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We present a novel definition of privacy in the framework of offline (retroactive) database query

auditing. Given information about the database, a description of sensitive data, and assumptions
about users’ prior knowledge, our goal is to determine if answering a past user’s query could have
led to a privacy breach. According to our definition, an audited property A is private, given

the disclosure of property B, if no user can gain confidence in A by learning B, subject to prior
knowledge constraints. Privacy is not violated if the disclosure of B causes a loss of confidence
in A. The new notion of privacy is formalized using the well-known semantics for reasoning about
knowledge, where logical properties correspond to sets of possible worlds (databases) that satisfy

these properties. Database users are modelled as either possibilistic agents whose knowledge is a
set of possible worlds, or as probabilistic agents whose knowledge is a probability distribution on
possible worlds.

We analyze the new privacy notion, show its relationship with the conventional approach,
and derive criteria that allow the auditor to test privacy efficiently in some important cases.
In particular, we prove characterization theorems for the possibilistic case, and study in depth
the probabilistic case under the assumption that all database records are considered a-priori

independent by the user, as well as under more relaxed (or absent) prior-knowledge assumptions.
In the probabilistic case we show that for certain families of distributions there is no efficient
algorithm to test whether an audited property A is private given the disclosure of a property B,
assuming P 6= NP . Nevertheless, for many interesting families, such as the family of product

distributions, we obtain algorithms that are efficient both in theory and in practice.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration; F.2.1 [Analysis
of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: privacy, disclosure, auditing, query logs, reasoning about
knowledge, supermodularity, Positivstellensatz

1. INTRODUCTION

Today, privacy protection has become a popular and even fashionable area of database
research. This situation is, of course, quite natural, given the importance of privacy in
our social life and the risks we face in the digital world. These risks were highlighted
by numerous recent reports of personal data theft and misappropriation, prompting many
countries to enact data protection laws [Australia 1998; Canada 2000; Congress 1996; E.
U. Parliament 1995]. However, the current state of scientific knowledge still does not allow
the implementation of a comprehensive privacy solution that guarantees provable protec-
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tion. In fact, the notion of privacy itself has many definitions and interpretations, some
focused on theoretical soundness, others on practical usefulness. This paper attempts to
reduce the gap between these two aspects by exploring more flexible yet sound definitions.

One typical privacy enforcement problem, calledquery auditing, is to determine if an-
swering a user’s database query could lead to a privacy breach. To state the problem more
accurately, we assume that the auditor is given:

— The database at the time of the user’s query, or some partialknowledge about that
database;

— A description of information considered sensitive, oftencalled theprivacy policyor
theaudit query;

— Assumptions about the user’s prior knowledge of the database, of the audit
query/ privacy policy, and of the auditor’s privacy enforcement strategy if it exists;

— The user’s query, or a range of queries.

The auditor wants to check whether answering a given query could augment the user’s
knowledge about some sensitive data, thereby violating theprivacy of that data. This prob-
lem has two extensions:proactiveprivacy enforcement (also calledonline auditing[Ken-
thapadi et al. 2005]), andretroactiveor offlineauditing.

In the proactive (online) privacy enforcement scenario, users issue a stream of queries,
and the database system decides whether to answer or to deny each query. The denial, when
it occurs, is also an “answer” to some (implicit) query that depends on the auditor’s privacy
enforcement strategy, and therefore it may disclose sensitive data. The strategy has to be
chosen in advance, before the user’s queries become available. A strategy that protects
privacy for a specified range of queries represents a solution to this auditing problem. An
in-depth discussion of online auditing can be found in [Kenthapadi et al. 2005; Nabar et al.
2006] and papers referenced therein.

In the retroactive (offline) scenario, the users issue theirqueries and receive the answers;
later, an auditor checks if a privacy violation might have occurred. The audit results are not
made available to the users, so the auditor’s behavior no longer factors into the disclosure
of data, and this considerably simplifies the problem. This also allows for more flexibility
in defining sensitive information: while in the proactive case the privacy policy is typically
fixed and open to the users, in the retroactive case the audit query itself may be sensitive,
for example, based on an actual or suspected privacy breach [Agrawal et al. 2004; Motwani
et al. 2008]. Retroactive auditing is the application that motivates this paper, although our
framework turns out to be fairly general.

To further illustrate the above, suppose Alice asks Bob for his HIV status. Assume
that Bob never lies and considers “HIV-positive” to be sensitive information, while “HIV-
negative” is for him OK to disclose. Bob is HIV-negative at the moment; can he adopt the
proactive strategy of answering “I am HIV-negative” as longas it is true? Unfortunately,
this is not a safe strategy, because if he does become HIV-positive in the future, he will
have to deny further inquiries, and Alice will infer that he contracted HIV. The safest bet
for Bob is to always refuse an answer.1

For the retroactive scenario, suppose that Bob contracted HIV in 2006. Alice, Cindy and
Mallory legitimately gained access to Bob’s health recordsand learned his HIV status, but

1If Alice pays Bob for answers, he can balance privacy and profit by tossing a coin and answering “I am HIV-
negative” only if the coin falls heads.
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Alice and Cindy did it in 2005 and Mallory did in 2007. Bob discovers that his disease is
known to the drug advertisers, and he initiates an audit, specifying “HIV-positive” as the
audit query. The audit will place the suspicion on Mallory, but not on Alice and Cindy.

In legal practice, retroactive law enforcement has shown tobe better suited to the com-
plex needs of our society, although proactive measures are used too, especially in simple
or critical situations. For example, a valuable item can be protected from theft by lock
and key (a proactive measure) or by the fear of being caught and jailed (a retroactive mea-
sure). If it is simple to fence off the item and distribute thekeys to all authorized users,
or if the item has extraordinary value, then proactive defense is the best option, but in less
clear-cut cases this would be too cumbersome or intrusive. After all, even an authorized
user might steal or lose the item, and even a stranger sometimes should be able to gain
access to it, for example, in an emergency. Healthcare [Agrawal et al. 2002] is one area
where the complexity of data management is just too high to hope for a fully proactive
solution to privacy. The importance of offline disclosure auditing in healthcare has been
recognized by the U.S. President’s Information TechnologyAdvisory Committee [PITAC
2004], which recommended that healthcare information systems have the capability to au-
dit who has accessed patient records. We believe in coexistence and importance of both
auditing approaches.

1.1 Privacy Definitions in Query Auditing

The art of encryption and cryptanalysis goes back to antiquity, but the scientific maturity
of privacy theory was made possible only in modern times by mathematical modeling of
the eavesdropper’s knowledge. One of the first such models was proposed in 1949 by
Claude Shannon [Shannon 1949], who introduced the notion ofperfect secrecy. Shannon
suggested to represent the adversarial knowledge by a probability distribution over possible
private data values: prior distribution before the cryptogram is revealed, and posterior
distribution after the adversary sees the cryptogram (but not the key). Perfect secrecy
corresponds to the situation where the posterior distribution is identical to the prior, for
every possible cryptogram. This general idea has been lateradapted and extended to many
privacy frameworks and problems, including query auditing.

Denote byΩ the set of all possible databases, and byA andB two properties of these
databases; each databaseω ∈ Ω either has or does not have each property. Assume that the
actual database satisfies bothA andB. Suppose that propertyA is sensitive, and property
B is what user Alice has learned by receiving the answer to her query. Was the privacy of
A violated by the disclosure ofB? This depends on what Alice knew before learningB;
for example, if she knew “B ⇒ A” (but did not knowA), thenB of course revealed to
her thatA is true. On the other hand, if Alice already knew thatA is true, thenB could no
longer revealA and may be waved through by the auditor.

Miklau and Suciu [Miklau and Suciu 2004] applied Shannon’s model to this problem
and declaredA to be private givenB if and only if, for all probability distributionsP over
Ω that might describe Alice’s prior knowledge about the database, we have

P [A |B] = P [A] (1)

Unfortunately, if no constraints are placed onP , no pair (A,B) of non-trivial proper-
ties (A,B 6= ∅ or Ω) will satisfy this privacy definition. To see this, take a database
ω1 ∈ Ω−B, then take another databaseω2 ∈Ω so thatω1 ∈A⇔ ω2 /∈A. This is possible
since neitherA nor B equals∅ or Ω. Assign the probabilityP (ω1) = P (ω2) = 1/2 and
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P (ω) = 0 everywhere else; if the actual database, which must have a nonzero probability
(see why in Remark 2.3), isω∗ /∈ {ω1, ω2}, assignP (ω1) = P (ω2) = P (ω∗) = 1/3.
We haveP [A |B] 6= P [A], because the (prime) denominator inP [A] cannot appear
in P [A |B].

Miklau and Suciu considered a quite limiting, yet popular, constraint: that Alice treats
all database recordsr ∈ ω independently, that is,P is a product distribution:

P (ω) =
∏

r∈ω P [r] × ∏
r/∈ω

(
1− P [r]

)

Under this constraint, they prove that propertyA is private given the disclosure ofB if
and only if they share nocritical records(Theorem 3.5 in [Miklau and Suciu 2004]). A
database record is called “critical” forA (for B) if its presence or absence in some database
may decide the truth value ofA (of B). This can be a real recordr that belongs to the actual
database (r ∈ ω∗), or an imaginary recordr /∈ ω∗ made up from an arbitrary combination
of attribute values. For many propertiesA andB that, in practice, have nothing to do with
each other, we can make up an imaginary recordr and a pairωA andωB of imaginary
databases such that insertingr into ωA (into ωB) flips the truth value ofA (of B). For
example, if

A � ∃X PATIENT ID (Bob,X) & DISEASE(X, HIV+)

B � ¬∃Y PATIENT ID (Chris, Y ) & DISEASE(Y, HIV+)

ω∗ =
{

PATIENT ID (Diana, 123), DISEASE(123, Flu)
}

thenA andB share a critical recordr = DISEASE(123, HIV+) even though patient #123
is Diana, all patients are HIV-negative, and Bob is not even registered at the hospital. The
imaginary databases are

ωA =
{

PATIENT ID (Bob, 123)
}
; ωB =

{
PATIENT ID (Chris, 123)

}
.

One can see that, even with prior knowledge restricted to product distributions, very few
practical queries would get privacy clearance: perfect secrecy appears too demanding to
be practical.

A number of recent papers studied ways to relax condition (1)and make it approximate.
They follow the same principle: for certain pairs(ρ1, ρ2) of numerical bounds,ρ1 < ρ2,
require that

P [A] 6 ρ1 ⇒ P [A |B] 6 ρ2

whereP is a prior knowledge distribution. This idea is behind the definition of ρ1-to-ρ2

privacy breach in [Evfimievski et al. 2003]; Kenthapadiet al. [Kenthapadi et al. 2005] use
a slightly different version as part of their definition:

1− λ 6 P [A |B] /P [A] 6 1/(1− λ)

The Sub-Linear Queries (SuLQ) framework developed in [Blumet al. 2005; Dinur and
Nissim 2003; Dwork and Nissim 2004] has a more sophisticatedversion with nice theoret-
ical characteristics:

Pr

[
log

P [A |B]

1− P [A |B]
− log

P [A]

1− P [A]
> ε

]
6 δ (2)

Conceptually they all require that no user can gain much confidence in the audited prop-
ertyA by learning the disclosed propertyB, subject to prior knowledge constraints.
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Perhaps surprisingly, however, all papers known to us, in their proofs if not in their
definitions, do not make any distinction betweengaining and losing the confidence inA
upon learningB. For example, the SuLQ results remain in force if the privacydefinition
of [Blum et al. 2005] is changed by placing the absolute valuesign “|...|” over the differ-
ence in (2). In some papers [Dwork and Nissim 2004] the “|...|” appears in the definition
explicitly.

It turns out that taking advantage of the gain-vs.-loss distinction yields a remarkable
increase in the flexibility of query auditing. To bring it into focus, we shall put aside the
approximate privacy relaxations and replace Eq. (1) with inequality

P [A |B] 6 P [A] (3)

That is, we call propertyA privategiven the disclosure of propertyB when (3) holds for
all distributionsP that are admissible as a user’s prior knowledge. One might call this
“semiperfect secrecy,” for it has the same sort of “absolute” form as perfect secrecy. This
and related notions are the subject of this paper.

