in previous work [9, 10, 14, 25].

Although we apply the dimensionality reduction here
in the context of subspaces, we remark that this technique
can be easily generalized. In fact, we can replace the
subspace by any closed set on which we can efficiently
project points. For example, we can easily extend the
dimensionality reduction method to geometric clustering
problems where the centers are low dimensional objects.
We can also use the technique for any problem where we
are trying to minimize the sum of distances to manifolds
[3, 4] (if the projection on the manifold is well-defined),
which might, for example, occur in the context of kernel
methods [3, 4, 21].

In order to obtain a strong coreset, we apply our
dimensionality reduction recursively using the fact that,
for a set P of points that are contained in an (i + 1)-
subspace of Rd, a coreset for i-subspaces is also a coreset
for j-subspaces, 1 ≤ j ≤ d. This recursion is applied
until i = 0 and the points project to the origin. This
way, we obtain a small weighted sample set S of size
O(log(1/δ) · jO(j2)/ε2) in O(ndj2 + |S|) time, such that
for an arbitrary query j-subspace C, we have (1 − ε) ·
cost(P,C) ≤ cost(S,C) ≤ (1+ε) ·cost(P,C). This result
is then used to construct a strong coreset by showing that
the approximation guarantee holds simultaneously for all
solutions from a certain grid near the input points.

Using the (standard) merge-and-reduce technique [1,
16] we use our coresets to obtain a streaming algorithm.
However, we remark that the use of negatively weighted
points leads to some technical complications that do not
allow us to get down to logO(1) n space.

With bounded precision, we use space-efficient
sketches of `p-distances, a search over grid points, and
a lower bound on the singular values of A to approximate
the `p-regression problem in low dimensions in a data
stream . A consequence is that we can efficiently approx-
imate the sum of q-th powers of `p-distances, denoted
Fq(`p), to any fixed j-subspace. We then approximate
the optimal j-subspace for Fq(`2) distances, 1 ≤ q ≤ 2,

using a structural result of Shyamalkumar and Varadara-
jan [24] that proves that a (1 + ε)-approximate solution
is spanned by r = O(j/ε) rows (points) of A. That is,
there are two matrices B and C of size j × r and r × n,
respectively, such that the columns of B · C · A span a
(1 + ε)-approximate solution. It is not clear how to find
these matrices in the streaming model, but we can use al-
gebraic methods together with bounded precision to limit
the number of candidates. We can test candidates offline
using the linearity of our sketch.

1.1 Preliminaries A weighted point is a point r ∈ Rd
that is associated with a weightw(r) ∈ R. We consider an
(unweighted) point r ∈ Rd as having a weight of one. The
(Euclidean) distance of a point r ∈ Rd to a set (usually,
subspace) C ⊆ Rd is dist(r, C) := infc∈C ‖r− c‖2. The
set C is called a center. For a closed set C, we define
proj(r, C) to be the closest point to r in C, if it exists,
where ties are broken arbitrarily. We further define the
weight of proj(r, C) as w(proj(r, C)) = w(r). Similarly,
proj(P,C) = {proj(r, C) | r ∈ P}. We let cost(P,C) =∑
r∈Pw(r) · dist(r, C) be the weighted sum of distances

from the points of P to C. Note that points with negative
weights are also assigned to their closest (and not farthest)
point r ∈ C.

For a specific class of centers C we can now define
the Fq(`p)-clustering problem as the problem to mini-
mize

∑
r∈P infc∈C ‖r− c‖qp. For example, if C is the

collection of sets of k points from Rd, then the F1(`2)-
clustering problem is the standard k-median problem with
Euclidean distances, and the F2(`2)-clustering problem is
the k-means problem.

One specific variant of clustering that we are focusing
on is the j-subspace approximation problem with F1(`p)
objective function. The term j-subspace is used to abbre-
viate j-dimensional linear subspace of Rd.

Given a set P of n points in Rd, the j-subspace
approximation problem with F1(`p) objective function is
to find a j-dimensional subspace C of Rd that minimizes
cost(P,C).

DEFINITION 1.1. (CORESET [1, 16]) Let P be a
weighted point set in Rd, and ε > 0. A weighted
set of points Q is called a strong ε-coreset for the
j-dimensional subspace approximation problem, if for
every linear j-dimensional subspace C of Rd, we have

(1− ε) · cost(P,C) ≤ cost(Q,C) ≤ (1+ ε) · cost(P,C) .

2 Dimensionality Reduction for Clustering Problems
In this section we present our first result, a general dimen-
sionality reduction technique for problems that involve
sums of distances as a quality measure. Our result is that

3

for an arbitrary fixed subset C ⊆ Rd, cost(P,C) can be
approximated by a small weighted sample and the projec-
tion of P onto a low dimensional subspace. This result
can be immediately applied to obtain a dimensionality re-
duction method for a large class of clustering problems,
where the cluster centers are objects contained in low-
dimensional spaces. Examples include: k-median clus-
tering, subspace approximation under `1-error, variants
of projective clustering and more specialized problems
where cluster centers are, for example, discs or curved
surfaces.

For these type of problems, we suggest an algorithm
that computes a low dimensional weighted point set Q
such that, with probability at least 1 − δ, for any fixed
query center C, cost(Q,C) approximates cost(P,C) to
within a factor of 1± ε. The algorithm is a generalization
of a technique developed in [14] to compute coresets for
the k-means clustering problem.

The main new idea that allows us to handle any type
of low dimensional center is the use of points that are as-
sociated with negative weights. To obtain this result, we
first define a randomized algorithm DIMREDUCTION; see
the figure below. For a given (low-dimensional) subspace
C∗ and a parameter ε > 0, the algorithm DIMREDUC-
TION computes a weighted point set Q, such that most of
the points of Q lie on C∗, and for any fixed query center
C we have E[cost(Q,C)] = cost(P,C), i.e., cost(Q,C)
is an unbiased estimator of the cost of C with respect to
P. Then we show that, with probability at least 1 − δ, the
estimator has an additive error of at most ε · cost(P,C∗).

DIMREDUCTION (P,C∗, δ, ε)

1. Pick r =
⌈
2 lg(2/δ)
ε2

⌉
points s1, . . . , sr i.i.d. from

P, s.t. each p ∈ P is chosen with probability

Pr[p] =
dist(p,C∗)
cost

(
P,C∗

) .
2. For i← 1 to r do

w(si)← 1

r · Pr[si]

3. Return the multiset Q = proj(P,C∗) ∪
{s1, . . . , sr} ∪ {proj(s−1 , C

∗), . . . , proj(s−r , C
∗)},

where s−i is the point si with weight −w(si).

We can then apply this result to low dimensional clus-
tering problems in two steps. First, we observe that, if
each center is a low dimensional object, i.e. is contained
in a low dimensional j-subspace, then k centers are con-
tained in a (kj)-subspace and so clustering them is at least
as expensive as cost(P,C ′), where C ′ is a (kj)-subspace

that minimizes cost(P,C ′). Thus, if we compute an α-
approximation C∗ for the (kj)-dimensional subspace ap-
proximation problem, and replace ε by ε/α, we obtain the
result outlined above.

Analysis of Algorithm DIMREDUCTION. Let us
fix an arbitrary set C. Our first step will be the following
technical lemma that shows that cost(Q,C) is an unbiased
estimator for cost(P,C). Let Xi denote the random
variable for the sum of contributions of the sample points
si and proj(s−i , C) to C, i.e.

Xi = w(si) · dist(si, C) +w(s−i) · dist(proj(s−i , C))

= w(si) ·
(
dist(si, C) − dist(proj(si, C∗), C)

)
.

LEMMA 2.1. Let P be a set of points in Rd. Let ε > 0,
0 < δ ≤ 1, and Q be the weighted set that is returned by
the randomized algorithm DIMREDUCTION(P,C∗, δ, ε).
Then E[cost(Q,C)] = cost(P,C) .

Proof. We have

E[Xi]

=
∑
p∈P

Pr[p] ·w(p)
(
dist(p,C) − dist(proj(p,C∗), C)

)
=
∑
p∈P

1

r

1

Pr[p]
· Pr[p]

(
dist(p,C) − dist(proj(p,C∗), C)

)
=
1

r
·
(
cost(P,C) − cost(proj(P,C∗), C)

)
.

By linearity of expectation we have

E[

r∑
i=1

Xi] = cost(P,C) − cost(proj(P,C∗), C) .

Since algorithm DIMREDUCTIONcomputes the union of
proj(P,C∗) and the points si and s−i , we obtain

E[cost(Q,C)] = cost(proj(P,C∗), C) + E[

r∑
i=1

Xi]

= cost(P,C).

The lemma follows. ut♣

Our next step is to show that cost(Q,C) is sharply
concentrated about its mean.

THEOREM 2.1. Let P be a set of n points in Rd, and
let C∗ be a j-subspace. Let 0 < δ, ε ≤ 1, and Q be
the weighted point set that is returned by the algorithm
DIMREDUCTION(P,C∗, δ, ε). Then for a fixed query set
C ⊆ Rd we have

|cost
(
P,C) − cost

(
Q,C)| ≤ ε · cost(P,C∗),

with probability at least 1− δ. Moreover, only

r = O

(
log(1/δ)

ε2

)
points of Q are not contained in proj(P,C∗). This algo-
rithm runs in O(ndj+ r) time.

Proof. Let P = {p1, . . . , pn} be a set of n points in Rd.
We first prove the concentration bound and then discuss
the running time.

In order to apply Chernoff-Hoeffding bounds [2] we
need to determine the range of values Xi can attain. By
the triangle inequality we have

dist(si, C) ≤ dist(si, C∗) + dist(proj(si, C∗), C)

and

dist(proj(si, C∗), C) ≤ dist(si, C) + dist(si, C∗).

This implies

|dist(si, C) − dist(proj(si, C∗), C)| ≤ dist(si, C∗).

We then have

|Xi| =
∣∣w(si) ·

(
dist(si, C) − dist(proj(si, C∗), C)

)∣∣
≤ w(si) · dist(si, C∗) =

cost(P,C∗)
r

.

Thus, −cost(P,C∗)/r ≤ Xi ≤ cost(P,C∗)/r. Using ad-
ditive Chernoff-Hoeffding bounds [2] the result follows.

In order to achieve the stated running time, we pro-
ceed as follows. We first compute in O(ndj) time for
each point p ∈ P its distance dist(p,C∗) to C∗ and store
it. This can easily be done by first computing an orthonor-
mal basis ofC∗. We sum these distances in order to obtain
cost(P,C∗) inO(n) time. From this we can also compute
Pr[p] andw(p) for each p ∈ P, inO(n) overall time. We
let P be the array of probabilities p1, . . . , pn. It is well
known that one can obtain a set of r samples according to
a distribution given as a length-n array in O(n+ r) time,
see [26]. ut♣

3 From Dimensionality Reduction to Adaptive
Sampling

In this section we show how to use Theorem 2.1 to obtain
a small weighted set S that, with probability at least 1−δ,
approximates the cost to an arbitrary fixed j-subspace.
The first step of the algorithm is to apply our dimension-
ality reduction procedure with a j-subspace C∗j that is an

O(jj+1)-approximation to the optimal j-dimensional lin-
ear subspace with respect to the `1-error. Such an ap-
proximation can be computed in O(ndj) time using the
algorithm APPROXIMATEVOLUMESAMPLING by Desh-
pande and Varadarajan [10]. Once we have projected all
the points on C∗j , we apply the same procedure using a
(j − 1)-dimensional linear subspace C∗j−1. We continue
this process until all the points are projected onto a 0-
dimensional linear subspace, i.e. the origin. As we will
see, this procedure can be used to approximate the cost of
a fixed j-subspace C.

ADAPTIVESAMPLING (P, j, δ, ε)

1. Pj+1 ← P.

2. For i = j Downto 0

(a) C∗i ← APPROXIMATEVOLUMESAM-
PLING(Pi+1, i).

(b) Qi ← DIMREDUCTION(Pi+1, C
∗
i , δ, ε).

(c) Pi ← proj(Pi+1, C∗i).

(d) Si ← Qi \ Pi, where Si consists of the
positively and negatively weighted sample
points.

3. Return S =
⋃j
i=0 Si.

Note that P0 is the origin, and so cost(P0, C) = 0

for any j-subspace C. Let C∗i be an arbitrary but fixed
sequence of linear subspaces as used in the algorithm.

THEOREM 3.1. Let P be a set of n points in Rd, and
ε ′, δ ′ > 0. Let C be an arbitrary j-dimensional linear
subspace. If we call algorithm ADAPTIVESAMPLING

with the parameters δ = O(δ ′/(j + 1)) and ε = ε ′/jc·j
2

for a large enough constant c, then we get

(1− ε ′) · cost(P,C) ≤ cost(S,C)

≤ (1+ ε ′) · cost(P,C),

with probability at least 1 − δ ′. The running time of the
algorithm is

O(ndj2) +
jO(j2) log(1/δ ′)

ε ′2
.

Proof. Let C be an arbitrary j-subspace. We split the
proof of Theorem 3.1 into two parts. The first and easy
part is to show that cost(S,C) is an unbiased estimator
of cost(P,C). The hard part is to prove that cost(S,C) is
sharply concentrated.

We can apply Lemma 2.1 with C∗ = C∗i to obtain
that for any 1 ≤ i ≤ j we have E[cost(Qi, C)] =

5

cost(Pi+1, C) and hence

E[cost(Si, C)] = cost(Pi+1, C) − cost(Pi, C) .

Therefore,

E[cost(S,C)] =

j∑
i=0

E[cost(Si, C)]

= cost(Pj+1, C) − cost(P0, C)

= cost(P,C) ,

where the last equality follows from Pj+1 = P and P0
being a set of n points at the origin.

Now we show that cost(S,C) is sharply concentrated.
We have ∣∣E[cost(S,C)] − cost(S,C)

∣∣
≤

j∑
i=0

∣∣E[cost(Si, C)] − cost(Si, C)
∣∣ .

The following observation was used in [11] for j = 1, and
generalized later in [13].

LEMMA 3.1. Let C be a j-subspace, and L be an (i+ 1)-
subspace, such that i + 1 ≤ j. Then there exists an i-
subspace Ci, and a constant 0 < νL ≤ 1, such that for
any p ∈ L we have dist(p,C) = νL · dist(p,Ci) .

Let 0 ≤ i ≤ j. By substituting L = Span {Pi+1} in
Lemma 3.1, there is an i-subspace Ci and a constant νL,
such that∣∣E[cost(Si, C)] − cost(Si, C)

∣∣
=
∣∣cost(Pi+1, C) − cost(Pi, C) − cost(Si, C)

∣∣
= νL · |cost(Pi+1, Ci) − cost(Pi, Ci) − cost(Si, Ci)|
= νL · |cost(Pi+1, Ci) − cost(Qi, Ci)| .

Here, the second equality follows from the fact that the
solution computed by approximate volume sampling is
spanned by input points and so Pi ⊆ Span {Pi+1}. We
apply Theorem 2.1 with C = Ci and C∗ = C∗i to obtain

|cost(Pi+1, Ci) − cost(Qi, Ci)| ≤ ε · cost(Pi+1, C∗i),

with probability at least 1 − δ. By our choice of C∗i , we
also have

cost(Pi+1, C∗i) ≤ O(ii+1) · cost(Pi+1, Ci).

Combining the last three inequalities yields

|E[cost(Si, C)] − cost(Si, C)|

≤ νL · ε · cost(Pi+1, C∗i)

≤ O(νL · ε · ii+1) · cost(Pi+1, Ci)

= O(ε · ii+1) · cost(Pi+1, C) ,

with probability at least 1− δ. Hence,∣∣E[cost(S,C)] − cost(S,C)
∣∣

≤ O

(
j−1∑
i=0

ε · ii+1
)
· cost(Pi+1, C),

with probability at least 1− j ·δ. Therefore, for our choice
of δ and ε, a simple induction gives∣∣E[cost(S,C)] − cost(S,C)

∣∣ ≤ ε · jO(j2) · cost(P,C)

with probability at least 1− j ·δ. Further, the running time
is proven as in the proof of Theorem 2.1. ut♣

4 Coresets
In order to construct a coreset, we only have to run
algorithm ADAPTIVESAMPLING using small enough δ.
One can compute δ by discretizing the space near the
input points using a sufficiently fine grid. Then snapping
a given subspace to the nearest grid points will not change
the cost of the subspace significantly. If a subspace does
not intersect the space near the input points, its cost will
be high and the overall error can be easily charged.

THEOREM 4.1. Let P denote a set of n points in Rd, j ≥
0, and 1 > ε ′, δ ′ > 0, d ≤ n. Let Q be the weighted set
that is returned by the algorithm ADAPTIVESAMPLING
with the parameters δ = 1

j · δ
′/(10nd)10dj and ε =

ε ′/jc·j
2

for a large enough constant c. Then, with
probability at least 1 − δ ′ − 1/n2, Q is a strong ε-
coreset. The size of the coreset in terms of the number
of (weighted) points saved is

O(djO(j2) · ε ′−2 logn).

First we prove some auxiliary lemmata.

LEMMA 4.1. Let P be a set of points in a subspace A of
Rd. Let M,ε > 0, M > ε, and let G ⊆ A be such that
for every c ∈ A, if dist(c, P) ≤ 2M then dist(c,G) ≤ ε/2.
Let C ⊆ A be a 1-subspace (i.e, a line that intersects the
origin of Rd), such that dist(p,C) ≤M for every p ∈ P.
Then there is a 1-subspace D that is spanned by a point
in G, such that,

|dist(p,C) − dist(p,D)| ≤ ε for every p ∈ P.

Proof. Let g be a point such that the angle between the
lines C and Span {g} is minimized over g ∈ G. Let
D = Span {g}, and p ∈ P. We prove the lemma using
the following case analysis: (i) dist(p,D) ≥ dist(p,C),
and (ii) dist(p,D) < dist(p,C).
(i) dist(p,D) ≥ dist(p,C): Let c = proj(p,C). We
have dist(c, P) ≤ ‖c− p‖ = dist(p,C) ≤ M. By the

assumption of the lemma, we thus have dist(c,G) ≤ ε.
By the construction of D, we also have dist(c,D) ≤
dist(c,G). Combining the last two inequalities yields
dist(c,D) ≤ ε. Hence

dist(p,D) ≤ ‖p− c‖+ dist(c,D) ≤ dist(p,C) + ε.

(ii) dist(p,D) < dist(p,C): Let q = proj(p,D), and
q ′ = proj(q,C). We can assume that dist(q, q ′) > ε

since otherwise by the triangle inequality, dist(p,C) ≤
dist(p, q)+dist(q, q ′) ≤ dist(p,D)+ε, and we are done.

Define ` = q+q ′

2 and ` ′ = `/ ‖`‖2. Now consider the
point r = ` + ε

2 `
′. We claim that r has distance from C

and D more than ε/2. Assume, this is not the case. Then
C (the proof for D is identical) intersects a ball B with
center r and radius ε/2. Let r ′ be an intersection point of
C with B. Let r ′′ be the projection of r ′ on the span of r.
Since, B has radius ε/2, we have that dist(r ′′, r ′) ≤ ε/2.
However, the intercept theorem implies that dist(r ′′, r ′) >
ε/2, a contradiction. To finish the proof, we observe
that dist(p, r) ≤ dist(p, q) + dist(q, `) + dist(`, r) ≤
dist(p,C) + ε ≤M+ ε. UsingM > ε the assumption of
lemma implies dist(r,G) < ε/2, but dist(r, C) > ε/2 and
dist(r,D) > ε/2, which means there is a grid point g ′ for
which ∠(Span {g ′} , C) < ∠(Span {g} , C), contradicting
the choice of g. ut♣

LEMMA 4.2. Let P be a set of n points in Rd, and
M,ε > 0, M > ε. Let G ⊆ Rd be such that for every
c ∈ Rd, if dist(c, P) ≤ 2M then dist(c,G) ≤ ε/2. Let C
be a j-subspace, such that dist(p,C) ≤M − (j − 1)ε for
every p ∈ P. Then there is a j-subspaceD that is spanned
by j points from G, such that

|dist(p,C) − dist(p,D)| ≤ jε for every p ∈ P.