Let us illustrate its flexibility with a simple example of Alice (a user) and Bob (a patient).
The hospital’s databaseω has two records:r1 = “Bob is HIV-positive” andr2 = “Bob
had blood transfusions.” The sensitive propertyA is the presence ofr1, i.e. that Bob is
HIV-positive. The propertyB that Alice queries and learns is “r1 ∈ ω implies r2 ∈ ω,”
in other words, that “if Bob is HIV-positive, then he had blood transfusions.”We make no
constraints on Alice’s prior knowledge distribution, other than a nonzero probability of the
actual database. Could the disclosure ofB violate the privacy ofA? Look at the following
table of possible worlds:

r2 ∈ ω r2 /∈ ω

r1 ∈ ω A is true A is true F

r1 /∈ ω A is false A is false

For Alice, learningB has the effect of ruling out the cell marked with aF, while leaving
the other cells untouched. Whatever the cells’ prior probabilities are, the odds ofA can
only go down:P [A |B] 6 P [A]. Thus,A is private with respect toB, even thoughA and
B share a critical recordr1, and regardless of any possible dependence among the records.2

A closely related phenomenon was noticed in the 1940’s by themathematician George
Pólya in the context of his studies of how mathematicians solve their problems. He wrote
a popular and highly acclaimed book, recently re-issued, about problem solving [Ṕolya
1957], followed by more in-depth monographs [Pólya 1954; 1968]. Ṕolya observed the
following rule ofplausible reasoning:

If A thenB B is true
A more credible

where “more credible” means thatP [A |B] > P [A]. It is easy to show in the same manner
as above that the rule holds regardless of one’s prior knowledge.

2Note that if Bob proactively tells Alice “If I am HIV-positive, then I had blood transfusions,” a privacy breach
of A may occur, because Alice may learn more than justB. For example, Alice then learns that Bob is thinking
about his HIV status.
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1.2 Summary of Results

This paper studies a notion of database privacy that makes itillegal for users to gain con-
fidence about sensitive facts, yet allows arbitrary confidence loss. We begin in Sections 2
and 3 by introducing two novel privacy frameworks that implement the above concept for
two different knowledge representations: possibilistic and probabilistic. We outline some
properties of our privacy definitions that are relevant to the problem of testing privacy, and
give necessary and sufficient conditions for privacy with norestrictions on the user’s prior
knowledge.

Section 4 delves deeper into the possibilistic model. For certain important cases, notably
when the constraints on a user’s prior knowledge are intersection-closed (i. e. not violated
by a collusion of users), we give necessary and sufficient criteria for testing possibilistic
privacy, which also reduce the complexity of this problem.

Sections 5 and 6 focus on the more complex probabilistic model, over the set{0, 1}n
of Boolean vectors that represent subsets of database records. Section 5 studies two prob-
abilistic prior knowledge constraints: bit-wise independence (product distributions) and
log-supermodularity. The bit-wise independence constraint was used also in [Miklau and
Suciu 2004] by Miklau and Suciu, so our work can be viewed as anextension of theirs.
Log-supermodularity is chosen to provide a “middle ground”between bit-wise indepen-
dence and the unconstrained prior knowledge. We give simplecombinatorial necessary
criteria and sufficient criteria for privacy under the log-supermodular and the product dis-
tribution constraints.

In Section 6, we study more general familiesΠ of distributions over{0, 1}n that can
be described by the intersection of a finite number of polynomial inequalities in a finite
number of real-valued variables. We prove that even for certain very restrictedΠ , deciding
whether a setB ⊆ {0, 1}n violates the privacy of a setA ⊆ {0, 1}n with respect to
distributions inΠ cannot be done in polynomial time, unlessP = NP .

We overcome this negative result in two ways. First, using some deep results from alge-
braic geometry, we show that in certain interesting cases, such as whenΠ is the family of
product distributions, there are provably efficient algorithms for deciding privacy. Second,
we describe the sum-of-squares heuristic, introduced in [Shor 1987; Shor and Stetsyuk
1997; Parrilo 2000], and its application for deciding privacy for anyΠ . The heuristic has
been implemented and works remarkably well in practice [Parrilo and Sturmfels 2001].

2. WORLDS AND AGENTS

Epistemology, the study of knowledge, has a long and honorable tradition in philosophy,
starting with the early Greek philosophers. Philosophers were concerned with questions
such as “What does it mean to say that someone knows something?” In the 1950’s and
1960’s [Hintikka 1962; Kripke 1963; Wright 1951] the focus shifted more to developing
anepistemic logic, a logic of knowledge, and trying to capture the inherent properties of
knowledge. Here there is a setΩ of possible worlds, one of which is the “real world”ω∗.
An agent’sknowledgeis a setS ⊆ Ω of worlds that the agent considers possible. Since
we are modelingknowledgerather thanbelief, we require thatω∗ ∈ S. If F is a (possible)
fact, andA ⊆ Ω is the set of possible worlds whereF is true, then we say that the agent
knowsF if and only if S ⊆ A.

More recently, researchers in such diverse fields as economics, linguistics, artificial in-
telligence, and theoretical computer science have become interested in reasoning about
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knowledge [Fagin et al. 1995]. The focus of attention has shifted to pragmatic concerns
about the relationship between knowledge and action. That is our focus: the effect of an
action, such as the disclosure of certain information, on the knowledge of an agent.

Worlds Let Ω be a finite set of all possible databases. We shall call a databaseω ∈ Ω
a world, and the entireΩ the set of all possible worlds. Theactual world, denoted byω∗,
represents the real database. Every property of the database, or assertion about its contents,
can be formulated as “ω∗ ∈ A” whereA ⊆ Ω is the set of all databases that satisfy the
property. A subsetA ⊆ Ω that containsω∗ shall be called aknowledge set.

Agents We shall think of database users asagentswho know something about the worlds
in Ω and who try to figure out whichω ∈ Ω is the actual worldω∗. An agent’s knowledge
can be modelled in different ways; we shall consider two approaches. In apossibilistic
agent, knowledge is represented by a setS ⊆ Ω that contains exactly all the worlds this
agent considers possible. In particular,ω∗ ∈ S. Here every world is either possible or not,
with no ranking or score assigned. In aprobabilisticagent, knowledge is represented by
a probability distributionP : Ω → R+ that assigns a nonnegative weightP (ω) to every
world. We denote the sum

∑
ω∈A P (ω) by P [A], requiring thatP [Ω] = 1 andP (ω∗) > 0;

byR+ we denote the set of all non-negative real numbers.
We say that a possibilistic agent with knowledgeS knowsa propertyA ⊆ Ω when

S ⊆ A. We say thatA is possiblefor this agent whenS ∩A 6= ∅, that is, when the agent
does not knowΩ − A. For a probabilistic agent with distributionP , to knowA means to
haveP [A] = 1, and to considerA possible means to haveP [A] > 0.

A functionQ whose domain isΩ shall be called aquery; if its range is{0, 1} thenQ is
aBooleanquery. For a given actual worldω∗, each queryQ corresponds to the knowledge
set associated with the query’s “actual” output:

{
ω ∈ Ω

∣∣Q(ω) = Q(ω∗)
}

.

The Auditor There is a special “meta-agent” calledthe auditorwhose task is to analyze
the queries disclosed to the users and determine which of these disclosures could breach
privacy. The auditor may or may not have complete information about the actual worldω∗.
For example, if the query disclosure occurred several yearsago, the record update logs
may provide only a partial description of the database stateat that moment. Even more
importantly, the auditor does not know what the user’s knowledge of the database was at
the disclosure time. We characterize the auditor’s knowledge by specifying which pairs
of a databaseω and the user’s knowledgeS (or P ) the auditor considers possible. Let us
formally define the auditor’s knowledge about a user:

Definition 2.1. (Possibilistic case) Apossibilistic knowledge worldis a pair (ω, S),
whereω is a world andS is a knowledge set, which satisfiesω ∈ S ⊆ Ω. The set of
all possibilistic knowledge worlds shall be denoted as

Ωposs :=
{
(ω, S)

∣∣ω ∈ S ⊆ Ω
}

Ωposs can be viewed as an extension ofΩ. For a given user whose knowledge isS∗ ⊆ Ω,
the pair(ω∗, S∗) ∈ Ωposs is called theactualknowledge world. The auditor’s knowledge
about the user is defined as a non-empty setK ⊆ Ωposs of knowledge worlds, which must
include the actual knowledge world. We refer toK as asecond-level knowledge set.

We now give the intuition behind a second-level knowledge set K. AssumeK =
{(ω1, S1), (ω2, S2), . . .}. Then the auditor knows that either (i)ω1 is the actual world
and the agent’s knowledge set isS1 (the latter means that the agent knows that the actual
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world is contained inS1), or (ii) ω2 is the actual world and the agent’s knowledge set is
S2, or . . .. In particular, the auditor knows that (a) the actual world is one ofω1, ω2, . . .,
and the auditor knows that (b) the agent’s knowledge set is one ofS1, S2, . . .. The second-
level knowledge set provides richer knowledge for the auditor than simply the knowledge
of (a) and (b) together, since the second-level knowledge set ties together choices for the
actual world with choices for the agent’s knowledge set. Note also that if the auditor
knows that the actual world isω∗, then the second-level knowledge set is of the form
{(ω∗, S1), (ω

∗, S2), . . .}.
Our knowledge worlds(ω, S) are similar to the 2-worlds of [Fagin et al. 1991], except

that the 2-worlds of [Fagin et al. 1991] would deal not only with the knowledge that the
user has of the world, but also with the knowledge that the auditor has of the world, Also,
our second-level knowledge sets are similar to the 3-worldsof [Fagin et al. 1991], except
that the 3-worlds of [Fagin et al. 1991] would deal not only with the knowledge that the
auditor has about the user’s knowledge of the world, but alsowith the knowledge that the
user has about the auditor’s knowledge of the world.

Definition 2.2. (Probabilistic case) Aprobabilistic knowledge worldis a pair(ω, P )
whereP is a probability distribution overΩ such thatP (ω) > 0. The set of all probabilistic
knowledge worlds shall be denoted as

Ωprob :=
{
(ω, P )

∣∣P is a distribution, P (ω) > 0
}
.

The actual knowledge world(ω∗, P ∗) ∈ Ωprob and the auditor’s second-level knowledge
setK ⊆ Ωprob are defined analogously to the possibilistic case.

Remark2.3. The requirement ofω ∈ S for every pair(ω, S) ∈ Ωposs and ofP (ω) > 0
for every pair(ω, P ) ∈ Ωprob represent our assumption that every agent considers the
actual world possible. All pairs that violate this assumption are excluded as inconsis-
tent. Note that a probabilistic pair(ω, P ) is consistent if and only if the possibilistic pair(
ω, supp(P )

)
is consistent, wheresupp(P ) is defined next.

Definition 2.4. The support setof a probability distributionP over Ω is the set
supp(P ) := {ω |P (ω) > 0}. For a family Π of probability distributions overΩ,
we define a familysupp(Π ) of non-empty subsets ofΩ as follows: supp(Π ) :=
{supp(P ) |P ∈ Π }.

Remark2.5. In practice, it may be computationally infeasible to precisely characterize
the auditor’s second-level knowledge and to use this precisely characterized knowledge
in the privacy definitions. Instead, the auditor makes assumptions about the database and
the user’s knowledge by placing constraints on the possiblepairs(ω, S) or (ω, P ). These
assumptions and constraints are also represented by a second-level knowledge set, which
must contain the auditor’s precise knowledge set as a subset. From now on, when we talk
about the auditor’s knowledge set, we mean the assumptions,accepted by the auditor, that
form a superset of the actual knowledge set, unless stated otherwise.

Definitions 2.1 and 2.2 allow us to consider an auditor whose assumptions about the
user’s knowledge depend on the contents of the database. Forexample, the auditor may
assume that, if the hospital database contains record “Bob’s doctor is Alice,” then Alice
knows Bob’s HIV status, but if there is no such record, then Alice may or may not know it.
However, in many situations we can separate the auditor’s knowledge about the database
from the auditor’s assumptions about the user. We do so by specifying two sets:
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(1) A non-empty setC ⊆ Ω that consists of all databases the auditor considers possible,
with ω∗ ∈ C;

(2) A family Σ of subsets ofΩ and/or a family Π of probability distributions overΩ.
The possibilistic agent’s knowledge has to belong toΣ , and the probabilistic agent’s
knowledge has to belong toΠ .

If the auditor knows the actual database exactly, for example by reconstructing its state
from the update logs, thenC = {ω∗}; if the auditor has no information about the database
or is unwilling to take advantage of it, thenC = Ω. Some choices forΣ andΠ will be
discussed in the subsequent sections.

When we say that the auditor’s knowledge is represented byC andΣ described above,
we mean that all knowledge worlds(ω, S) with ω ∈ C and S ∈ Σ , and none other,
are considered possible by the auditor. However, in most cases the auditor’s second-level
knowledge set cannot be the Cartesian productC × Σ , because it contains inconsistent
(ω, S) pairs (see Remark 2.3). The same is true in the probabilisticcase, forC andΠ . Let
us then define a product operation that excludes all inconsistent pairs:

Definition 2.6. Theproductof a setC ⊆ Ω and a familyΣ of subsets ofΩ (a fam-
ily Π of probability distributions overΩ) is a second-level knowledge setC ⊗Σ (C ⊗Π )
defined by

C ⊗ Σ :=
{
(ω, S) ∈ C×Σ

∣∣ω ∈ S
}

= (C×Σ ) ∩ Ωposs

C ⊗Π :=
{
(ω, P ) ∈ C×Π

∣∣P (ω)> 0
}

= (C×Π ) ∩ Ωprob

We call the pair(C,Σ ) or (C,Π ) consistentif their productC ⊗ Σ or C ⊗Π is non-
empty, because∅ is not a valid second-level knowledge set.