Proof. The proof is by induction on j. The base case of
j = 1 is furnished by substituting A = Rd in Lemma 4.1.
We now give a proof for the case j ≥ 2. Let e1, · · · , ej
denote a set of orthogonal unit vectors on C. Let C⊥

be the orthogonal complement of the subspace that is
spanned by e1, · · · , ej−1. Finally, fix p ∈ P. The
key observation is that for any j-subspace T in Rd that
contains e1, · · · , ej−1, we have

dist(p, T) = dist(proj(p,C⊥), proj(T, C⊥)).

Note that for such a j-subspace T , proj(T, C⊥) is a 1-
subspace.

Let P ′ = proj(P,C⊥), and let c ′ ∈ C⊥ such that
dist(c ′, P ′) ≤ 2M. Hence, there is a point q ′ ∈ P ′ such
that

(4.1) ‖q ′ − c ′‖ = dist(c ′, P ′) ≤ 2M.

Let q ∈ P such that proj(q,C⊥) = q ′. Let c ∈ Rd, such
that proj(c, C⊥) = c ′ and ‖c− c ′‖ = ‖q− q ′‖. Hence,

‖q− c‖ =

√
‖q− c ′‖2 − ‖c ′ − c‖2

=

√
‖q− c ′‖2 − ‖q ′ − q‖2 = ‖q ′ − c ′‖ .

By (4.1) and the last equation, ‖q− c‖ ≤ 2M, i.e,
dist(c, P) ≤ ‖q− c‖ ≤ 2M. Using the assumption of
this lemma, we thus have dist(c,G) ≤ ε/2, so, clearly
dist
(
c ′, proj(G,C⊥)

)
≤ ε/2.

From the previous paragraph, we conclude that
for every c ′ ∈ C⊥, if dist(c ′, P ′) ≤ 2M then
dist
(
c ′, proj(G,C⊥)

)
≤ ε/2. Using this, we apply

Lemma 4.1 while replacing A with C⊥, P with P ′, C
with proj(C,C⊥) andGwith proj(G,C⊥). We obtain that
there is a 1-subspace D ⊆ C⊥ that is spanned by a point
from proj(G,C⊥), such that

|dist
(
proj(p,C⊥), proj(C,C⊥)

)
− dist

(
proj(p,C⊥), D

)
| ≤ ε.

Since dist
(
proj(p,C⊥), proj(C,C⊥)

)
= dist(p,C) by the

definition of C⊥, the last two inequalities imply

|dist(p,C) − dist
(
proj(p,C⊥), D

)
| ≤ ε.(4.2)

Let E be the j-subspace of Rd that is spanned by D
and e1, · · · , ej−1. Let D⊥ be the (d − 1)-subspace that
is the orthogonal complement of D in Rd. Since D ⊆ E,
we have that proj(E,D⊥) is a (j−1)-subspace of Rd. We
thus have

dist(proj(p,C⊥), D) = dist(proj(p,D⊥), proj(E,D⊥))

= dist(p, E).

(4.3)

Using (4.2), with the assumption of this lemma that
dist(p,C) ≤M− (j− 1)ε, yields

dist(proj(p,C⊥), D) ≤ dist(p,C) + ε

≤M− (j− 2)ε.

By the last inequality and (4.3), we get
dist(proj(p,D⊥), proj(E,D⊥)) ≤ M − (j − 2)ε.
Using the last equation, by applying this lemma induc-
tively with C as proj(E,D⊥), G as proj(G,D⊥) and P
as proj(P,D⊥), we obtain a (j − 1)-subspace F that is
spanned by j − 1 points from proj(G,D⊥), such that
|dist(proj(p,D⊥), proj(E,D⊥)) − dist(proj(P,D⊥), F)| ≤
(j− 1)ε. Hence,

|dist(p, E) − dist(proj(p,D⊥), F)| =

|dist(proj(p,D⊥), proj(E,D⊥)) − dist(proj(p,D⊥), F)|

≤ (j− 1)ε.

(4.4)

7

Let R be the j-subspace of Rd that is spanned by D
and F. Hence, R is spanned by j points of G. We have

|dist(p,C) − dist(p, R)|

= |dist(p,C) − dist(proj(p,D⊥), F)|

≤ |dist(p,C) − dist(p, E)|

+ |dist(p, E) − dist(proj(p,D⊥), F)|.

By (4.3), we have dist(p, E) = dist(proj(p,C⊥), D).
Together with the previous inequality, we obtain

|dist(p,C) − dist(p, R)|

≤ |dist(p,C) − dist(proj(p,C⊥), D)|

+ |dist(p, E) − dist(proj(p,D⊥), F)|.

Combining (4.2) and (4.4) in the last inequality proves the
lemma. ut♣

NET (P,M, ε)

1. G← ∅.
2. For each p ∈ P Do

(a) Gp ← vertex set of a d-dimensional grid
that is centered at p. The side length of the
grid is 2M, and the side length of each cell
is ε/(2

√
d).

(b) G← G ∪Gp.

3. Return G.

LEMMA 4.3. Let 0 < ε, δ ′ < 1, and P be a set
of n points in Rd with d ≤ n. Let C∗ be a j-
subspace, and Q be the weighted set that is returned
by the algorithm DIMREDUCTION with the parameter
δ = δ ′/(10nd)10jd. Then, with probability at least
1 − δ ′ − 1/n2, for every j-subspace C ⊆ Rd we have
(simultaneously)

|cost
(
P,C)−cost

(
Q,C)| ≤ ε ·cost(P,C∗)+ε ·cost(P,C).

The following two propositions prove the lemma.

PROPOSITION 4.1. For every j-subspace C of Rd such
that

cost(P,C) > 2cost(P,C∗)/ε,

we have

|cost(P,C) − cost(Q,C)| ≤ ε · cost(P,C).

Proof. Let C be a j-subspace such that

cost(P,C) > 2cost(P,C∗)/ε.

Let S = Q \ proj(P,C∗). Hence,

|cost(P,C) − cost(Q,C)|

= |cost(P,C) − cost(proj(P,C∗), C) − cost(S,C)|

≤ |cost(P,C) − cost(proj(P,C∗), C)| + |cost(S,C)|.

(4.5)

We now bound each term in the right hand side
of (4.5).

Let si denote the ith point of S, 1 ≤ i ≤ |S|. By the
triangle inequality,

|dist(si, C) − dist(proj(si, C∗), C)| ≤ dist(si, C∗),

for every 1 ≤ i ≤ |S|. Hence,

|cost(S,C)|

=

∣∣∣∣∣∣
∑

1≤i≤|S|

w(si)(dist(si, C) − dist(proj(si, C∗), C))

∣∣∣∣∣∣
≤
∑

1≤i≤|S|

w(si)|dist(si, C∗)| = cost(P,C∗).

Similarly,

|cost(P,C) − cost(proj(P,C∗), C)|

=

∣∣∣∣∣∣
∑
p∈P

dist(p,C) −
∑
p∈P

dist(proj(p,C∗), C)

∣∣∣∣∣∣
≤
∑
p∈P

dist(p,C∗)

= cost(P,C∗).

Combining the last two inequalities in (4.5) yields

|cost(P,C) − cost(Q,C)|

≤ |cost(P,C) − cost(proj(P,C∗), C)| + |cost(S,C)|

≤ 2cost(P,C∗) ≤ ε · cost(P,C).

ut♣

PROPOSITION 4.2. Let 0 < ε < 1 and d ≤ n. With
probability at least

1− δ ′ − 1/n2,

for every j-subspace C such that

cost(P,C) ≤ 2cost(P,C∗)/ε,

we have (simultaneously)

|cost(P,C) − cost(Q,C)| ≤ ε · cost(P,C) + εcost(P,C∗).

Proof. Let G denote the set that is returned by the
algorithm NET(P ∪ proj(P,C∗),M, ε ′), where M =
10cost(P,C∗)/ε, and ε ′ = εcost(P,C∗)/n10. Note that
G is used only for the proof of this proposition.

By Theorem 2.1, for a fixed center D ∈ G we have

|cost(P,D) − cost(Q,D)|

≤ ε · cost(P,D)

≤ ε · cost(P,C) + ε · |cost(P,C) − cost(P,D)|,

(4.6)

with probability at least

1− δ ≥ 1−
δ ′

(10nd)10jd
≥ 1−

δ ′

|G|j
.

Using the union bound, (4.6) holds simultaneously
for every j-subspace D that is spanned by j points from
G, with probability at least 1− δ ′.

Let p ∈ P. By the assumption of this claim, we have

dist(p,C) ≤ cost(P,C) ≤ 2cost(P,C∗)/ε,

and also

dist(proj(p,C∗), C)

≤ ‖proj(p,C∗) − p‖+ dist(p,C)

≤ dist(p,C∗) +
2cost(P,C∗)

ε

≤ 3cost(P,C∗)
ε

.

By the last two inequalities, for every p ∈ P ∪
proj(P,C∗) we have

dist(p,C) ≤ 3cost(P,C∗)
ε

≤ 10cost(P,C∗)
ε

−
cost(P,C∗)

ε

≤M− (j− 1)ε ′,

where in the last deviation we used the assumption j ≤
d ≤ n and 0 ≤ ε ≤ 1. By the construction of G, for
every c ∈ Rd, if dist(c, P) ≤ 2M, then dist(c,G) ≤ ε ′/2.
Using this, applying Lemma 4.2 with P ∪ proj(P,C∗)
yields that there is a j-subspace D that is spanned by j
points from G, such that

|dist(p,C) − dist(p,D)| ≤ j · ε ′,

for every p ∈ P ∪ proj(P,C∗). Using the last equation

with (4.6) yields

|cost(P,C) − cost(Q,C)|

≤ |cost(P,C) − cost(P,D)| + |cost(P,D) − cost(Q,D)|

+ |cost(Q,D) − cost(Q,C)|

≤ (1+ ε)|cost(P,C) − cost(P,D)| + εcost(P,C)

+ |cost(Q,D) − cost(Q,C)|

≤ εcost(P,C)

+ 3
∑

p∈P∪Q

|w(p)| · |dist(p,C) − dist(p,D)|

≤ εcost(P,C) + 3jε ′
∑

p∈P∪Q

|w(p)|,

(4.7)

with probability at least 1− δ ′.
Let s ∈ S be such thatw(s) > 0. By the construction

of S, we have

dist(s, C∗) ≥ cost(P,C∗)/(n2|S|)

with probability at least 1 − 1/(n2|S|). Hence, with
probability at least 1− 1/n2, for every s ∈ S we have

|w(s)| =
cost(P,C∗)

|S|dist(s, C∗)
≤ n2.

Combining the last two equations with (4.7) yields

|cost(P,C) − cost(Q,C)|

≤ εcost(P,C) + 3jε ′
∑

p∈P∪Q

|w(p)|

≤ εcost(P,C) + εcost(P,C∗),

with probability at least 1− 1/n2 − δ ′, as desired. ut♣

Proof. [of Theorem 4.1] Let Pi, Si, Qi and C∗i de-
note the set that are defined in the ith iteration of
ADAPTIVESAMPLING, for every 0 ≤ i ≤ j. Us-
ing Theorem 2.1, the ith iterations of the algorithm
ADAPTIVESAMPLING takes O(ndj + |Si|) time. Hence,
the algorithm takes O(ndj2 + |Q|) time. For every i,
0 ≤ i ≤ j, we have |Si| = O(log(1/δ)/ε2). Hence,

|Q| =
⋃
0≤i≤j

Si = O

(
j log(1/δ)

ε2

)

≤ jO(j2) · log(1/δ ′)

ε ′2
.

This bounds the size of Q and its construction time. For
the correctness, let 0 ≤ i ≤ j.

9

Fix 0 ≤ i ≤ j. By the previous lemma and our
choice of δ, we conclude that, with probability at least
1− δ ′/j− 1/n2, for any j-subspace C we have

|cost(Pi+1, C) − cost(Qi, C)|

≤ εcost(Pi+1, C) + εcost(Pi+1, C∗i)

≤ (ε ′/2)cost(Pi+1, C) +
ε ′

j4j+4
cost(Pi+1, C∗i).

By construction of C∗i , we have

cost(Pi+1, C∗i) ≤ j2j+2min
C ′

cost(Pi+1, C ′)

≤ j2j+2cost(Pi+1, C).

Combining the last two inequalities yields

|cost(Pi+1, C) − cost(Qi, C)| ≤ ε ′

j2j+2
· cost(Pi+1, C),

with probability at least 1− δ ′/j− 1/n2.
Summing the last equation over all the j iterations of

ADAPTIVESAMPLING yields

|cost(P,C) − cost(Q,C)|

= |cost(P,C) −
⋃
0≤i≤j

cost(Si, C)|

≤ |
∑
0≤i≤j

(
cost(Pi+1, C) − cost(Pi, C) − cost(Si, C)

)
|

= |
∑
0≤i≤j

(
cost(Pi+1, C) − cost(Qi, C)

)
|

≤
∑
0≤i≤j

|cost(Pi+1, C) − cost(Qi, C)|

≤ ε ′

j2j+2

∑
0≤i≤j

cost(Pi+1, C),

with probability at least 1− δ ′ − 1/n2.
We also have

cost(Pi, C)

≤ cost(Pi+1, C) + cost(Pi, C) − cost(Pi+1, C)

≤ cost(Pi+1, C) + |cost(Pi, C) − cost(Pi+1, C)|

= cost(Pi+1, C) + νL · |cost(Pi, Ci) − cost(Pi+1, Ci)|
≤ cost(Pi+1, C) + νL · cost(Pi+1, C∗i)

≤ cost(Pi+1, C) + νL · ii+1 · cost(Pi+1, Ci)

= cost(Pi+1, C) + ii+1 · cost(Pi+1, C)

= (ii+1 + 1) · cost(Pi+1, C)

Hence,

cost(Pi+1, C) ≤ j2j+2cost(P,C)

for every 0 ≤ i ≤ j.
Combining the last inequalities together yields,

Pr[|cost(P,C) − cost(Q,C)| ≤ ε ′cost(P,C)]

≥ 1− δ ′ − 1/n2.

ut♣

5 Subspace Approximation
In this section we show how to construct in

O(nd · poly(j/ε) + (n+ d) · 2poly(j/ε))

time, a small set C of candidate solutions (i.e., j-
subspaces) such that C contains a (1+ε/3)-approximation
to the subspace approximation problem, i.e., for the point
set P, one of the j-subspaces in C is a (1 + ε/3)-
approximation to the optimal j-subspace. Given such a
candidate set C, we run the algorithm ADAPTIVESAM-
PLING with parameters δ/|C| and ε/6. By the union
bound it follows that every C ∈ C is approximated by
a factor of (1 ± ε/6) with probability at least 1 − δ. It
follows that the cost of the optimal candidate solution in
C is a 1 + O(ε)-approximation to the cost of the optimal
j-subspace of the original set of points P.

The intuition behind the algorithm and the anal-
ysis. The first step of the algorithm is to invoke approx-
imate volume sampling due to Deshpande and Varadara-
jan [10] to obtain in O(nd · poly(j/ε)) time, an Õ(j4 +
(j/ε)3)-dimensional subspaceA that contains a (1+ε/6)-
approximation j-subspace. We use C0 to denote a linear
j-dimensional subspace of A with

cost(P,C0) ≤ (1+ ε/6) · Opt.

Our candidate set C will consist of subspaces of A.
Then the algorithm proceeds in j phases. In phase i,
the algorithm computes a set Gi of points in A. We
define G≤i =

⋃
1≤l≤iGl. The algorithm maintains, with

probability at least 1− i·δ
j , the invariant that i points from

G≤i span an i-subspace Hi such that there exists another
j-subspace Ci, Hi ⊆ Ci ⊆ A, with

cost(P,Ci) ≤ (1+ ε/6) · (1+ γ)i · Opt
≤ (1+ ε/3) · Opt,

where Opt is the cost of an optimal subspace (not neces-
sarily contained in A) and γ = ε/(12j) is an approxima-
tion parameter. The candidate set C would be the spans of
every j points from G≤j.

5.1 The algorithm. In the following, we present our
algorithm to compute the candidate set. We use H⊥i to
denote the orthogonal complement of a linear subspace

Notation Meaning
C The set of candidate solutions (i.e., j-subspaces)
A The poly(j/ε)-subspace that contains a (1+ ε/6)-approximation
Opt The cost of an optimal subspace (not necessarily contained in A)
Ci A j-subspace which is a (1+ γ)i-approximation to the optimal j-subspace of P
Hi An i-subspace which is the span of i points from G≤i where Hi ⊆ Ci
H⊥i The orthogonal complement of the linear subspace Hi in Rd
C∗i The projection of Ci on H⊥i
Ni {p ∈ Pi+1 : dist(p,Ci) ≤ 2 · cost(P,Ci) · Pr[p]}
rl A point in Ni ⊆ H⊥i that has Pr[rl] > 0
q in case 1 proj(rl, C∗i)
q in case 2 A point in C∗i ∩ B(proj(rl, C∗i), 5 · Opt · Pr[rl], A ∩H⊥i) s.t. dist(q, 0) ≥ 5 · Opt · Pr[rl]
q ′ A point in N (rl, 10 · Opt · Pr[rl], A ∩H⊥i , γ/20) s.t dist(q, q ′) ≤ γ

2 · Opt · Pr[rl]
` Span {q}

` ′ Span {q ′}

C⊥i The orthogonal complement of ` in Ci
Li The orthogonal complement of C⊥i in Rd
Ci+1 A j-subspace which is the span of C⊥i and ` ′

N (p, R,A, γ) A γ-net of a ball B(p, R,A) in the subspace A with radius R centered at p

Table 1: Notation in Section 5.

Hi in Rd. We use N (p, R,A, γ) to denote a γ-net of a
ball B(p, R,A) in the subspace A with radius R centered
at p, i.e. a set of points such that for every point t ∈
B(p, R,A) there exists a point q in N (p, R,A, γ) with
dist(t, q) ≤ γR. It is easy to see that a γ-net of a ball
B(p, R,A) of size O(

√
d ′/γd

′
) (See [2]) exists, where

d ′ is the dimension of A. The input to the algorithm
is the point set P ′ = proj(P,A) in the space A, an i-
dimensional linear subspace Hi and the parameters i and
γ. The algorithm is invoked with i = 0 and Hi = 0

and j being the dimension of the subspace that is sought.
Notice that the algorithm can be carried out in the space
A since Hi ⊆ A and so the projection of P ′ to H⊥i will
be inside A. Note, that although the algorithm doesn’t
know the cost Opt of an optimal solution, it is easy
to compute the cost of an O(jj+1)-approximation using
approximate volume sampling. From this approximation
we can generate O(j log j) guesses for Opt, one of which
includes a constant factor approximation.

CANDIDATESET (P ′, Hi, i, j, γ)

1. if i = j then return Hi.

2. Pi+1 ← proj(P ′, H⊥i).

3. Sample s = dlog(j/δ)e points r1, . . . , rs i.i.d.
from Pi+1 s.t. each p ∈ Pi+1 is chosen with
probability

Pr[p] = dist(p, 0)/
∑

q∈Pi+1

dist(q, 0)

4. Gi+1 ←⋃s
l=1N (rl, 10 · Opt · Pr[rl], A ∩H⊥i , γ/20).

5. return
⋃
q∈Gi+1

CANDIDATESET(P ′,Span {Hi ∪ q} , i+ 1, j, γ).

5.2 Invariant of algorithm CANDIDATESET. We will
prove that the algorithm satisfies the following lemma.

LEMMA 5.1. Let Ci ⊆ A be a subspace that contains
Hi. Assume that Ci is a (1 + γ)i-approximation to the
optimal j-subspace of P. Then, with probability at least
1 − δ/j, there is a j-subspace Ci+1 ⊆ A containing Hi
and a point from Gi+1, such that Ci+1 is a (1 + γ)i+1

approximation to the optimal j-subspace of P.