Remark2.7. The productC ⊗ Σ (or C ⊗ Π ) computes themaximumsecond-level
knowledge setK ⊆ Ωposs (or K ⊆ Ωprob) that is a subset ofC × Σ (or C ×Π ).

The auditor can safely discard fromΣ all sets that have empty intersection withC, and
from Π all probabilitiesP that haveP [C] = 0, because they do not allowω∗ ∈ C as a
possibility. In particular, the empty set∅, if present inΣ , is always discarded3. In the
same way, a worldω ∈ C can be safely discarded if for allS ∈ Σ (P ∈ Π ) we have
ω /∈ S (P (ω) = 0). When a pair(C,Σ ) has nothing to discard in this manner, we shall
call it non-excessive; analogously for(C,Π ).

Remark2.8. It is easy to see that the following conditions are equivalent:

(1) Pair(C,Σ ) is non-excessive;

(2) π1(C ⊗ Σ ) = C andπ2(C ⊗ Σ ) = Σ , whereπi is the projection operation;

(3) ∃K ⊆ Ωposs such thatC = π1(K) andΣ = π2(K);

(4) In the bipartite graph with verticesω ∈ C andS ∈ Σ , where(ω, S) is an edge if and
only if ω ∈ S, there are no isolated vertices.

A probabilistic-knowledge pair(C,Π ) is non-excessive if and only if the possibilistic
knowledge pair

(
C, supp(Π )

)
is non-excessive.

3The empty set may be added toΣ in order to make it∩-closed:∀S1, S2 ∈ Σ : S1 ∩S2 ∈ Σ . See Section 4.1
for more on∩-closed knowledge.
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3. PRIVACY OF KNOWLEDGE

This section introduces the definition of privacy for the possibilistic and the probabilistic
knowledge models. LetA,B ⊆ Ω be two arbitrary non-empty subsets ofΩ; as a shorthand,
write Ā = Ω−A andAB = A ∩B. SetsA andB correspond to two Boolean queries on
the databaseω∗; for example, queryA returns “true” ifω∗ ∈ A and “false” otherwise.

We shall study the following question: When could the disclosure of B violate the
privacy ofA? In our model, a positive result of queryA is considered private and needs
protection, whereas a negative result (that assertsĀ) is not protected. Neither the user nor
the auditor are assumed to know ifA is true, andA may actually be false. On the other
hand,B represents the disclosed fact, and thereforeB has to be true. The auditor knows
thatB is true; the user transitions from not knowingB to knowingB.

The user modifies his knowledge when he receives a disclosed query result. The dis-
closed knowledge setB ⊆ Ω tells him that every world inΩ−B is impossible. We model
the user’s acquisition ofB as follows. A possibilistic agent with prior knowledgeS ⊆ Ω,
upon receivingB such thatSB 6= ∅ (becauseω∗ ∈ SB), ends up with posterior knowl-
edgeSB. A probabilistic agent with prior distributionP : Ω → R+, upon receivingB
such thatP [B] > P (ω∗) > 0, ends up with posterior distributionP (· |B) defined by

P (ω |B) =

{
P (ω)/P [B], ω ∈ B

0, ω ∈ Ω−B

Notice that the acquisition ofB1 followed by B2 is equivalent to the acquisition of
B1B2 = B1 ∩B2.

Conceptually, we say that propertyA is private, given the disclosure of propertyB, if
the user could not gain confidence inA by learningB. Below we shall make this notion
precise for the two knowledge models, possibilistic and probabilistic. From this section
on, we shall use pronoun “he” for the user and “she” for the auditor.

3.1 Possibilistic Privacy

Let us suppose first that the auditor knows everything: the actual databaseω∗ such that
ω∗ ∈ B, and the actual knowledge setS∗ of the user at the time of the disclosure. In
the possibilistic model, the user may have only two “grades of confidence” in property
A: he either knowsA (S∗ ⊆ A), or he does not (S∗ 6⊆ A). The user gains confi-
dence when he does not knowA before learningB (i. e. S∗ 6⊆ A) and knowsA after
learningB (i. e. S∗ ∩ B ⊆ A). Therefore, the privacy ofA is preserved if and only if
¬ (S∗ 6⊆ A & S∗ ∩B ⊆ A), or equivalently, if and only if

S∗ ∩B ⊆ A ⇒ S∗ ⊆ A. (4)

Now, suppose that the auditor does not knowω∗ andS∗ precisely, but has a second-level
knowledge setK ⊆ Ωposs such that(ω∗, S∗) ∈ K. Then the auditor makes sure thatA is
private givenB by checking condition (4) for all pairs inK. Before doing so, the auditor
must discard fromK all pairs(ω, S) such thatω /∈ B, because they are inconsistent with
the disclosure ofB. We arrive at the following possibilistic privacy definition:

Definition 3.1. SetA ⊆ Ω is calledK-privategiven the disclosure of setB ⊆ Ω, for
K ⊆ Ωposs, when

∀ (ω, S) ∈ K :
(
ω ∈ B & S ∩B ⊆ A

)
⇒ S ⊆ A. (5)
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We denote this predicate bySafeK(A,B).

When the auditor wants to separate her knowledge about the database from her as-
sumptions about the user’s knowledge, she represents her second-level knowledge setK
as a productC ⊗ Σ , whereC ⊆ Ω andΣ is a family of subsets ofΩ. In this case we
shall use the term “(C,Σ )-private” and the notationSafeC,Σ (A,B), which is defined as
SafeC⊗Σ (A,B). We useP (Ω) to denote the power set ofΩ.

PROPOSITION 3.2. For a consistent pair(C,Σ ) such thatC ⊆ Ω and Σ ⊆ P (Ω),
the privacy predicateSafeC,Σ (A,B) can be equivalently defined as follows (denoting
S ∩B ∩ C asSBC) :

∀S ∈ Σ :
(
SBC 6= ∅ & SB ⊆ A

)
⇒ S ⊆ A. (6)

PROOF. The following sentences are trivially equivalent:

∀S ∈ Σ :
(
SBC 6= ∅ & SB ⊆ A

)
⇒ S ⊆ A

∀S ∈ Σ :
(
∃ω ∈ SC : ω ∈ B & SB ⊆ A

)
⇒ S ⊆ A

∀S ∈ Σ , ∀ω ∈ SC :
(
ω ∈ B & SB ⊆ A

)
⇒ S ⊆ A

∀ (ω, S) ∈ C ⊗ Σ :
(
ω ∈ B & SB ⊆ A

)
⇒ S ⊆ A.

Thus, we have (6)⇔ (5) for K = C ⊗ Σ .

3.2 Probabilistic Privacy

Once again, suppose first that the auditor knows the actual databaseω∗ ∈ B and the actual
probability distributionP ∗ that represents the user’s knowledge prior to the disclosure. As
opposed to Section 3.1, in the probabilistic model the user has a continuum of “grades
of confidence” inA, measured byP ∗[A]. The user gains confidence whenever hisprior
probability ofA before learningB, which isP ∗[A], is strictly smaller than hisposterior
probability ofA afterB is disclosed, which isP ∗[A |B]. Therefore, the privacy ofA is
preserved if and only if

P ∗[A |B] 6 P ∗[A]. (7)

The conditional probabilityP ∗[A |B] is well-defined sinceP ∗[B] > P ∗(ω∗) > 0.
When the auditor does not knowω∗ and P ∗, but has a second-level knowledge set

K ⊆ Ωprob such that(ω∗, P ∗) ∈ K, she has to check inequality (7) for all possible pairs
(ω, P ) in K. Before doing so, she must discard all pairs(ω, P ) such thatω /∈ B. We
obtain the following probabilistic privacy definition:

Definition 3.3. SetA ⊆ Ω is calledK-privategiven the disclosure of setB ⊆ Ω, for
K ⊆ Ωprob, when

∀ (ω, P ) ∈ K : ω ∈ B ⇒ P [A |B] 6 P [A]. (8)

As before, we denote this predicate bySafeK(A,B).

When the auditor’s knowledge can be represented as a productC ⊗ Π for some
C ⊆ Ω and some familyΠ of probability distributions overΩ, we shall use the term
“(C,Π )-private” and the notationSafeC,Π (A,B), which is defined asSafeC⊗Π (A,B).
In this case the following proposition can be used:
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PROPOSITION 3.4. For a consistent pair(C,Π ) whereC ⊆ Ω and Π is a family of
distributions overΩ, the privacy predicateSafeC,Π (A,B) can be equivalently defined as
follows:

∀P ∈ Π : P [BC] > 0 ⇒ P [AB] 6 P [A]P [B]. (9)

PROOF. The following sentences are trivially equivalent:

∀P ∈ Π : P [BC] > 0 ⇒ ineq

∀P ∈ Π :
(
∃ω ∈ BC : P (ω) > 0

)
⇒ ineq

∀P ∈ Π , ∀ω ∈ C :
(
P (ω) > 0 & ω ∈ B

)
⇒ ineq

∀ (ω, P ) ∈ C ⊗Π : ω ∈ B ⇒ ineq,

where “ineq” stands for “P [AB] 6 P [A]P [B],” which is equivalent to “P [A |B] 6

P [A]” as long as the left-hand side of the implication is true. Thus, we have (9)⇔ (8) for
K = C ⊗Π .

In fact, the definition of privacy given by (9) can be further simplified, for many families
Π that occur in practice:

Definition 3.5. For a familyΠ of distributions overΩ, denote

SafeΠ (A,B)
def⇐⇒ ∀P ∈ Π : P [AB] 6 P [A]P [B]. (10)

Notice thatSafeΠ (A,B) is symmetric with respect toA andB, which may not be the
case forSafeC,Π (A,B). Let us state the relationship between these two predicatesafter
the following definition:

Definition 3.6. We shall call a familyΠ ω-liftable for ω ∈ Ω when ∀P ∈ Π such that
P (ω) = 0 it satisfies the condition

∀ ε > 0 ∃P ′ ∈ Π : P ′(ω) > 0 & ||P − P ′||∞ < ε. (11)

Family Π is calledS-liftable for a setS ⊆ Ω whenΠ is ω-liftable for all ω ∈ S. The
norm ||P − P ′||∞ := maxω∈Ω |P (ω)− P ′(ω)|.

PROPOSITION 3.7. For every consistent pair(C,Π ) and for all A,B ⊆ Ω such that
BC 6= ∅ (sinceω∗ ∈ BC), we have:

SafeΠ (A,B) ⇒ SafeC,Π (A,B);

SafeC,Π (A,B) & Π is C-liftable ⇒ SafeΠ (A,B). (12)

PROOF. Trivially, the definition (10) forSafeΠ (A,B) implies the characterization (9)
for SafeC,Π (A,B). To prove implication (12), assume that (9) holds, butSafeΠ (A,B)
does not hold, and arrive at a contradiction. Take someω ∈ BC andP ∈ Π such that
P [AB] > P [A]P [B], to violate (10). By (9) we must haveP [BC] = 0, so in particular
P (ω) = 0. However, sinceω ∈ C andΠ is C-liftable, we can use condition (11) and
pick P ′ ∈ Π that is close enough toP to still haveP ′[AB] > P ′[A]P ′[B], yet already
P ′(ω) > 0 andP ′[BC] > 0, violating (9).
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3.3 Properties of Privacy

Conservative assumptions. It is easy to see from Definitions 3.1 and 3.3 that
SafeK(A,B) andK ′ ⊆ K imply SafeK′(A,B), in both the possibilistic and the proba-
bilistic models. As a special case, ifC ′ ⊆ C, Σ ′ ⊆ Σ , andΠ

′ ⊆ Π , thenSafeC,Σ (A,B)
⇒ SafeC′,Σ ′(A,B), andSafeC,Π (A,B)⇒ SafeC′,Π ′(A,B). Therefore, the auditor may
assume less than she actually knows, i. e. consider more knowledge worlds possible, and
still catch all privacy violations, at the expense of restricting more queries.

Disclosing less knowledge. In the possibilistic model, for all second-level knowledge
setsK ⊆ Ωposs that the auditor might have, for all private propertiesA ⊆ Ω and for all
setsB,B′ ⊆ Ω we have:

SafeK(A,B) & SafeK(A,B′) ⇒ SafeK(A,B ∪B′). (13)

This immediately follows from (5) once we observe thatω ∈ B ∪B′ implies one ofω ∈ B
or ω ∈ B′. Moreover, if the auditor has excluded fromK all pairs(ω, S) such thatω /∈ B,
then the condition “SafeK(A,B′)” is not necessary in (13):∀B,B′ ⊆ Ω

π1(K) ⊆ B & SafeK(A,B) ⇒ SafeK(A,B ∪B′).