Once the lemma is proved, we can apply it induc-
tively to show that with probability at least 1− δ we have

11

a subspace Cj that is spanned by j points from G≤j and
that has

cost(P,Cj) ≤ (1+ γ)j · cost(P,C0)

≤ (1+ ε/6) · (1+ γ)j · Opt
≤ (1+ ε/6) · (1+ ε/12) · Opt
≤ (1+ ε/3) · Opt.

The running time of the algorithm is dominated by the
projections in line 2, j of which are carried out for each
element of the candidate set. Since the input P ′ to
the algorithm is in the subspace A, its running time is
n · 2poly(j/ε). To initialize the algorithm, we have to
compute space A and project all points on A. This can
be done in O(nd · poly(j/ε)) time [10].

Finally, we run algorithm ADAPTIVESAMPLING to
approximate the cost for every candidate solution gener-
ated by algorithm CANDIDATESET. For each candidate
solution, we have to project all points on its span. This
can be done in O(d · 2poly(j/ε)) time, since the number of
candidate solutions is 2poly(j/ε) and the size of the sam-
ple is poly(j/ε). Thus we can summarize the result in
the following theorem setting δ = 1/6 in the approximate
volume sampling and in our algorithm.

THEOREM 5.1. Let P be a set of n points in Rd, 0 <
ε < 1 and 1 ≤ j ≤ d. A (1 + ε)-approximation for the
j-subspace approximation problem can be computed, with
probability at least 2/3, in time

O(nd · poly(j/ε) + (n+ d) · 2poly(j/ε)).

5.3 Overview of the proof of Lemma 5.1. The basic
idea of the proof follows earlier results of [25]. We
show that by sampling with probability proportional to
the distance from the origin, we can find a point p
whose distance to the optimal solution is only a constant
factor more than the weighted average distance (where
the weighting is done according to the distance from the
origin). If we then consider a ball with radius a constant
times the average weighted distance and that is centered at
p, then this ball must intersect the projection of the current
space Ci solution on H⊥i . If we now place a fine enough
net on this ball, then there must be a point q of this net
that is close to the projection. We can then define a certain
rotation of the current subspace to contain q to obtain the
new subspace Ci+1. This rotation increases the cost only
slightly and Ci+1 contains Span {Hi ∪ {q}}.

5.4 The complete proof of Lemma 5.1. We assume
that there is a j-subspace Ci, Hi ⊆ Ci ⊆ A, with

cost(P,Ci) ≤ (1+ γ)i · cost(P,C0)
≤ (1+ ε/3) · Opt.

We use C∗i to denote the projection of Ci on H⊥i . Note
that C∗i has j − i dimensions as Hi ⊆ Ci. The idea is to
find a point q from Gi+1 ⊆ H⊥i ∩ A such that we can
rotate C∗i in a certain way to contain q and this rotation
will not change the cost with respect to P significantly.
Let

Ni = {p ∈ Pi+1 : dist(p,Ci) ≤ 2 · cost(P,Ci) · Pr[p]}.

Ni contains all points that are close to the subspace Ci,
where closeness is defined relative to the distance from
the origin. We will first show that by sampling points with
probability proportional to their distance from the origin,
we are likely to find a point from Ni.

PROPOSITION 5.1.

Pr[∃rl, 1 ≤ l ≤ s : rl ∈ Ni] ≥ 1− δ/j .

Proof. We first prove by contradiction that the probability
to sample a point from Ni is at least 1/2. Assume that∑

p∈Pi+1\Ni

Pr[p] > 1/2.

Observe that cost(P,Ci) ≥ cost(P ′, Ci) since Ci ⊆
A and P ′ = proj(P,A). Further, cost(P ′, Ci) =
cost(Pi+1, Ci) since Pi+1 = proj(P ′, H⊥i) and Hi ⊆ Ci.
It follows that

cost(P,Ci) ≥ cost(P ′, Ci) = cost(Pi+1, Ci)

≥
∑

p∈Pi+1\Ni

dist(p,Ci)

> 2 · cost(P,Ci) ·
∑

p∈Pi+1\Ni

Pr[p]

> cost(P,Ci),

which is a contradiction. Hence,

Pr[rl ∈ Ni] =
∑
p∈Ni

Pr[p] ≥ 1/2.

It follows that

Pr[∃l, 1 ≤ l ≤ s : rl ∈ Ni] ≥ 1− (1− 1/2)s

≥ 1− δ/j.

ut♣

We now make a case distinction in order to prove
Lemma 5.1.

Case 1: Points are on average much closer to Ci

than to the origin.
We first consider the case that∑

p∈Pi+1

dist(p, 0) ≥ 4
∑

p∈Pi+1

dist(p,Ci).

In this case, the points in Ni are much closer to Ci than
to the origin.

Now let rl be a point from Ni ⊆ H⊥i that has
Pr[rl] > 0. Since Ci ⊆ A and

dist(rl, C∗i) = dist(rl, Ci) ≤ 2 · cost(P,Ci) · Pr[rl]

we know that B(rl, 10 · Opt · Pr[rl], A ∩ H⊥i) intersects
C∗i . This also implies that q := proj(rl, C∗i) lies in
B(rl, 10 · Opt · Pr[rl], A ∩H⊥i). Hence, there is a point

q ′ ∈ N (rl, 10 · Opt · Pr[rl], A ∩H⊥i , γ/20)

with dist(q, q ′) ≤ γ
2 · Opt · Pr[rl].

Let ` be the line through q and let ` ′ be the line
through q ′. Let C⊥i denote the orthogonal complement
of ` in Ci. Define the subspace Ci+1 as the span of C⊥i
and ` ′. Since q lies in C∗i (and hence in H⊥i) we have
that C⊥i contains Hi. Hence, Ci+1 also contains Hi. It
remains to show that

cost(P,Ci+1) ≤ (1+ γ) · cost(P,Ci).

We have

cost(P,Ci+1) − cost(P,Ci)(5.8)

≤
∑
p∈P

dist(proj(p,Ci), Ci+1)(5.9)

=
∑
p∈P

dist(proj(proj(p,A), Ci), Ci+1)(5.10)

=
∑
p∈P ′

dist(proj(p,Ci), Ci+1)(5.11)

=
∑

p∈Pi+1

dist(proj(p,Ci), Ci+1)(5.12)

where Step 5.10 follows from the fact that Ci ⊆ A and
so proj(proj(p,A), Ci) = proj(p,Ci) for all p ∈ Rd and
Step 5.12 follows from Hi ⊆ Ci, Ci+1.

Now define Li to be the orthogonal complement of
C⊥i in Rd. Note that for any p ∈ Rd and its projection
p ′ = proj(p, Li) we have dist(p,Ci) = dist(p ′, Ci) and
dist(p,Ci+1) = dist(p ′, Ci+1). Further observe that Ci
corresponds to the line ` in Li and Ci+1 corresponds to a
line ` ′′ = proj(` ′, Li). Define α to be the angle between `
and ` ′ and β the angle between ` and ` ′′. Note that α ≥ β.
Then

dist(proj(p,Ci), Ci+1) = dist(proj(proj(p,Ci), Li), ` ′′)
= dist(proj(p, `), ` ′′).

This implies

dist(proj(p, `), ` ′′) = dist(proj(p, `), 0) · sinβ
≤ dist(p, 0) · sinα.

We need the following claim that the distance of q to
the origin is not much smaller than the distance of rl to
the origin.

PROPOSITION 5.2. If∑
p∈Pi+1

dist(p, 0) ≥ 4
∑

p∈Pi+1

dist(p,Ci)

then

dist(q, 0) ≥ 1
2

dist(rl, 0).

Proof. Since rl ∈ Ni we have

dist(rl, Ci) ≤ 2Opt
dist(rl, 0)∑

p∈Pi+1 dist(p, 0)
.

By our assumption we have∑
p∈Pi+1

dist(p, 0) ≥ 4
∑

p∈Pi+1

dist(p,Ci),

which implies dist(rl, Ci) ≤ 1
2dist(rl, 0) by plug-

ging in into the previous inequality. We further have
dist(rl, Ci) = dist(rl, C∗i) and so

dist(q, 0) ≥ dist(rl, 0) − dist(rl, C∗i) ≥
1

2
dist(rl, 0)

by the triangle inequality. ut♣

We get

sinα ≤ dist(q, q ′)
dist(q, 0)

≤ 1/2 · γ · Opt · Pr[rl]
1/2 · dist(rl, 0)

=
γ · Opt · dist(rl, 0)

dist(rl, 0) ·
∑
p∈Pi+1 dist(p, 0)

=
γ · Opt∑

p∈Pi+1 dist(p, 0)
.

The latter implies

cost(P,Ci+1) − cost(P,Ci) ≤
∑

p∈Pi+1

dist(p, 0) · sinα

≤ γ · Opt
≤ γ · cost(P,Ci)

13

which implies the lemma in Case 1.

Case 2: Points are on average much closer to the
origin than to Ci.
Now we consider the case that∑

p∈Pi+1

dist(p, 0) < 4
∑

p∈Pi+1

dist(p,Ci).

Let rl be a point from Pi+1 ⊆ H⊥i that is in Ni and that
has Pr[rl] > 0. Since Ci ⊆ A and

dist(rl, C∗i) = dist(rl, Ci) ≤ 2 · cost(P,Ci) · Pr[rl],

we know that B(rl, 10 · Opt · Pr[rl], A ∩ H⊥i) intersects
C∗i . This implies that proj(rl, C∗i) lies also in B(rl, 10 ·
Opt · Pr[rl], A ∩H⊥i).

In fact,

2 · cost(P,Ci) · Pr[rl] ≤ 5 · Opt · Pr[rl]

implies that

B(proj(rl, C∗i), 5 · Opt · Pr[rl], A ∩H⊥i)

⊆ B(rl, 10 · Opt · Pr[rl], A ∩H⊥i).

Since C∗i ⊆ A ∩H⊥i we also have that there is a point

q ∈ C∗i ∩ B(proj(rl, C∗i), 5 · Opt · Pr[rl], A ∩H⊥i)

with dist(q, 0) ≥ 5 · Opt · Pr[rl].
Now consider the set which is the intersection of

N (rl, 10 · Opt · Pr[rl], A ∩H⊥i , γ/20)

with

B(proj(rl, Ci), 5 · Opt · Pr[rl], A ∩H⊥i),

which is a (γ/10)-net of

B(proj(rl, Ci), 5 · Opt · Pr[rl], A ∩H⊥i).

Hence, there is a point

q ′ ∈ N (rl, 10 · Opt · Pr[rl], A ∩H⊥i , γ/20)

with dist(q, q ′) ≤ γ
10 · 5 · Opt · Pr[rl] ≤ γ · Opt · Pr[rl].

Let ` be the line through q and let ` ′ be the line
through q ′. Let C⊥i denote the orthogonal complement
of ` in Ci. Define the subspace Ci+1 as the span of C⊥i
and ` ′. Since q lies in C∗i we have that C⊥i contains Hi.
Hence, Ci+1 also contains Hi.

It remains to show that

cost(P,Ci+1) ≤ (1+ γ) · cost(P,Ci).

Now define Li to be the orthogonal complement of
C⊥i . Note that for any p ∈ Rd and its projection
p ′ = proj(p, Li) we have dist(p,Ci) = dist(p ′, Ci) and
dist(p,Ci+1) = dist(p ′, Ci+1). Further observe that Ci
corresponds to the line ` in Li and Ci+1 corresponds to a
line ` ′′ = proj(` ′, Li).

Define α to be the angle between ` and ` ′ and β the
angle between ` and ` ′′. Note that α ≥ β. Then

dist(proj(p,Ci), Ci+1) = dist(proj(proj(p,Ci), Li), ` ′′)
= dist(proj(p, `), ` ′′).

This implies

dist(proj(p, `), ` ′′) = dist(proj(p, `), 0) · sinβ
≤ dist(p, 0) · sinα.

We have

sinα ≤ γ · Opt · Pr[rl]
5 · Opt · Pr[rl]

≤ γ
5
.

Similar to the first case it follows that

cost(P,Ci+1) − cost(P,Ci) ≤
∑

p∈Pi+1

dist(p, 0) · sinα

≤ γ
5
·
∑

p∈Pi+1

dist(p, 0).

Since we are in Case 2 we have∑
p∈Pi+1

dist(p, 0) < 4 · cost(Pi+1, Ci),

which implies

cost(P,Ci+1) − cost(P,Ci) ≤
γ

5
·
∑

p∈Pi+1

dist(p, 0)

≤ γ · cost(Pi+1, Ci)
≤ γ · cost(P,Ci).

This concludes the proof of Lemma 5.1.

6 Streaming Algorithms in the Read-Only Model
We can maintain our coreset with

Õ

d(j2O(
√

logn)

ε2

)poly(j)


(weighted) points via known merge and reduce technique
[1, 16] in the read-only streaming model where only
insertion of a point is allowed. The presence of negative
points makes the process of maintaining a coreset harder.
The problem is that the sum of the absolute weights of the
coreset is about three times the size of the input point set.

If we now apply our coreset construction several times
(as is required during merge and reduce), we blow up
the sum of absolute weights with each application by a
constant factor. This blow-up, together with the fact that
we have to estimate the difference between positively and
negatively weighted points, cannot be controlled as well
as in the case of a standard merge and reduce approach,
and requires taking larger sample sizes with every merge
step. The proof of the following theorem will appear in
the full version of this paper.

THEOREM 6.1. Let C be a fixed j-subspace of Rd. Let P
be a set of n points in Rd, j ≥ 0, and ε, δ > 0. In the
read-only streaming model we can maintain two sets S ′′

and Q using

Õ

d(j · 2√logn

ε2

)poly(j)


weighted points such that, with probability at least 1− δ,

|cost(P,C) − cost(S ′′, C) − cost(Q,C)| ≤ ε · cost(P,C).

Moreover, Õ() notation hides poly(logn) factors.

7 Streaming Algorithms with Bounded Precision in
the Turnstile Model

In this section, we consider the problems of previous
sections in the 1-pass turnstile streaming model. In this
model, coordinates of points may arrive in an arbitrary
order and undergo multiple updates. We shall assume
that matrices and vectors are represented with bounded
precision, that is, their entries are integers between −∆
and ∆, where ∆ ≥ (nd)B, and B > 1 is a constant. We
also assume that n ≥ d.

The rank of a matrix A is denoted by rank(A).
The best rank-j approximation of A is the matrix Aj
such that ‖A−Aj‖F is minimized over every matrix of
rank at most j, and ‖·‖F is the Frobenius norm (sum of
squares of the entries). Recall that using the singular
value decomposition every matrix A can be expressed as
UΣVT , where the columns of U and V are orthonormal,
and Σ is a diagonal matrix with the singular values along
the diagonal (which are all positive).

LEMMA 7.1. ([7]) Let A be an n × d integer matrix
represented with bounded precision. Then for every w,
1 ≤ w ≤ rank(A), thew-th largest singular value ofA is
at least 1/∆5(w−1)/2.

COROLLARY 7.1. Let A be an n × d integer matrix
represented with bounded precision. Let Aj be the best
rank-j approximation of A. If rank(A) ≥ j + 1 then
||A−Aj||F ≥ 1/∆5j/2.

Proof. Let σj+1 denote the (j+1)-th singular value ofA.
By Lemma 7.1, we have ||A − Aj||2 ≥ σj+1 ≥ 1/∆5j/2,
where the first inequality follows by standard properties
of the singular values. ut♣

For an n × d matrix A, let Fq(`p)(A) =∑n
i=1 ||A(i)||

q
p, where Ai is the i-th row of A. Let Aqj,p

be the matrix which minimizes Fq(`p)(B−A) over every
n×dmatrix B of rank j. The next corollary follows from
relations between norms and singular values.

COROLLARY 7.2. Let A be an n× d matrix, and p, q =
O(1). If rank(A) ≥ j+ 1 then

Fq(`p)(A−Aqj,p) ≥ 1/∆
O(j).

Proof. By Corollary 7.1,

F2(`2)(Aj −A) =

n∑
i=1

||(Aj)
i −Ai||22 ≥ 1/∆5j.

We use the following relations between norms. Let x be a
d-dimensional vector. For any a ≥ b,

||x||b

d(a−b)/ab
≤ ||x||a ≤ ||x||b.(7.13)

It follows that for any p ≤ 2,

F2(`p)(A
q
j,p −A) =

n∑
i=1

||(Aqj,p)
i −Ai||2p

≥
n∑
i=1

||(Aqj,p)
i −Ai||22

≥
n∑
i=1

||(Aj)
i −Ai||22

≥ 1/∆5j,

On the other hand, if p > 2,

F2(`p)(A
q
j,p −A) =

n∑
i=1

||(Aqj,p)
i −Ai||2p

≥
n∑
i=1

(
||(Aqj,p)

i −Ai||2

d(p−2)/(2p))

)2

≥
n∑
i=1

||(Aj)
i −Ai||22

d(p−2)/p

≥ 1

∆5j+1
,

where we use ∆ ≥ nd. Hence, in either case,(
F2(`p)(A

q
j,p −A)

)1/2
≥ 1/∆5j/2+1/2.

15

Again, appealing to the right part of (7.13), if q ≤ 2, then(
Fq(`p)(A

q
j,p −A)

)1/q
≥
(
F2(`p)(A

q
j,p −A)

)1/2
≥ 1

∆5j/2+1/2
.

If instead q > 2,

(
Fq(`p)(A

q
j,p −A)

)1/q
≥

(
F2(`p)(A

q
j,p −A)

)1/2
n(q−2)/(2q)

≥

(
F2(`p)(A

q
j,p −A)

)1/2
n1/2

≥ 1

∆5j/2+1
,

using that ∆ ≥ nd. Hence, in all cases,

Fq(`p)(A
q
j,p −A) ≥ 1/∆5jq/2+q = 1/∆Θ(j).

ut♣

In the remainder of the section, we shall assume that
p and q are in the interval [1, 2]. It is known [5, 6] that
estimating ||x||r for any r > 2 requires polynomial space
in the turnstile model, so this assumption is needed. Also,
p, q ≥ 1 in order to be norms.

We start by solving approximate linear regression.
We use this to efficiently solve distance to subspace ap-
proximation. Finally, we show how to efficiently (1+ ε)-
approximate the best rank-j approximation via a certain
discretization of subspaces. Our space is significantly less
than the input matrix description O(nd log(nd)).

7.1 Approximate Linear Regression

DEFINITION 7.1. (APPROXIMATE LINEAR REGRESSION)
Let A be an n × d matrix, and b be an n × 1 vector.
Assume that A and b are represented with bounded
precision, and given in a stream. The approximate linear
regression problem is to output a vector x ′ ∈ Rd so that
with probability at least 2/3,∣∣∣∣||Ax ′ − b||p − min

x∈Rd
||Ax− b||p

∣∣∣∣
≤ ε min

x∈Rd
||Ax− b||p.

Let Gp,γ,d,Z be the d-dimensional grid in Rd
of all points whose entries are integer multiples of
γ/(d1+1/p∆), and bounded in absolute value by Z. We
show that if we restrict the solution space to the grid
Gp,γ,d,∆Θ(d) , then we can minimize ||Ax − b||p up to
a small additive error γ. The proof follows by bounding
the entries of an optimal solution x∗ ∈ Rd, where

x∗ = argminx∈Rd ||Ax− b||p.

LEMMA 7.2. Suppose A is an n× d matrix, and b is an
n× 1 column vector with bounded precision. Then,

min
x∈Rd

||Ax− b||p ≤ min
x∈G

p,γ,d,∆Θ(d)

||Ax− b||p

≤ min
x∈Rd

||Ax− b||p + γ.

Proof. Let x∗ = argminx∈Rd ||Ax− b||p.
We first argue that the entries of x∗ cannot be too

large. We can suppose x∗ 6= 0d, as otherwise the entries
are all bounded in absolute value by 0. By the triangle
inequality,

||Ax∗ − b||p + ||b||p ≥ ||Ax∗||p.