In other words, in the possibilistic model it is always saferwhen less information has
been disclosed. However, in the probabilistic model, even the privacy preservation under
union (13) does not hold. Take, for example,Ω = {1, . . . , 6}, K = {1} ⊗ {P} where
P = uniform distribution,A = {1, 2, 3, 4}, B = {1, 2, 6} and B′ = {1, 3, 6}; then
we have:

P [A] = P [A |B] = P [A |B′] = 2/3 < 3/4 = P [A |B ∪B′].

BothSafeK(A,B) andSafeK(A,B′) hold, butSafeK(A,B ∪B′) does not hold.

Probabilities refine possibilities. If P : Ω → R+ is a probability distribution that
represents a user’s knowledge, then its support setsupp(P ) is the set of all worlds that this
user considers possible. More generally, every second-level probabilistic knowledge set
K ⊆ Ωprob can be converted into the possibilistic knowledge set

K ′ =
{(

ω, supp(P )
) ∣∣ (ω, P ) ∈ K

}
.

It is easy to check directly by verifying Definition 3.1 that

∀A,B ⊆ Ω : SafeK(A,B) ⇒ SafeK′(A,B). (14)

Indeed, for every(ω, S) in K ′ such thatω ∈ B and S ∩ B ⊆ A, take (ω, P ) ∈ K
such thatS = supp(P ). We haveP [A |B] = 1 becauseA has all the support ofP that
lies insideB, and we haveP [A |B] 6 P [A] becauseSafeK(A,B), (ω, P ) ∈ K, and
ω ∈ B (see Definition 3.3). ThereforeP [A] = 1 too, implyingS = supp(P ) ⊆ A.

Equation (14) gives a useful necessary condition forSafeK(A,B). Also, as we shall
see in Section 5, it helps to understandK-privacy better by focusing our attention on the
important aspects of the auditor’s probabilistic knowledge assumption.

For the simplified privacy predicateSafeΠ (A,B) introduced in Definition 3.5, where
Π is a family of probabilities, we can make (14) slightly stronger and write, for
Σ = supp(Π ):

∀A,B ⊆ Ω : SafeΠ (A,B) ⇒ SafeΩ,Σ (A,B) & SafeΩ,Σ (Ā, B̄). (15)
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First, SafeΠ (A,B) ⇒ SafeΩ,Π (A,B) by Proposition 3.7, which in turn implies
SafeΩ,Σ (A,B) by (14); and second,SafeΠ (A,B) ⇔ SafeΠ (Ā, B̄) due to the follow-
ing proposition:

PROPOSITION 3.8. For all A,B ⊆ Ω and for all probability distributionsP overΩ,
we have:

P [A]P [B]− P [AB] = P [AB̄]P [ĀB]− P [AB]P [ĀB̄]

= P [Ā]P [B̄]− P [ĀB̄]. (16)

PROOF. The first equality can be obtained as follows:

P [A]P [B]− P [AB] · 1 =
(
P [AB] + P [AB̄]

)(
P [AB] +P [ĀB]

)
− P [AB]

(
P [AB] + P [ĀB] + P [AB̄] + P [ĀB̄]

)

= P [AB̄]P [ĀB]− P [AB]P [ĀB̄].

Equality (16) follows by symmetry.

Multiple disclosures. Assume that the user learns knowledge setB1 followed byB2,
which is equivalent to the acquisition ofB1B2. When the auditor’s second-level knowledge
setK represents her assumption about the user’s knowledge, rather than her knowledge of
the user’s knowledge (see Remark 2.5), she may want to require thatK remains a valid
assumption after each disclosure. This property is formalized below:

Definition 3.9. Let K be a second-level knowledge set, which may be possibilistic
(K ⊆ Ωposs) or probabilistic (K ⊆ Ωprob). A setB ⊆ Ω is calledK-preservingwhen

PossibilisticK. For all (ω, S) ∈ K such thatω ∈ B we have(ω, S ∩B) ∈ K;

ProbabilisticK. For all (ω, P ) ∈ K such thatω ∈ B we have
(
ω, P (· |B)

)
∈ K.

Suppose that knowledge setsB1 andB2 are individually safe to disclose, while protect-
ing the privacy ofA, to an agent whose knowledge satisfies the constraints defined by K.
If, after B1 is disclosed, the updated agent’s knowledge still satisfiesthe constraints, then
it is safe to discloseB2 too. Thus, it is safe to disclose both sets at once—as long as at
least one of them preserves the constraints:

PROPOSITION 3.10. For every second-level knowledge setK, possibilistic or proba-
bilistic, we have:

(1) B1 andB2 areK-preserving⇒ B1B2 is K-preserving;

(2) If SafeK(A,B1) and SafeK(A,B2) and if at least one ofB1, B2 is K-preserving,
thenSafeK(A, B1B2).

PROOF. (1) trivially holds; just notice that Definition 3.9 checksknowledge worlds
(ω, S) ∈ K or (ω, P ) ∈ K only where bothω ∈ B1 andω ∈ B2;

(2) Without loss of generality, assume thatB1 is K-preserving. IfK is possibilistic,
we must take an arbitrary(ω, S) ∈ K such thatω ∈ B1B2 andSB1B2 ⊆ A, and show
that S ⊆ A. Indeed, we have(ω, SB1) ∈ K becauseB1 is K-preserving,SB1 ⊆ A
by applyingK-privacy definition (Def. 3.1) toB2, andS ⊆ A by applyingK-privacy
definition toB1.
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If K is probabilistic, take an arbitrary(ω, P ) ∈ K such thatω ∈ B1B2, and denote
P1 := P (· |B1). We have(ω, P1) ∈ K becauseB1 is K-preserving, and

P [A |B1B2] =
P [A ∩B1B2]

P [B1B2]
=

P [A ∩B2 |B1]

P [B2 |B1]

= P1[A |B2] 6 P1[A] := P [A |B1] 6 P [A],

by applyingK-privacy definition (Def. 3.3) first toP1 andB2, then toP andB1.

Remark3.11. Proposition 3.10 implies that both the family ofK-preserving sets and
its sub-family of theK-preserving sets safe to disclose while protectingA are∩-closed.
Without the “K-preserving” constraint, the family of sets that are safe todisclose does not
have to be∩-closed (Remark 4.2). See Section 4 and especially Theorem 4.14 for a class
of situations where the “K-preserving” constraint can be lifted.

3.4 Unrestricted Prior Knowledge

What is the characterization of privacy when the auditor knows nothing? More formally,
which knowledge setsA andB satisfyK-privacy forK = Ωposs = Ω ⊗ P (Ω) and for
K = Ωprob = Ω⊗ Pprob(Ω), wherePprob(Ω) is the set of all probability distributions
over Ω? Also, what is the answer to this question if the auditor has complete informa-
tion about the actual worldω∗, but knows nothing about the user’s knowledge, i. e. for
K = {ω∗} ⊗ P (Ω) and forK = {ω∗} ⊗ Pprob(Ω)? Here is a theorem that answers these
questions:

THEOREM 3.12. For all setsA,B ⊆ Ω and for all ω∗ ∈ B the following four condi-
tions are equivalent:

(1) SafeK(A,B) for K = Ωposs ;

(2) SafeK(A,B) for K = Ωprob ;

(3) SafeK(A,B) for K = {ω∗} ⊗ Pprob(Ω) ;

(4) Either A ∩B = ∅, or A ∪B = Ω .

Also, the following two conditions are equivalent (againω∗ ∈ B):

(i) SafeK(A,B) for K = {ω∗} ⊗ P (Ω) ;

(ii) A ∩B = ∅, or A ∪B = Ω, or ω∗ /∈ A .

PROOF. First, we assume condition (4), that is, eitherA ∩ B = ∅ or A ∪ B = Ω,
and proveSafeK(A,B) for all second-level knowledge sets of the formK = C ⊗ P (Ω)
andC ⊗ Pprob(Ω), including those whereC = Ω or {ω∗}. In the possibilistic case, by
Proposition 3.2 it is enough to check implication (6), whichis:

∀S ∈ Σ :
(
SBC 6= ∅ & SB ⊆ A

)
⇒ S ⊆ A. (17)

If AB = ∅, thenSB ⊆ A ⇒ SB = ∅, making the left-hand side of (17) always false and
the entire implication true. IfA ∪B = Ω, thenS−B ⊆ A, henceSB ⊆ A alone implies
S ⊆ A in (17). In the probabilistic case, for everyP ∈ Pprob(Ω), the privacy inequality
P [AB] 6 P [A]P [B] trivially holds whenAB = ∅, and holds whenA ∪ B = Ω due to
Proposition 3.8:

P [A]P [B] − P [AB] = P [Ā]P [B̄] − P [ĀB̄] = P [Ā]P [B̄] > 0.
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To verify that (ii)⇒ (i), observe that ifC = {ω∗} andω∗ /∈ A in (17), thenSBC 6= ∅
impliesSB * A, and the left-hand side of (17) is again false, making the implication true.

Now assume condition (4) to be false, that is,AB 6= ∅ andA ∪B 6= Ω. Pickω1 ∈ AB
andω2 ∈ ĀB̄; if ω∗ ∈ A, chooseω1 = ω∗. Consider the following possibilistic and
probabilistic knowledge worlds:

• If C = Ω, consider the worlds(ω1, S) and (ω1, P ) where S = {ω1, ω2} and
P (ω1) = P (ω2) = 1/2;

• If C = {ω∗}, consider the worlds(ω∗, S) and(ω∗, P ) whereS = {ω∗, ω1, ω2} and
P is uniform with supportS. Note thatω∗ ∈ A ⇔ |S| = 2.

WhenC = {ω∗}, in the possibilistic case we also assume thatω∗ ∈ A (i. e. (ii) is false).
Let us show that, for these worlds, Definitions 3.1 and 3.3 areboth violated; that is:

SB ⊆ A & S * A, P [A |B] > P [A].

The possibilistic part is obvious, sinceSB = {ω1} andS = {ω1, ω2}. For the probabilistic
part, if |S| = 2 then P [A] = 1/2 and P [A |B] = 1; if |S| = 3 and ω∗ /∈ A then
P (ω1) = P (ω2) = P (ω∗) = 1/3 and we have:

P [A |B] = P [AB] /P [B] = P (ω1) /
(
P (ω1) + P (ω∗)

)

= 1/2 > 1/3 = P (ω1) = P [A].

Remark3.13. In the auditing practice, the interesting case isω∗ ∈ A ∩B, that is, when
the protected and the disclosed properties are both true. Inthis case, unconditional privacy
can be tested simply by checking whetherA ∪B = Ω, that is, whether “A or B” is al-
ways true.

4. POSSIBILISTIC CASE

In this section, we shall focus exclusively on the possibilistic case; thus, the auditor’s
assumption about the user’s knowledge shall be representedby K ⊆ Ωposs. While the
probabilistic case is perhaps more interesting from the privacy perspective, the possibilistic
case is simpler and provides intuition that sometimes extends to the probabilistic case. In
fact, the possibilistic case is simple enough that useful statements can be proven in general,
for arbitrary auditor’s second-level knowledge setsK ⊆ Ωposs, or for a wide class of these
sets.

Proposition 4.1 below gives a necessary and sufficient condition for K-preserving sets
B to satisfy the privacy predicateSafeK(A,B), for a given and fixed setA. It associates
every worldω ∈ A with a “safety margin”β(ω) ⊆ Ω−A which depends only onω, A
andK. GivenB, the condition verifies whether everyω ∈ A occurs inB together with
its “safety margin,” or does not occur inB at all. The “safety margin” ensures that thisω
will not revealA to the agent, no matter what prior knowledgeS ∈ π2(K) the agent might
have. (Recall that byπi we denote the projection operation.)

PROPOSITION 4.1. Let K ⊆ Ωposs be an arbitrary second-level knowledge set, and
assumeA ⊆ Ω. There exists a functionβ : A→ P (Ω−A) such that∀B ⊆ Ω

(
∀ω ∈ AB : β(ω) ⊆ B

)
⇒ SafeK(A,B), (18)

and ifB is K-preserving, then the converse holds:

SafeK(A,B) ⇒
(
∀ω ∈ AB : β(ω) ⊆ B

)
. (19)
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PROOF. For eachω ∈ A, defineβ(ω) to be theĀ-portion of the most informative
K-preserving andK-privacy preserving disclosureB0(ω) that is true atω:

β(ω) := B0(ω)−A, where B0(ω) =
⋂ {

B′
∣∣∣ω ∈ B′, SafeK(A,B′)

B′ is K-preserving

}
. (20)

As an intersection ofK-preserving setsB′ that satisfySafeK(A,B′), by Proposition 3.10
the setB0(ω) itself isK-preserving and satisfiesSafeK(A,B0(ω)).

To prove (18), let us assume∀ω ∈ AB : β(ω) ⊆ B and verifySafeK(A,B). Following
Definition 3.1, we take some(ω, S) ∈ K such thatω ∈ B andS ∩B ⊆ A, and show that
S ⊆ A. Sinceω ∈ SB ⊆ A, we haveω ∈ AB, implying β(ω) ⊆ B by our assumption.
We substituteβ(ω) := B0(ω)−A and getB0(ω)−A ⊆ B−A, which in turn implies

S ∩B0(ω)−A ⊆ S ∩B −A = ∅,

that is,S ∩ B0(ω) ⊆ A. By (20) we also haveω ∈ B0(ω). By the privacy definition
for B0(ω) we obtainS ⊆ A.

To prove (19), assume thatB is K-preserving and satisfiesSafeK(A,B); take an arbi-
trary ω ∈ AB. ThenB is one of the sets intersected to defineB0 in (20), which gives us
β(ω) ⊆ B0 ⊆ B.

Remark4.2. In the converse implication (19) of Proposition 4.1, wecannot drop the
condition ofB beingK-preserving. Indeed, for all fixedA andβ, the propertyQ(B)
defined as “∀ω ∈ AB : β(ω) ⊆ B” is preserved under intersection:Q(B1) & Q(B2) ⇒
Q(B1 ∩B2). But SafeK(A,B), in general, is not preserved under intersection. For a
simple example, letΩ = {1, 2, 3}, K = Ω ⊗ {Ω}, andA = {3}. Then bothB1 = {1, 3}
andB2 = {2, 3} protect theK-privacy ofA, yetB1 ∩ B2 = {3} does not. However, see
Theorem 4.14 for more on this subject.

The characterization in Proposition 4.1 could be quite useful for auditing a lot of prop-
ertiesB1, B2, . . . , BN disclosed over a period of time, using the same audit queryA.
GivenA, the auditor would compute the mappingβ once, and use it to test everyBi. This
comment applies to Section 4.1 as well.

4.1 Intersection-Closed Knowledge

Motivation. When two or more possibilistic agents collude, i. e. join forces in attacking
protected information, their knowledge sets intersect: they jointly consider a world possible
if and only if none of them has ruled it out. Therefore, if the auditor wants to account for
potential collusions, she must consider knowledge world(ω, S1 ∩ S2) possible whenever
she considers both(ω, S1) and(ω, S2) possible. This motivates the following definition:

Definition 4.3. A second-level knowledge setK ⊆ Ωposs is intersection-closed, or
∩-closedfor short, when∀ (ω, S1) ∈ K and∀ (ω, S2) ∈ K we have(ω, S1 ∩ S2) ∈ K.
Note that we intersect the user’s knowledge sets(ω, S1) and(ω, S2) only when they are
paired with the same worldω.

One way to obtain a second-level knowledge setK ⊆ Ωposs that is∩-closed is by
taking an∩-closed familyΣ of subsets ofΩ (such that∀S1, S2 ∈ Σ : S1 ∩ S2 ∈ Σ ) and
computing the productK = C ⊗ Σ with some knowledge setC.

Intervals. When the auditor’s knowledge is∩-closed, the notion of an “interval” between
two worlds becomes central in characterizing the privacy relation:

Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · A. Evfimievski, R. Fagin and D. Woodruff

Definition 4.4. LetK ⊆ Ωposs be∩-closed, and letω1, ω2 ∈ Ω be two worlds such that

ω1 ∈ π1(K), ω2 ∈
⋃ {

S
∣∣ (ω1, S) ∈ K

}
. (21)

The K-interval from ω1 to ω2, denoted byIK(ω1, ω2), is the smallest setS such that
(ω1, S) ∈ K andω2 ∈ S, or equivalently:

IK(ω1, ω2) :=
⋂ {

S
∣∣ (ω1, S) ∈ K, ω2 ∈ S

}
.

If the worldsω1, ω2 do not satisfy conditions (21), we shall say that intervalIK(ω1, ω2)
does not exist.

Intuitively, IK(ω1, ω2) represents the “most knowledgeable” user who has not ruled
out ω2 when the actual world isω1. The following proposition shows that we need to
know only the intervals in order to check whether or notSafeK(A,B) holds:

PROPOSITION 4.5. For an ∩-closed setK ⊆ Ωposs and for all A,B ⊆ Ω, we have
SafeK(A,B) if and only if

∀ IK(ω1, ω2) : ω1 ∈ AB & ω2 /∈ A ⇒ IK(ω1, ω2) ∩ (B −A) 6= ∅. (22)

PROOF. (if ) Assume (22) and let us proveSafeK(A,B). By Definition 3.1, we want to
show that

∀ (ω, S) ∈ K :
(
ω ∈ B & S ∩B ⊆ A

)
⇒ S ⊆ A. (23)

Suppose that (23) is violated for(ω1, S1) ∈ K; we haveω1 ∈ AB and∃ω2 ∈ S1−A. In-
tervalIK(ω1, ω2) ⊆ S1 is well-defined and satisfies the left-hand side of implication (22),
hence it satisfies the right-hand side too:

IK(ω1, ω2) ∩ (B −A) 6= ∅, which implies S1 ∩ (B −A) 6= ∅.

But then (ω1, S1) does not violate (23) because the left-hand side of the implication
(namely,S1 ∩B ⊆ A) is false. Contradiction.

(only if) AssumeSafeK(A,B), i. e. (23), and let us prove (22). Take an arbitrary interval
S = IK(ω1, ω2) such thatω1 ∈ AB and ω2 /∈ A, and consider a knowledge world
(ω1, S) ∈ K. Sinceω2 /∈ A, we haveS * A; to keep (23) true, we must also have
S ∩B * A. This is the same as the right hand side of (22).

Remark4.6. As implied by Proposition 4.5, there is no need to store the entire∩-closed
second-level knowledge setK (which could require|Ω| · 2|Ω| bits of data) in order to test
the possibilistic privacy. It is sufficient to store one setIK(ω1, ω2) ⊆ Ω, or the fact of its
non-existence, for each pair(ω1, ω2) ∈ Ω× Ω, i. e. at most|Ω|3 bits of data.

Minimal intervals. In fact, in Proposition 4.5 we do not even have to check all intervals;
it is enough to consider just “minimal” intervals defined as follows:

Definition 4.7. For an∩-closed second-level knowledge setK ⊆ Ωposs, for a world
ω1 ∈ Ω and for a setX ⊆ Ω not containingω1, an intervalIK(ω1, ω2) is called aminimal
K-intervalfromω1 to X whenω2 ∈ X and

∀ω′2 ∈ X ∩ IK(ω1, ω2) : IK(ω1, ω
′
2) = IK(ω1, ω2).
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Fig. 1. An example of an∩-closedK ⊆ Ωposs where the worlds are the pixels inside the14× 7 rectangle (such
asω1, ω2 andω′

2), and the permitted user’s knowledge sets are the integer sub-rectangles (rectangles composed
of whole squares). Set̄A is the complement of the privacy-sensitive knowledge set. SeeExample 4.9 for details.

PROPOSITION 4.8. For an ∩-closed setK ⊆ Ωposs and for ∀A,B ⊆ Ω, we have
SafeK(A,B) if and only if the formula (22) holds over all intervalsIK(ω1, ω2) that are
minimal from a worldω1 ∈ AB to the setΩ−A.

PROOF. We want to prove that, if (22) holds for all minimal intervals, then (22) holds for
all intervals. It is sufficient to take an arbitrary intervalIK(ω1, ω2) that satisfiesω1 ∈ AB
andω2 ∈ Ā, and show that it contains a minimal interval fromω1 to Ā. To find the minimal
interval, start by settingω1

2 = ω2, and continue to iteratively selectωn+1
2 givenωn

2 so that

ωn+1
2 ∈ Ā ∩ IK(ω1, ω

n
2 ), IK(ω1, ω

n+1
2 )  IK(ω1, ω

n
2 )

until it is no longer possible, i. e. untilIK(ω1, ω
n
2 ) is minimal.

Example4.9. LetΩ be an area of the plane that is bounded by a rectangle and dis-
cretized into pixels to ensure finiteness (the area within the 14 × 7 rectangle in Figure 1).
Let the worlds be the pixels. Consider an auditor who does notknow the actual databaseω∗

and who assumes that the user’s prior knowledge setS ∈ Σ is an integer rectangle, i. e.
a rectangle whose four corners have integer coordinates (corresponding to the vertical and
horizontal lines in the picture). The familyΣ of integer rectangles, and hence the auditor’s
second-level knowledge setK = Ω⊗ Σ , are∩-closed.

Givenω1, ω2 ∈ Ω, the intervalIK(ω1, ω2) is the smallest integer rectangle that contains
bothω1 andω2. Forω1 andω2 in Fig. 1, the intervalIK(ω1, ω2) is the light-grey rectangle
from point (1, 1) to point (4, 4); forω1 andω′2, the intervalIK(ω1, ω

′
2) is the rectangle

from point(1, 1) to point(9, 3).
The intervalIK(ω1, ω2) shown on the picture is one of the three minimal intervals from

ω1 to setĀ (the area bounded by the ellipse). The other two minimal intervals are the rect-
angles(1, 1)−(5, 3) and(1, 1)−(6, 2). Every knowledge setS that the auditor considers
possible in the case ofω∗ = ω1, i. e. everyS such that(ω1, S) ∈ K, must contain at least
one of these three minimal intervals, unlessS ⊆ A. For example,S = IK(ω1, ω

′
2) in

Fig. 1 contains two minimal intervals(1, 1)−(5, 3) and(1, 1)−(6, 2). Thus, when looking
for privacy violations, rather than going through all possible pairs(ω1, S) ∈ K such that
ω1 ∈ B & S * A and checking ifS ∩B ⊆ A, the auditor has to go only through those
(ω1, S) that define minimal intervals tōA, a case of using Proposition 4.8.
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Interval-induced partitions of Ā. Let us have a closer look at the minimalK-inter-
vals from a given worldω1 ∈ A to the setĀ = Ω−A. For everyω2 ∈ Ā, the interval
IK(ω1, ω2), if it exists, is either minimal or not; if it is not minimal, thenω2 cannot belong
to any minimal interval fromω1 to Ā. Now, take some pairω2, ω

′
2 ∈ Ā such that both

IK(ω1, ω2) andIK(ω1, ω
′
2) are minimal. There are two possible situations:

(1) IK(ω1, ω2) = IK(ω1, ω
′
2), or

(2) IK(ω1, ω2) ∩ IK(ω1, ω
′
2) ∩ Ā = ∅.

Indeed, if ∃ω′′2 ∈ IK(ω1, ω2) ∩ IK(ω1, ω
′
2) ∩ Ā, then by Definition 4.7 the interval

IK(ω1, ω
′′
2 ) equals both of the minimal intervals, making them equal. We have thus shown

the following

PROPOSITION 4.10. Given an∩-closed setK ⊆ Ωposs, a setA ⊆ Ω, and a world
ω1 ∈ A, the minimalK-intervals fromω1 to Ā partition setĀ into disjoint equivalence
classes

Ā = D1 ∪ D2 ∪ . . . ∪ Dm ∪ D′

where two worldsω2, ω
′
2 ∈ Ā belong to the same classDi when they both belong to the

same minimal interval, or (classD′) when they both do not belong to any minimal interval.

Definition 4.11. In the assumptions and in the notation of Proposition 4.10, denote

∆K(Ā, ω1) := {D1,D2, . . . ,Dm}.
In other words,∆K(Ā, ω1) is the disjoint collection of all sets formed by intersecting Ā
with the minimal intervals fromω1 to Ā.

COROLLARY 4.12. Given an∩-closed setK ⊆ Ωposs, for all A,B ⊆ Ω we have
SafeK(A,B) if and only if

∀ω1 ∈ AB, ∀Di ∈ ∆K(Ā, ω1) : B ∩ Di 6= ∅. (24)

PROOF. By Proposition 4.8,SafeK(A,B) holds if and only if for∀ω1 ∈ AB and for all
intervalsIK(ω1, ω2) that are minimal fromω1 to Ā we haveIK(ω1, ω2) ∩ (B−A) 6= ∅,
or equivalently,

∀ω1 ∈ AB, ∀ IK(ω1, ω2) minimal fromω1 to Ā : B ∩
(
IK(ω1, ω2) ∩ Ā

)
6= ∅.

By Proposition 4.10, for every minimalIK(ω1, ω2) from ω1 to Ā, the intersection
IK(ω1, ω2) ∩ Ā belongs to∆K(Ā, ω1). Moreover,∆K(Ā, ω1) contains all such inter-
sections for the given̄A andω1, and contains nothing else. Replacing the quantifier over
IK(ω1, ω2) with the quantifier overDi ∈ ∆K(Ā, ω1) gives us (24).

As Figure 1 illustrates for Example 4.9, the three minimal intervals fromω1 to Ā
formed by integer rectangles(1, 1)−(4, 4), (1, 1)−(5, 3) and (1, 1)−(6, 2) are disjoint
inside Ā. Their intersections withĀ, shown hatched in Figure 1, constitute the collec-
tion ∆K(Ā, ω1). A disclosed setB is private, assumingω∗ = ω1, if and only if B inter-
sects each of these three intervals insideĀ.