Now,

||Ax∗ − b||p + ||b||p ≤ 2||b||p ≤ 2n∆.

Also, ||Ax∗||p ≥ ||Ax∗||2. Since x∗ 6= 0d, it holds that
||Ax∗||2 ≥ σr||x

∗||2, where r = rank(A) and σr is the
smallest singular value of A. Hence,

||x∗||2 ≤ 2n∆/σr.

By Lemma 7.1, σr ≥ ∆−5d/2, and so

||x∗||∞ ≤ ||x∗||2 ≤ 2n∆ · ∆5d/2 ≤ ∆6d.

Put G = Gp,γ,d,∆6d . Then

min
x∈G

||Ax− b||p ≤ min
x∈Rd

||Ax− b||p

≤ max
y∈{0,γ/(d1+1/p∆)}d

min
x∈G

||Ax+Ay− b||p

≤ min
x∈G

||Ax− b||p + max
y∈{0,γ/(d1+1/p∆)}d

||Ay||p

≤ min
x∈G

||Ax− b||p + (d(d∆γ/(d1+1/p∆)p)1/p

≤ min
x∈G

||Ax− b||p + γ.

ut♣

We use the following sketching result (see also [17, 23]).

THEOREM 7.1. ([19]) For 1 ≤ p ≤ 2, if one chooses
the entries of an (log 1/δ)/ε2 × n matrix S with en-
tries that are p-stable O(log 1/ε)-wise independent ran-
dom variables rounded to the nearest integer multiple
of ∆−2 = (nd)−2B and bounded in absolute value by
∆2 = (nd)2B, then for any fixed x ∈ Rn, with integer
entries bounded in absolute value by ∆, there is an effi-
cient algorithm A which, given Sx, outputs a (1 ± ε/3)-
approximation to ||x||p with probability at least 1−δ. The
algorithm can be implemented in O(log(nd) log 1/δ)/ε2

bits of space. Moreover, it can be assumed to output an
implicit representation of S.

THEOREM 7.2. There is a 1-pass algorithm, which given
the entries ofA and b in a stream, solves the Approximate
Linear Regression Problem withO(d3 log2(nd))/ε2 bits
of space and ∆Θ(d2) time (we will only invoke this later
as a subroutine for small values of d).

Proof. [of Theorem 7.2] We first consider the case that b
is in the columnspace of A. In this case, we have

0 = min
x∈Rd

||Ax− b||p = min
x∈Rd

||Ax− b||2.

Let y be such that Ay = b. In [24], it is shown
how to recover y with O(d2 log(nd)) bits of space with
probability at least 11/12, and to simultaneously report
that b is in the columnspace of A.

We now consider the case that b is not in
the columnspace of A. We seek to lower bound
minx∈Rd ||Ax − b||p. Consider the n × (d + 1) matrix
A ′ whose columns are the columns a1, . . . , ad of A ad-
joined to b. Also consider any n×(d+1) matrix T whose
columns are in the columnspace of A. Then

min
x∈Rd

||Ax− b||p = min
T

||T −A ′||p.

Since b is not in the columnspace of T , rank(A ′) =
rank(T) + 1. By Corollary 7.2, it follows that

min
x∈Rd

||Ax− b||p ≥ 1/∆Θ(d).

Put γ = ε/(3∆Θ(d)), and let G = Gp,γ,d,∆Θ(d) be
as defined above, so

|G| ≤ (3d1+1/p∆Θ(d)/ε)d.

For 1 ≤ p ≤ 2, let S be a random (log 1/δ ′)/ε2 × n
matrix as in Theorem 7.1, where δ ′ = Θ(1/|G|). The
algorithm maintains S ·A in the data stream, which can be
done withO(d3·log2(nd))/ε2 bits of space. LetA be the
efficient algorithm in Theorem 7.1. Then for a sufficiently
small δ ′, with probability at least 3/4, for every x ∈ G,

|A(SAx− Sb) − ||Ax− b||p|

≤ ε
3
||Ax− b||p.

(7.14)

By Lemma 7.2, there is an x ′ ∈ G for which

min
x∈Rd

||Ax− b||p ≤ ||Ax ′ − b||p

≤ min
x∈Rd

||Ax− b||p +
ε

3∆Θ(d)
.

Moreover,(
1−

ε

3

)
||Ax ′ − b||p ≤ A(SAx ′ − Sb)

≤
(
1+

ε

3

)
||Ax ′ − b||p.

Moreover, for ε ≤ 1, (1+ ε/3)ε/3 ≤ 2ε/3. Hence,(
1−

ε

3

)
min
x∈Rd

||Ax− b||p ≤ A(SAx ′ − Sb)

≤ (1+ ε) min
x∈Rd

||Ax− b||p.

By a union bound, the algorithms succeed with prob-
ability ≥ 3/4 − 1/12 = 2/3. The time complexity
is dominated by enumerating grid points, which can be
done in ∆Θ(d2) = (nd)Θ(j2) time. This assumes that
ε > ∆−Θ(d), since when ε = ∆−Θ(d) the problem re-
duces to exact computation. The theorem follows. ut♣

7.2 Distance to Subspace Approximation Given an
n×d integer matrixA in a stream with bounded precision,
we consider the problem of maintaining a sketch of A
so that from the sketch, for any subspace F in Rd of
dimension j, represented by a j × d matrix of bounded
precision, with probability at least 2/3, one can output a
(1± ε)-approximation to

Fq(`p)(projF(A) −A),

where projF(A) is the projection of A onto F.

THEOREM 7.3. For p, q ∈ [1, 2], there is a 1-pass al-
gorithm, which solves the Distance to Subspace Approxi-
mation Problem with O(nj3 log3(nd)/ε2) bits of space
and ∆O(j2) time. If p = 2 this can be improved to
O(nj2 log(nd))/ε space and poly(j log(nd)/ε) time.

Proof. Set δ = 1/(3n). We sketch each of the n rows
of A as in the algorithm of Theorem 7.2. That algorithm
also outputs a representation of its sketching matrix S. In
the offline phase, we are given F, and we compute F · S.
We independently solve the `p-regression problem with
matrix F and each of the n rows of A. For each row Ai,
we approximate minx∈Rj ||xF−Ai||p. By a union bound,
from the estimated costs for the rows, we get a (1 ± ε)-
approximation to Fq(`p)(projF(A) − A). The value of d
in the invocation of Theorem 7.2 is j. Using results in [7],
for p = 2 this can be somewhat improved. ut♣

7.3 Best Rank-j Approximation Given an n × d ma-
trix A with bounded precision in a stream, we consider
the problem of maintaining a sketch of A so that one can
(1 + ε)-approximate the value Fq(`p)(A

q
j,p − A) with

probability at least 2/3. We shall only consider p = 2.
We first give a 1-pass algorithm near-optimal in space, but
with poor running time, using sketches of [18]. We then
improve this to achieve polynomial running time. Note
that the case (q, p) = (2, 2) was solved in [7].

For the time-inefficient solution, the work of [18]
gives a sketch SA of the n × d input matrix A so that

17

Fq(`2)(A) (recall q ≤ 2) is estimable to within (1 + ε)
with probability 1 − δ using poly(log(nd)/ε) log 1/δ
bits of space, where all entries are integer multiples of
1/∆ and bounded in magnitude by ∆. In the offline
phase, we enumerate all rank-j matrices F with a certain
precision. In Lemma 7.3 we show we can consider only
∆O(j2(d+n)) different F. We compute SF − SA for
each F by linearity, and we choose the F minimizing the
estimate. Setting δ = Θ(∆−O(j2(d+n))), we get a 1-
pass (n + d)poly((lognd)/ε)-space algorithm, though
the time complexity is poor.

LEMMA 7.3. There is a set of ∆O(j2(d+n)) different
matrices F containing a (1+ε)-approximation to the best
rank-j approximation to A.

Proof. By Corollary 7.2, we can restrict to F with entries
that are integer multiples of ∆−Θ(j) and bounded in
magnitude by poly(∆). Choose a subset of j rows of
F to be linearly independent. There are

(
n
j

)
choices

and ∆O(dj2) assignments to these rows. They contain j
linearly independent columns, and once we fix the values
of other rows on these columns, this fixes the other rows.
In total, the number of F is ∆O(j2(d+n)). ut♣

We now show how to achieve polynomial time complex-
ity. We need a theorem of Shyamalkumar and Varadarajan
(stated for subspaces instead of flats).

THEOREM 7.4. ([25]) Let A be an n × d matrix. There
is a subset Q of O(jε log 1ε) rows of A so that span(Q)
contains a j-dimensional subspace F with

Fq(`2)(projF(A) −A) ≤ (1+ ε)Fq(`2)(A
q
j,2 −A).

Let r def
= O(jε log 1ε). Theorem 7.4 says that given a

matrix A, there is a j × r matrix B and an r × n subset-
matrix C (i.e., a binary matrix with one 1 in each row and
at most one 1 in each column), with

Fq(`2)(projB·C·A(A) −A) ≤ (1+ ε)Fq(`2)(A
q
j,2 −A).

We enumerate all possible C in nr time, which is
polynomial for j/ε = O(1), but we need a technical
lemma to discretize the possible B.

LEMMA 7.4. Suppose rank(A) > j. Then there is a
discrete set of ∆O(j3 log2 1/ε)/ε2 different B, each with
entries that are integer multiples of ∆−Θ(j) and bounded
in magnitude by ∆O(j log 1/ε)/ε, so that for every A, there
is a B in the set and a subset-matrix C with

Fq(`2)(projB·C·A(A) −A) ≤ (1+ ε)Fq(`2)(A
q
j,2 −A).

Proof. We can assume rank(A) ≥ r > j. If rank(A) < r
but rank(A) > j, we can just repeat this process for each
value of ` between j and r, replacing r in the analysis
below with the value `. We then take the union of the sets
of matrices that are found. This multiplies the number of
sets by a negligible factor of r.

From Theorem 7.4, there is a j×rmatrix B for which
BCA has orthonormal rows and for which we have

Fq(`2)(projB·C·A(A) −A) ≤ (1+ ε)Fq(`2)(A
q
j,2 −A).