The case of all-singleton∆K ’s. If set K satisfies the property defined next4, privacy
testing is simplified still further:

4This definition slightly differs from the one given in the conference version: [Evfimievski et al. 2008].
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Definition 4.13. An∩-closed setK ⊆ Ωposs hastight intervalswhen for everyK-inter-
val IK(ω1, ω2) such thatω1 6= ω2 we have

∀ω′2 ∈ IK(ω1, ω2)− {ω1, ω2} : IK(ω1, ω
′
2)  IK(ω1, ω2).

Informally, an interval fromω1 to ω2 is “tight” when for every pointω′2 in its “interior” the
interval fromω1 to ω′2 is strictly smaller (and hence no longer containsω2).

When K has tight intervals, every minimal intervalIK(ω1, ω2) from ω1 ∈ A to Ā
hasexactly oneof its elements inĀ, namelyω2: Ā ∩ IK(ω1, ω2) = {ω2}. Indeed, if
Ā ∩ IK(ω1, ω2) contains another pointω′2 6= ω2, thenω1 /∈ {ω2, ω

′
2} sinceω1 ∈ A, and

by Definition 4.13 we getIK(ω1, ω
′
2)  IK(ω1, ω2), that is, intervalIK(ω1, ω2) is not

minimal. Thus, forK that has tight intervals, all equivalence classesDi in ∆K(Ā, ω1) are
singletons, and Corollary 4.12 gives us the following characterization theorem (cf. Propo-
sition 4.1):

THEOREM 4.14. Let K ⊆ Ωposs be an∩-closed second-level knowledge set. The
following three conditions are equivalent:

(1) K has tight intervals;

(2) ∀A ⊆ Ω ∃β : A→ P (Ω−A) such that∀B ⊆ Ω :

SafeK(A,B) ⇔ (∀ω ∈ AB : β(ω) ⊆ B) ;

(3) ∀A,B,B′ ⊆ Ω: SafeK(A,B) & SafeK(A,B′) ⇒ SafeK(A,B ∩B′), i. e. the pri-
vacy of individual disclosures always implies their joint privacy.

PROOF. (1⇒ 2): Let K have tight intervals, and assumeA ⊆ Ω. Define the function
β : A→ P (Ω−A) as given by

∀ω1 ∈ A : β(ω1) :=
⋃

∆K(Ā, ω1)

As we explained above, allDi in the∆K(Ā, ω1) of Corollary 4.12 are singletons, therefore
B ∩ Di 6= ∅ is equivalent toDi ⊆ B, and in (24)

(
∀Di ∈ ∆K(Ā, ω1) : B ∩ Di 6= ∅

)
⇔

⋃
∆K(Ā, ω1) ⊆ B.

(2 ⇒ 3): If property “∀ω ∈ AB : β(ω) ⊆ B” is satisfied forB andB′, then it is
also satisfied forB ∩B′. Indeed, take an arbitraryω ∈ A∩B ∩B′, thenω ∈ AB implies
β(ω) ⊆ B andω ∈ AB′ impliesβ(ω) ⊆ B′; therefore,β(ω) ⊆ B ∩B′. By Item 2, the
property is equivalent toSafeK(A,B).

(3 ⇒ 1): We shall prove (¬1 ⇒ ¬3) by assuming thatK does not satisfy the tight
intervals property (Def. 4.13) and constructing setsA,B,B′ ⊆ Ω that violate Item 3. Let
IK(ω1, ω2) be a “non-tight” interval; that is,ω1 6= ω2 and

∃ω′2 ∈ IK(ω1, ω2)− {ω1, ω2} : IK(ω1, ω
′
2) = IK(ω1, ω2).

Notice that the three worldsω1, ω2, andω′2 are all different. Choose the sets as follows:
A = Ω−{ω2, ω

′
2}, B = {ω1, ω2}, andB′ = {ω1, ω

′
2}. Then we have:

• AB = AB′ = ABB′ = {ω1};
• I := IK(ω1, ω2) = IK(ω1, ω

′
2) is the only minimal interval fromω1 to {ω2, ω

′
2} = Ā;

• I ∩ (B−A) = {ω2}, I ∩ (B′−A) = {ω′2}, and I ∩ (BB′−A) = ∅.
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By Proposition 4.8, we haveSafeK(A,B), SafeK(A,B′), but notSafeK(A,BB′).

In practice, Condition 3 in Theorem 4.14 is very desirable: it allows the auditor to verify
the safety of a sequenceB1, . . . , Bk of disclosed queries by testing each query individu-
ally, even though the auditor’s prior assumptionsK about the user’s knowledge no longer
hold after some or all of the disclosures. For example, if thedisclosure of subsequence
B1, . . . , Bk−1 protects the privacy of a certain database propertyA, but the disclosure of
the entire sequence violates it, then Condition 3 forK implies¬SafeK(A,Bk); the same
is true for any other subsequence of the disclosed queries.

Several important examples of second-level knowledge setsthat have tight intervals are
discussed in Section 5.1. See Remark 4.2 for a counterexample where an∩-closedK does
not have tight intervals.

Remark4.15. When the auditor knows that the actual database is precisely ω∗, her
second-level knowledge setK contains only knowledge worlds of the form(ω∗, S). Then
all collections∆K(Ā, ω1) and setsβ(ω1) are empty for allω1 6= ω∗ because there exist
no intervalsIK(ω1, ω2), and we have to check only the case ofω1 = ω∗ in the above
privacy tests.

5. MODULARITY ASSUMPTIONS FOR PROBABILISTIC KNOWLEDGE

In the previous section we clarified some general propertiesof possibilistic knowledge;
now we turn to the more complex probabilistic case. Rather than studying arbitrary prob-
abilistic knowledge families, here we shall focus on a few specific, yet important, families
of distributions. We shall also see some concrete examples of possibilistic knowledge fam-
ilies induced by the probabilistic ones. Later, in Section 6, we present more sophisticated
approaches that extend beyond these families.

From now on, we assume thatΩ = {0, 1}n for some fixedn. Let ω1 ∧ ω2 (ω1 ∨ ω2,
ω1 ⊕ ω2) be the bit-wise “AND” (“OR”, “XOR”), and define the partial orderω1 6 ω2 to
mean “∀ i = 1 . . . n: ω1[i] = 1 ⇒ ω2[i] = 1.”

Definition 5.1. A probability distributionP over Ω is called log-supermodular
(log-submodular)5 when the following holds:

∀ω1, ω2 ∈ Ω : P (ω1)P (ω2) 6 (>) P (ω1 ∧ ω2)P (ω1 ∨ ω2)

The family of all log-supermodular distributions shall be denoted byΠ +
m

, the family of all
log-submodular distributions byΠ−

m
.

A distributionP is called aproduct distributionif it makes every coordinate indepen-
dent. Every product distribution corresponds to a vector(p1, . . . , pn) of Bernoulli proba-
bilities, eachpi ∈ [0, 1], such that

∀ω ∈ {0, 1}n : P (ω) =
∏n

i=1 p
ω[i]
i · (1− pi)

1−ω[i] (25)

The family of all product distributions shall be denoted byΠ
0
m

.

PROPOSITION 5.2. We haveΠ 0
m

= Π
−
m
∩ Π

+
m

. Equivalently,P is a product distribu-
tion if and only if

∀ω1, ω2 ∈ Ω : P (ω1)P (ω2) = P (ω1 ∧ ω2)P (ω1 ∨ ω2). (26)

5The “log-” means that supermodularity is multiplicative, rather than additive. The subscript “m” in Π
−
m

, Π
+
m

etc. means “modular.”
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PROOF. This is a minor variation of a statement proven in [Lovász 1983]; we include
the proof below for the sake of completeness.

For everyi = 1 . . . n the bit pairω1[i], ω2[i] contains the same number of 0’s and 1’s
as the bit pair(ω1 ∧ω2)[i], (ω1 ∨ω2)[i]. Therefore, ifP is a product distribution, then
∀ i = 1 . . . n the termspi and1− pi appear the same number of times on the left-hand side
and on the right-hand side of (26), making the sides equal.

Conversely, (26) implies∀ω, ω′ ∈ Ω, ∀ i = 1 . . . n:

P (ω|ω[i]←0) · P (ω′|ω′[i]←1) = P (ω|ω[i]←1) · P (ω′|ω′[i]←0), (27)

where “ω[i] ← b” means “set thei-th bit in ω to b.” As a probability function,P must
sum up to 1, henceP must be non-zero at someω′ ∈ Ω. Take an arbitraryi = 1 . . . n and
assume thatω′[i] = 0; then we can rewrite (27) as

∀ω ∈ Ω : P (ω|ω[i]←1) = ci · P (ω|ω[i]←0), ci = P (ω′|ω′[i]←1)
/

P (ω′|ω′[i]←0).

Setpi = ci/(1 + ci). If instead we haveω′[i] = 1, then rewrite (27) as

∀ω ∈ Ω : P (ω|ω[i]←0) = c′i · P (ω|ω[i]←1), c′i = P (ω′|ω′[i]←0)
/

P (ω′|ω′[i]←1),

and setpi = 1/(1 + c′i). By induction on the Hamming distance ofω from ω′, we can
check that everyP (ω) is proportional to the product distribution (25). Therefore, P is a
product distribution.

Supermodular and submodular functions occur often in mathematics and have been ex-
tensively studied [Fujishige 2005; Lovász 1983]. Our goal in considering these assump-
tions was to substantially relax bit-wise independence while staying away from the uncon-
strained case. Besides that, the log-supermodular assumption (as implied by Theorem 5.10
in Section 5.2) describes situations where no negative correlations are permitted across in-
dividual database records—something we might expect from knowledge about, say, HIV
incidence among humans. The following example provides a case in point:

Example5.3. Let us consider a probability distributionP : Ω→ R+ that has the form

P (ω) = C exp

(
n∑

i=1

ai ω[i] +
∑

16i<j6n

bi,j ω[i]ω[j]

)
, where ∀ i, j : bi,j > 0. (28)

The log-linear expression in (28) naturally arises whenP is the maximum entropy distri-
bution with equality constraints on single-bit expectations and two-bit covariances [Cover
and Thomas 2006]. It is used extensively in machine learning, for example in the definition
of the Boltzmann machine [Ackley et al. 1985], but without our requirement that allbi,j be
nonnegative.

It is easy to see that a distribution of the form (28) is alwayslog-supermodular. Indeed,
sinceC exp(x) · C exp(y) = C2 exp(x + y), for all ω1 andω2 in Ω we have:

P (ω1)P (ω2) = C2 exp

(
n∑

i=1

ai

(
ω1[i] + ω2[i]

)
+
∑

16i<j6n

bi,j

(
ω1[i]ω1[j] + ω2[i]ω2[j]

)
)

P (ω1 ∧ ω2)P (ω1 ∨ ω2) = C2 exp

(
n∑

i=1

ai

(
(ω1 ∧ω2)[i] + (ω1 ∨ω2)[i]

)
+

∑

16i<j6n

bi,j

(
(ω1 ∧ω2)[i] (ω1 ∧ω2)[j] + (ω1 ∨ω2)[i] (ω1 ∨ω2)[j]

))
,
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where, becauseω1 andω2 are fromΩ = {0, 1}n, for all i andj we always have

ω1[i] + ω2[i] = (ω1 ∧ω2)[i] + (ω1 ∨ω2)[i]

ω1[i]ω1[j] + ω2[i]ω2[j] 6 (ω1 ∧ω2)[i] (ω1 ∧ω2)[j] + (ω1 ∨ω2)[i] (ω1 ∨ω2)[j],

which gives usP (ω1)P (ω2) 6 P (ω1 ∧ω2)P (ω1 ∨ω2), since allbi,j > 0.

5.1 Modularity for Sets

Let us define three families of sets composed of the supports of all distributions inΠ
−
m

,
Π

+
m

, andΠ
0
m

:

Σ
−
m

= supp(Π−
m

), Σ
+
m

= supp(Π +
m

), Σ
0
m

= supp(Π 0
m

);

here, as before,supp(Π ) denotes{supp(P ) |P ∈ Π }. These families of sets have a
simple characterization, given in the following definitionand in Propositions 5.6 and 5.7,
which we now derive.

Definition 5.4. A setS ⊆ Ω is anup-set(a down-set) when∀ω1 ∈ S, ∀ω2 > ω1

(∀ω2 6 ω1) we haveω2 ∈ S. A non-empty intersection of an up-set and a down-set shall
be called aconvex set. A nonempty setS ⊆ Ω is asublatticewhen

∀ω1, ω2 ∈ S : ω1 ∧ ω2 ∈ S and ω1 ∨ ω2 ∈ S. (29)

A nonempty setS ⊆ Ω is aproduct setwhen

S = S1 × S2 × . . .× Sn, Si = {0} or {1} or {0, 1}.

Remark5.5. An intersection of up-sets is an up-set, of down-sets isa down-set; set
S ⊆ Ω is an up-set if and only if̄A is a down-set. A non-empty intersection of convex sets
is a convex set, of sublattices is a sublattice, of product sets is a product set.

PROPOSITION 5.6. (a) A nonempty setS ⊆ Ω is convex if and only if

∀ω1, ω2 ∈ S, ∀ω ∈ Ω : ω1 6 ω 6 ω2 ⇒ ω ∈ S. (30)

(b) A nonempty setS ⊆ Ω is a sublattice if and only if the property “ω ∈ S” can be
expressed as a conjunction of two-bit implications6 of the form “ω[i]→ ω[j]” and one-bit
lookups of the form “ω[i] = 0” or “ ω[i] = 1”.

PROOF. (a) An intersection of an up-setU and a down-setD must satisfy (30) because
ω1 ∈ U impliesω ∈ U andω2 ∈ D impliesω ∈ D. Conversely, every set that satisfies (30)
can be represented as such an intersectionU ∩D as follows:

U =
{
ω ∈ Ω

∣∣ ∃ω1 ∈ S : ω1 6 ω
}
, D =

{
ω ∈ Ω

∣∣ ∃ω2 ∈ S : ω 6 ω2

}
.

(b) For the “if” direction, it is easy to see that sets{ω ∈ Ω | ω[i]→ ω[j]} and
{ω ∈ Ω | ω[i] = b} are sublattices, for alli andj; a conjunction of such implications and
lookups gives an intersection of sublattices, which is alsoa sublattice (if nonempty). A
straightforward proof for the “only if” direction by induction onn is a bit tedious, so we
instead refer to Table 2 of [Creignou et al. 2008]. The set of all sublattices over{0, 1}n
is a special case ofco-clone, the notion studied in that paper. Given a setF of Boolean

6An implication “ω[i] → ω[j]” is the same as formula “¬ω[i] ∨ ω[j]”.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Epistemic Privacy · 25

functions, the co-cloneInv(F) is the collection of all subsetsS ⊆ {0, 1}n (for somen)
that satisfy

∀f ∈ F , m := arity(f), ∀ω1, ..., ωm ∈ S : f(ω1, ..., ωm) ∈ S,

where

f(ω1, ..., ωm) := ω ∈ {0, 1}n such that ∀ i= 1,...,n : ω[i] = f
(
ω1[i], ..., ωm[i]

)
.

Informally,S ∈ Inv(F) meansS is “preserved” under all Boolean operations inF applied
bit-wise to vectors inS. In particular [B̈ohler et al. 2003], co-cloneIM2 = Inv({∧,∨})
gives the set of all sublattices, as defined by (29). Table 2 in[Creignou et al. 2008] gives
a “plain basis” for every Boolean co-clone, that is, a set of Boolean relations whose con-
junctions generate precisely all subsets in the co-clone. In our special case, it shows that
IM2 is generated by two-bit implications and single-bit lookups.

PROPOSITION 5.7. The following equalities hold:

• Σ
−
m

=
{

all convex sets overΩ
}
;

• Σ
+
m

=
{

all sublattices overΩ
}
;

• Σ
0
m

=
{

all product sets overΩ
}

= Σ
+
m
∩ Σ

−
m

.

PROOF. By Proposition 5.6, a setS 6= ∅ is convex if and only if∀u, v ∈ S: u 6 ω 6 v
⇒ ω ∈ S. We now show that this is equivalent to

∀ω1, ω2 ∈ Ω: {ω1 ∧ω2, ω1 ∨ω2} ⊆ S ⇒ {ω1, ω2} ⊆ S (31)

Indeed, for a convexS the above implication holds becauseω1 ∧ω2 6 ωi 6 ω1 ∨ω2 for
i = 1, 2. Now let us assume (31), take someu, v ∈ S andu 6 ω 6 v, and showω ∈ S.
Defineω′ = ω⊕u⊕ v, i. e. we haveω′[i] = ω[i] iff u[i] = v[i]. It is not hard to verify that
u = ω ∧ ω′ andv = ω ∨ ω′, so by (31)u, v ∈ S impliesω, ω′ ∈ S.

Given a nonempty setS, define a probability distributionPS to be identical (uniform)
on allω ∈ S and zero everywhere else. For a convexS, distributionPS is log-submodular
due to (31):∀ω1, ω2 ∈ Ω,

P (ω1 ∧ω2)P (ω1 ∨ω2) 6= 0 ⇒ P (ω1)P (ω2) = 1/|S|2 = P (ω1 ∧ω2)P (ω1 ∨ω2).

SinceS = supp(PS), we obtainS ∈ Σ
−
m

. Conversely, ifP is log-submodular, then (31)
must hold forS = supp(P ) in order to satisfy Def. 5.1, proving the convexity ofsupp(P ).

In the same way, given a sublatticeS, the distributionPS is log-supermodular due to (29)
in Def. 5.4, and conversely,∀P ∈ Π

+
m

the setsupp(P ) has to be a sublattice in order to
satisfy Def. 5.1. Lastly, for a product setS, the distributionPS is a product distribution
with vector(p1, . . . , pn) where allpi ∈ {0, 1, 1/2}, and conversely, supports of product
distributions must be product sets. EqualityΣ

0
m

= Σ
+
m
∩ Σ

−
m

for setsS is implied by
Π

0
m

= Π
+
m
∩Π

−
m

for distributionsPS .

FamiliesΣ−
m

, Σ
+
m

andΣ
0
m

can also be viewed as possibilistic knowledge assumptions.
For example, the familyΣ−

m
of convex sets describes a user’s possibilistic knowledge about

the actual databaseω∗ learned by issuing a sequence of monotone Boolean queries7 and
receiving “yes” or “no” answers. FamilyΣ 0

m
of product sets describes the possibilistic

7A monotone Boolean query is a mappingQ : Ω → {“yes”, “no”} such that∀ω1, ω2 ∈ Ω if Q(ω1) = “yes”
andω1 6ω2 thenQ(ω2) = “yes”.
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knowledge learned by asking, for a sequence of records, whether or not each given record
belongs to the database. All three families are∩-closed, barring the empty intersections
(see Remark 5.5). Therefore, for every setC 6= ∅ the second-level knowledge setsC⊗Σ

−
m

,
C ⊗ Σ

+
m

andC ⊗ Σ
0
m

are intersection closed, and Section 4.1 applies. Let us compute for
them the intervals introduced in Def. 4.4:

PROPOSITION 5.8. Assumingω1 ∈ C, we have:

IC⊗Σ
−

m

(ω1, ω2) =






{ω |ω1 6 ω 6 ω2}, if ω1 6 ω2,

{ω |ω2 6 ω 6 ω1}, if ω2 6 ω1,

{ω1, ω2}, if ω1 
 ω2 and ω1 � ω2;

IC⊗Σ
+
m

(ω1, ω2) =
{
ω1, ω2, ω1 ∧ω2, ω1 ∨ω2

}
; (32)

IC⊗Σ0
m

(ω1, ω2) =
{
ω
∣∣ ω1 ∧ω2 6 ω 6 ω1 ∨ω2

}
.

All these second-level knowledge sets satisfy the “tight intervals” property (see Defini-
tion 4.13), and therefore the items of Theorem 4.14 apply to them.

PROOF. First, let us get convinced that the sets on the right-hand side of the above equal-
ities (32) belong to their respective familiesΣ

−
m

, Σ+
m

andΣ
0
m

. Indeed, for allω′ 6 ω′′ the
set{ω |ω′ 6 ω 6 ω′′} is convex as an intersection of an up-set and a down-set, and it is
a sublattice too, because operations∧ and∨ respect a common lower or upper bound;
hence, it is a product set (Proposition 5.7). A set{ω1, ω2} of two (or any number
of) incomparable worlds is convex because it satisfies the implication in (30), while set
{ω1, ω2, ω1 ∧ω2, ω1 ∨ω2} is the sublattice generated byω1 andω2.

Second, let us show that the sets on the right-hand side of (32) are subsets of all sets
that containω1 andω2 from their respective familiesΣ−

m
, Σ

+
m

andΣ
0
m

; this will prove
that these sets satisfy Definition 4.4. If a convex set containsω1 andω2 whereω1 6 ω2

or ω2 6 ω1, then by (30) the set contains everything betweenω1 andω2. If a sublattice
containsω1 andω2, then by definition it containsω1 ∧ω2 andω1 ∨ω2. If a product set
containsω1 andω2, then as a sublattice it containsω1 ∧ω2 andω1 ∨ω2, and as a convex
set it contains everything in between. This proves that the right-hand sides are indeed the
intervals betweenω1 andω2.

Finally, let us show that these intervals are “tight” by verifying Definition 4.13. We
consider each family in turn:

K = C ⊗ Σ
−
m

. If ω1 and ω2 are comparable, sayω1 6 ω2, and if we pick some
world ω′2 /∈ {ω1, ω2} from IK(ω1, ω2) = {ω |ω1 6 ω 6 ω2} and constructIK(ω1, ω

′
2) =

{ω |ω1 6 ω 6 ω′2}, the new interval will not containω2. If ω1 andω2 are incomparable,
the original interval is{ω1, ω2} and there is nothing to pick asω′2.

K = C ⊗ Σ
+
m

. If ω1 andω2 are incomparable, the original interval contains four differ-
ent worlds, and picking, say,ω′2 = ω1 ∧ω2 reduces the interval to two worlds. Ifω1 and
ω2 are comparable, we start out with a two-world interval, so there is nothing to pick asω′2.

K = C ⊗ Σ
0
m

. The original intervalIK(ω1, ω2) = {ω |ω1 ∧ω2 6 ω 6 ω1 ∨ω2} can
be equivalently written as

IK(ω1, ω2) =
{
ω
∣∣ ∀ i = 1 . . . n : ω1[i] = ω2[i] ⇒ ω[i] = ω1[i] = ω2[i]

}
.
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If we pick someω′2 6= ω2 from this interval, the set of bit indices{i |ω1[i] = ω′2[i]} will
be a strict superset of{i |ω1[i] = ω2[i]}, and thereforeω2 will not make it into the new
intervalIK(ω1, ω

′
2).

5.2 Privacy for Log-Supermodular Distributions

Let us come back to the probabilistic knowledge, specifically to the three families of
distributions introduced by Definition 5.1:Π +

m
(log-supermodular distributions),Π−

m

(log-submodular distributions), andΠ 0
m

(product distributions). We shall be interested
in necessary criteria and in sufficient criteria for testingprivacy over these families. From
here onwards, the probabilistic privacy will be understoodin the sense of Definition 3.5.

One way to produce a necessary criterion for probabilistic privacy is by converting the
family of probabilities into a possibilistic family of supports of these probabilities, as we
discussed in Section 3.3. We can then consider the privacy test for this possibilistic family,
and use the implication (15), repeated next:

SafeΠ (A,B) ⇒ SafeΩ⊗Σ (A,B) & SafeΩ⊗Σ (Ā, B̄), (33)

whereΣ = supp(Π ). Let us instantiate this criterion for the familyΠ +
m

of log-supermo-
dular distributions:

PROPOSITION 5.9 Π
+
m

SAFETY: NECESSARY CRITERION.

For all A,B ⊆ Ω = {0, 1}n such thatSafe
Π

+
m

(A,B), every pair of worldsω1 ∈ AB

andω2 ∈ ĀB̄ satisfies one of the following two conditions:

• ω1 ∧ω2 ∈ A−B and ω1 ∨ω2 ∈ B−A;

• ω1 ∧ω2 ∈ B−A and ω1 ∨ω2 ∈ A−B.

PROOF. By definition and by Proposition 5.7, we havesupp(Π +
m

) = Σ
+
m

, the family of
all sublattices. In order to apply (33), we need a test for thepossibilistic privacy predicate
SafeK(A,B), whereK = Ω⊗Σ

+
m

. SinceK is∩-closed, let us use the interval-based test
given by Proposition 4.5:SafeK(A,B) if and only if

∀ω1 ∈ AB, ∀ω2 /∈ A : IΩ⊗Σ
+
m

(ω1, ω2) ∩ (B −A) 6= ∅,

where we can restrictω2 to setĀB̄, since forω2 ∈ B−A the formula is vacuously true.
From Proposition 5.8 we know that

IΩ⊗Σ
+
m

(ω1, ω2) =
{
ω1, ω2, ω1 ∧ω2, ω1 ∨ω2

}
;

therefore, we haveSafeK(A,B) if and only if

∀ω1 ∈ AB, ∀ω2 ∈ ĀB̄ :
{
ω1 ∧ω2, ω1 ∨ω2

}
∩ (B −A) 6= ∅.

Analogously, we haveSafeK(Ā, B̄) if and only if

∀ω1 ∈ AB, ∀ω2 ∈ ĀB̄ :
{
ω1 ∧ω2, ω1 ∨ω2

}
∩ (A−B) 6= ∅.