There may be multiple such B; for a fixed C,A we let B
be the matrix that minimizes Fq(`2)(projB·C·A(A) −A).

Note that one can find such a B, w.l.o.g., since
rank(A) > r. Furthermore, we can assume CA has full
row rank since rank(A) ≥ r. Note that if CA does not
have this property, there is some C ′A with this property
whose rowspace contains the rowspace of CA, so this is
without loss of generality.

Fix any row Ai of A, and consider the y that mini-
mizes

min
y∈Rj

||yBCA−Ai||2.

It is well-known that

y = Ai(BCA)T [(BCA)(BCA)T]−1,

but since BCA has orthonormal rows, y = Ai(BCA)T .
For conforming matrices we have ||y||2 ≤ ||Ai||2||BCA||F.
Since BCA has orthonormal rows, ||BCA||F =

√
j. More-

over, ||Ai||2 ≤
√
d∆. It follows that

||y||∞ ≤ ||y||2 ≤
√
dj∆ ≤ ∆2.

Consider the expression ||yBH− a||2, where a = Ai

for some i, and H = CA. The entries of both a and C are
integers bounded in magnitude by ∆.

Let the r rows of H be H1, . . . , Hr, and the j rows of
BH be

r∑
`=1

B1,`H`,

r∑
`=1

B2,`H`, , . . . ,

r∑
`=1

Bj,`H`.

Then the expression ||yBH− a||22 has the form

d∑
v=1

(
av −

j∑
u=1

r∑
`=1

yuBu,`H`,v

)2
.(7.15)

Notice that |yuH`,v| ≤ ∆3 for every u, `, and v. It follows
that if we replace B with the matrix B ′, in which entries
are rounded down to the nearest multiple of ∆−cj for a
constant c > 0, then a routine calculation shows that
expression 7.15 changes by at most ∆−Θ(cj), where the

constant in the Θ(·) does not depend on c. As this was for
one particular row a = Ai, it follows by another routine
calculation that

Fq(`2)(projB·C·A(A) −A)

≤ Fq(`2)(projB ′·C·A(A) −A)

≤ Fq(`2)(projB·C·A(A) −A) + ∆−Θ(cj).

(7.16)

We would like to argue that the RHS of inequality 7.16
can be turned into a relative error. For this, we appeal
to Corollary 7.2, which shows that if rank(A) ≥ j + 1,
the error incurred must be at least ∆−Θ(j). Since ε
can be assumed to be at least ∆−Θ(j), as otherwise the
problem reduces to exact computation, it follows that if
rank(A) ≥ j+ 1, then for a large constant c > 0,

Fq(`2)(projB·C·A(A) −A)

≤ Fq(`2)(projB ′·C·A(A) −A)

≤ (1+ ε)Fq(`2)(projB·C·A(A) −A).

It remains to bound the number of different B ′.
Observe that ||B ′||F ≤ ||B||F. Now,

B = B(CA)(CA)−,

whereM− denotes the Moore-Penrose inverse of a matrix
M (that is, if we write M = UΣVT using the singular
value decomposition, then M− = VΣ−1UT). Here we
use the fact that CA has full row rank. Hence,

||B||F ≤ ||BCA||F||(CA)−||F =
√
j||(CA)−||F,

since the rows of BCA are orthonormal. Let e =
rank(CA). Now,

||(CA)−||2F =

e∑
i=1

σ−2
i ,

where σ1 ≥ σ2 ≥ · · ·σe > 0 are the non-zero singular
values of CA. Since CA is an integer matrix with entries
bounded in magnitude by ∆, by Lemma 7.1 all singular
values of CA are at least 1/∆Θ(e), and thus

||(CA)−||2F ≤ e∆Θ(e) ≤ ∆O(j/ε log 1/ε).

In summary,

||B ′||F ≤ ||B||F ≤ ∆O(j/ε log 1/ε).

As B ′ contains entries that are integer multiples of ∆−cj,
the number of different values of an entry in B ′ is
∆O(j/ε log 1/ε). Since B ′ is a j × r matrix, where r =
O(j/ε log 1/ε), it follows that the number of different B ′

is ∆O(j3/ε2 log2 1/ε), which completes the proof. ut♣

We sketch each row Ai of A independently, treating it
as the vector b in Theorem 7.2 with the d there equaling
the j here, thereby obtaining AiS for sketching matrix
S and each i ∈ [n]. Offline, we guess each of nr ·
∆O(j3 log2 1/ε)/ε2 matrix products BC, and by linearity
compute BCAS. We can (1± ε)-approximate

min
x∈Rj

||xBCA−Ai||p

for each i, B, C provided S is a d × O(j3 log2 1/ε)/ε2

matrix. Finally by Theorem 7.1,

THEOREM 7.5. There is a 1-pass algorithm for Best
Rank-j Approximation with

O(nj4 log(nd) log3 1/ε)/ε5

bits of space and ∆poly(j/ε) time. The algorithm also
obtains the n × j basis representation of rows of A
in BC for the choice of B and C resulting in a (1 +
ε)-approximation. In another pass we can obtain the
subspace BCA inO(jd log(nd)) additional bits of space.

References

[1] P. K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Ap-
proximating extent measures of points, J. ACM, volume
51(4), pp. 606–635, 2004.

[2] N. Alon and J. Spencer, The probabilistic method, J. Wiley
& Sons, New York, 2nd edition, 2000.

[3] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimen-
sionality reduction and data representation, Neural Com-
putation, volume 15(6), pp. 1373–1396, 2003.

[4] M. Belkin and P. Niyogi, Semi-supervised learning on
riemannian manifolds, Machine Learning Journal, 56,
2004.

[5] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar,
An information statistics approach to data stream and
communication complexity., In Proc. 43th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), pp. 209–218, 2002.

[6] A. Chakrabarti, S. Khot, and X. Sun, Near-optimal lower
bounds on the multi-party communication complexity of
set disjointness, In Proc. 18th Ann. IEEE Conf. on Com-
putational Complexity (CCC), pp. 107–117, 2003.

[7] K. Clarkson and D. Woodruff, Numerical linear algebra in
the streaming model, Proc. 41th Annu. ACM Symp. Theory
Comput. (STOC), 2009.

[8] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W.
Mahoney. Sampling algorithms and coresets for lp regres-
sion. Siam J. Comput., 38(5), pp. 2060-2078, 2009.

[9] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang,
Matrix approximation and projective clustering via volume
sampling, Theory of Computing, volume 2(12), pp. 225–
247, 2006.

19

[10] A. Deshpande and K. Varadarajan, Sampling-based di-
mension reduction for subspace approximation, Proc. 39th
Annu. ACM Symp. Theory Comput. (STOC), 2007.

[11] D. Feldman, A. Fiat, and M. Sharir, Coresets for weighted
facilities and their applications, Proc. 47th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), 2006.

[12] A. Frieze, R. Kannan, and S. Vempala, Fast monte-carlo
algorithms for finding low-rank approximations, JACM,
32(2), pp. 269–288, 2004.

[13] D. Feldman and M. Landberg, Algorithms for approximat-
ing subspaces by subspaces, 2007.

[14] D. Feldman, M. Monemizadeh, and C. Sohler, A ptas for k-
means clustering based on weak coresets, Proc. 23st Annu.
ACM Sympos. Comput. Geom. (SOCG), pp. 11–18, 2007.

[15] S. Har-Peled, How to get close to the median shape, CGTA,
36(1), pp. 39–51, 2007.

[16] S. Har-Peled and S. Mazumdar, Coresets for k-means and
k-median clustering and their applications, Proc. 36th
Annu. ACM Sympos. Theory Comput. (STOC), pp. 291–
300, 2004.

[17] P. Indyk, Stable distributions, pseudorandom generators,
embeddings, and data stream computation, J. ACM, 53(3),
pp. 307–323, 2006.

[18] T.S. Jayram and D. Woodruff, The data stream space
complexity of cascaded norms, In Proc. 50th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), FOCS, 2009.

[19] D. Kane, J. Nelson, and D. Woodruff. On the Exact
Space Complexity of Sketching and Streaming Small
Norms. In Proc. 21th ACM-SIAM Symp. Discrete Algo-
rithms (SODA), 2010.

[20] J. Kleinberg and M. Sandler, Using mixture models for
collaborative filtering, In Proc. 36th Annu. ACM Sympos.
Theory Comput. (STOC), pp. 569– 578, 2004.

[21] D. Kuzmin and M. K. Warmuth, Online kernel PCA with
entropic matrix updates, In Proc. 24th Intl. Conf. for
Machine Learning , pp. 465–472, 2007.

[22] A. Lakhina, M. Crovella, and C. Diot, Characterization of
network-wide anomalies in traffic flows. In Proc. 4th ACM
SIGCOMM Conf. on Internet measurement, pp. 201–206,
2004.

[23] P. Li, Estimators and tail bounds for dimension reduction
in `α (0 < α ≤ 2) using stable random projections. In
SODA, pp. 10–19, 2008.

[24] T. Sarlós. Improved approximation algorithms for large
matrices via random projections. In Proc. 47th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), pp. 143–152, 2006.

[25] N.D. Shyamalkumar and K. Varadrajan. Efficient sub-
space approximation algorithms. In Proc. 18th ACM-SIAM
Symp. Discrete Algorithms (SODA), pp. 532–540, 2007.

[26] M. Vose. A linear algorithm for generating random num-
bers with a given distribution. In IEEE Trans. Software
Eng., 17:9, pp. 972–975, 1991.

	Introduction
	Preliminaries

	Dimensionality Reduction for Clustering Problems
	From Dimensionality Reduction to Adaptive Sampling
	Coresets
	Subspace Approximation
	The algorithm.
	Invariant of algorithm CandidateSet.
	Overview of the proof of Lemma 5.1.
	The complete proof of Lemma 5.1.

	Streaming Algorithms in the Read-Only Model
	Streaming Algorithms with Bounded Precision in the Turnstile Model
	Approximate Linear Regression
	Distance to Subspace Approximation
	Best Rank-j Approximation