Substituting these tests into (33) forΠ = Π
+
m

andΣ = Σ
+
m

completes the proof.

It turns out that one can prove a sufficient criterion forΠ
+
m

-safety that has a form very
similar to Proposition 5.9, although not quite the same. Thesufficient criterion relies on
the following well-known theorem introduced in [Ahlswede and Daykin 1978]:

Journal of the ACM, Vol. V, No. N, Month 20YY.



28 · A. Evfimievski, R. Fagin and D. Woodruff

THEOREM 5.10 FOUR FUNCTIONS THEOREM. LetL be a finite distributive lattice8,
and letα, β, γ, δ : L → R+. For all subsetsA,B ⊆ L denotef [A] =

∑
a∈A f(a),

A ∨ B = {a ∨ b | a ∈ A, b ∈ B}, and A ∧ B = {a ∧ b | a ∈ A, b ∈ B}. Then the
inequality

α[A] · β[B] 6 γ[A ∨B] · δ[A ∧B]

holds for all subsetsA,B ⊆ L if and only if it holds for one-element subsets, i. e. iff

α(a) · β(b) 6 γ(a ∨ b) · δ(a ∧ b)

for all elementsa, b ∈ L.

PROOF. See for example [Bollob́as 1986],§19.

PROPOSITION 5.11 Π
+
m

SAFETY: SUFFICIENT CRITERION.

For all A,B ⊆ Ω = {0, 1}n, either one of the two conditions below is sufficient to
establishSafe

Π
+
m

(A,B) :

• AB ∧ ĀB̄ ⊆ A−B and AB ∨ ĀB̄ ⊆ B−A;

• AB ∧ ĀB̄ ⊆ B−A and AB ∨ ĀB̄ ⊆ A−B.

PROOF. Let P ∈ Π
+
m

, set the four functions asα = β = γ = δ = P , and set the dis-
tributive latticeL = Ω = {0, 1}n. The log-supermodularity definition and Theorem 5.10
imply ∀A,B ⊆ Ω

P [AB] · P [ĀB̄] 6 P [AB ∨ ĀB̄] · P [AB ∧ ĀB̄]

6 P [A−B] · P [B−A],

where the last “6” is implied by either of the two conditions assumed in our proposition.
It remains to recall that by Proposition 3.8

P [A]P [B] − P [AB] = P [A−B] · P [B−A] − P [AB] · P [ĀB̄],

and the definition ofSafeΠ (A,B) given by (10).

COROLLARY 5.12. If A is an up-set andB is a down-set (or vice versa), then
Safe

Π
+
m

(A,B).

PROOF. Let us show that, ifA andB̄ are both up-sets, thenA ∨ B̄ = AB̄ = A−B.
Indeed,∀ω ∈ A ∨ B̄ we haveω = a ∨ b′ wherea ∈ A andb′ ∈ B̄, implying a 6 ω ∈ A
and b′ 6 ω ∈ B̄; on the other hand,∀ω ∈ A ∩ B̄ we haveω = ω ∨ω ∈ A ∨ B̄.
Analogously, sincēA andB are down-sets, alsoB ∧ Ā = B−A. We have:

AB ⊆ A & ĀB̄ ⊆ B̄ ⇒ AB ∨ ĀB̄ ⊆ A ∨ B̄ = A−B;

AB ⊆ B & ĀB̄ ⊆ Ā ⇒ AB ∧ ĀB̄ ⊆ B ∧ Ā = B−A.

The rest follows from Proposition 5.11. If it isB that is the up-set, andA is the down-set,
just permuteA andB everywhere in the proof.

8A latticeL is a partially ordered set where every pair of elementsa, b ∈ L has the least upper bounda∨ b and
the greatest lower bounda∧ b. A lattice isdistributivewhen∀ a, b, c ∈ L: a∧ (b∨ c) = (a∧ b)∨ (a∧ c).
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Remark5.13. Thus, if the user’s prior knowledge is assumed to be inΠ
+
m

, a “no” an-
swer to a monotone Boolean query always preserves the privacy of a “yes” answer to
another monotone Boolean query. Roughly speaking, it is OK to disclose a negative fact
while protecting a positive fact. This observation is especially helpful whenA andB are
given by query language expressions, whose monotonicity isoften obvious.

5.3 Privacy for Product Distributions

In this section we shall study the problem of checking the privacy relationSafeΠ (A,B)
for setsA,B ⊆ Ω = {0, 1}n over the familyΠ = Π

0
m

of product distributions. The
independencerelationA⊥Π 0

m

B, defined by

A⊥Π 0
m

B
def⇐⇒ ∀P ∈ Π

0
m

: P [A]P [B] = P [AB],

has been studied by Miklau and Suciu, who proved the following necessary and sufficient
criterion:

THEOREM 5.14 (MIKLAU & SUCIU). For all A,B ⊆ Ω, we haveA⊥Π 0
m

B if and
only if setsA andB “share no critical coordinates,” i. e. when coordinates1, 2, . . . , n can
be rearranged so that onlyω[1], ω[2], . . . , ω[k] determine ifω ∈ A, and onlyω[k + 1],
ω[k + 2], . . . , ω[k′], wherek′ 6 n, determine ifω ∈ B.

PROOF. See [Miklau and Suciu 2004].

SinceA ⊥Π 0
m

B impliesSafeΠ 0
m

(A,B), Miklau-Suciu criterion is a sufficient criterion
for our notion of privacy. It is not a necessary one, even forn = 2: if we set Ω =
{00, 01, 10, 11} and for i = 1, 2 defineXi by (ω ∈Xi) ⇔ (ω[i] = 1), then we have
SafeΠ 0

m

(X1, X̄1 ∪X2) because for allP ∈ Π
0
m

P
[
X1 ∩ (X̄1 ∪X2)

]
= P [X1 ∩X2] = P [X1] · P [X2] 6 P [X1] · P [X̄1 ∪X2],

but notX1 ⊥Π 0
m

(X̄1 ∪X2) since they share a critical coordinate #1.

Another sufficient criterion is given by Corollary 5.12, if we note thatΠ 0
m
⊆ Π

+
m

; it
impliesSafeΠ 0

m

(A,B) wheneverA is an up-set andB is a down-set, or vice versa. A little
more generally, Proposition 5.11 implies

COROLLARY 5.15 (MONOTONICITY CRITERION). Let A,B ⊆ Ω = {0, 1}n. Rela-
tion SafeΠ 0

m

(A,B) holds if there exists a “mask” vectorz ∈ Ω such that either one of the
two conditions below is satisfied forAz = z ⊕A := {z ⊕ ω | ω ∈ A} andBz = z ⊕B:

• AzBz ∧ ĀzB̄z ⊆ Az −Bz and AzBz ∨ ĀzB̄z ⊆ Bz −Az;
• AzBz ∨ ĀzB̄z ⊆ Az −Bz and AzBz ∧ ĀzB̄z ⊆ Bz −Az.

In particular, SafeΠ 0
m

(A,B) holds ifz ⊕A is an up-set andz ⊕B is a down-set.

PROOF. By Proposition 5.11, either condition impliesSafe
Π

+
m

(Az, Bz), which in turn
implies SafeΠ 0

m

(Az, Bz). Finally, we haveSafeΠ 0
m

(Az, Bz) ⇔ SafeΠ 0
m

(A,B) because
the set of distributionsP (z ⊕ ω) overω ∈ Ω whereP ∈ Π

0
m

is the same asΠ 0
m

itself.

It turns out that both the Miklau-Suciu and the monotonicitycriteria are special cases of
another simple yet surprisingly strong sufficient criterion forSafeΠ 0

m

(A,B). This sufficient
criterion shall be called thecancellation criterion, because its verification is equivalent to
cancelling identical monomial terms in the algebraic expansion for the difference

P [AB̄] · P [ĀB] − P [AB] · P [ĀB̄], (34)
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whereP is a product distribution written as in (25). Recall that expression (34) equals
P [A]P [B] − P [AB], see Proposition 3.8. In order to formulate the criterion incombina-
torial (rather than algebraic) terms, we need the followingdefinition:

Definition 5.16. Thepairwise matching functionmatch(u, v) maps a pair(u, v) of vec-
tors fromΩ = {0, 1}n to a singlematch-vectorw = match(u, v) in {0, 1, ∗}n as follows:

∀ i = 1 . . . n : w[i] =

{
u[i] if u[i] = v[i];

∗ if u[i] 6= v[i].

For example, pair(01011, 01101) gets mapped into01∗∗1. We say thatv ∈ Ω refinesa
match-vectorw whenv can be obtained fromw by replacing its every star with a 0 or a 1.
For every match-vectorw, define the following two sets:

Box(w) :=
{
v ∈ Ω

∣∣ v refinesw
}
;

Circ(w) :=
{
(u, v) ∈ Ω×Ω

∣∣ match(u, v) = w
}
.

Remark5.17. Function “match” satisfies the following property: for allu, v, u′, v′

in {0, 1}n, we have

match(u, v) = match(u′, v′) ⇔ u ∧ v = u′ ∧ v′ & u ∨ v = u′ ∨ v′. (35)

Indeed, a coordinate that has the same bit-value inu andv stays the same inu ∧ v and
u ∨ v, while a coordinate that is different inu versusv has value 0 inu ∧ v and 1 inu ∨ v.
Hence, givenmatch(u, v), we can reconstruct bothu ∧ v andu ∨ v by replacing the∗’s
with 0’s for u ∧ v and with 1’s foru ∨ v; and vice versa.

Now we are ready to state the cancellation criterion, which is a sufficient criterion for
SafeΠ 0

m

(A,B), and also state a necessary criterion of a similar form, for comparison:

PROPOSITION 5.18 (CANCELLATION CRITERION). For all A,B ⊆ Ω , in order to
establishSafeΠ 0

m

(A,B) it is sufficient to verify the following:

∀w ∈ {0, 1, ∗}n :
∣∣(AB × ĀB̄) ∩ Circ(w)

∣∣ 6
∣∣(AB̄ × ĀB) ∩ Circ(w)

∣∣. (36)

On the other hand, for allA,B ⊆ Ω , if SafeΠ 0
m

(A,B) holds, then:

∀w ∈ {0, 1, ∗}n :
∣∣(AB × ĀB̄) ∩ Box(w)2

∣∣ 6
∣∣(AB̄ × ĀB) ∩ Box(w)2

∣∣. (37)

HereBox(w)2 denotesBox(w)× Box(w), and |S| denotes the size of setS.

PROOF. Two subsetsS, S′ ⊆ Circ(w) satisfy |S| 6 |S′| if and only if there is an
injective function that mapsS into S′. As the preimages ofmatch(·, ·) the setsCirc(w)
are all mutually disjoint and form a partition ofΩ×Ω. Hence, condition (36) is equivalent
to the existence of an injective functionF from AB× ĀB̄ to AB̄× ĀB that maps each
partition cell to itself, that is:

∀u ∈ AB, ∀ v ∈ ĀB̄ : match(u, v) = match
(
F (u, v)

)
. (38)

Suppose we have such anF , and letP ∈ Π
0
m

. By Proposition 5.2, sinceP is a product
distribution, we haveP (ω1)P (ω2) = P (ω1 ∧ω2)P (ω1 ∨ω2) for all ω1, ω2 ∈ Ω, and

Journal of the ACM, Vol. V, No. N, Month 20YY.



Epistemic Privacy · 31

therefore

P [A]P [B] − P [AB] = P [AB̄]P [ĀB] − P [AB]P [ĀB̄] (Prop. 3.8)

=
∑

ω1∈A−B
ω2∈B−A

P (ω1)P (ω2) −
∑

ω′

1∈AB

ω′

2∈ĀB̄

P (ω′1)P (ω′2) (39)

=
∑

ω1∈A−B
ω2∈B−A

P (ω1∧ω2)P (ω1∨ω2) −
∑

ω′

1∈AB

ω′

2∈ĀB̄

P (ω′1∧ω′2)P (ω′1∨ω′2).

Every term in the right summation is canceled by an identicalterm in the left summation,
with (ω1, ω2) = F (ω′1, ω

′
2). The two terms are identical due to property (35). After the

cancellation, we are left with a non-negative expression, and that provesSafeΠ 0
m

(A,B).
To prove the necessary criterion (37), take some match-vector w ∈ {0, 1, ∗}n and con-

sider the following product distribution defined as in Eq. (25) by its vector(p1, p2, . . . , pn)
of bit probabilities:pi = w[i] if w[i] = 0 or 1; pi = 1/2 if w[i] = ∗. Then for all vectors
v ∈ Box(w) we haveP (v) = 1/2k wherek = the number of stars inw; for all other
vectorsP (v) = 0. Therefore,∀S ⊆ Ω : P [S] = 2−k · |S ∩ Box(w)|, and inequality (37)
is equivalent toP [AB]P [ĀB̄] 6 P [AB̄]P [ĀB], which holds due toSafeΠ 0

m

(A,B).

We hope that the combinatorial simplicity of the sufficient criterion given by Proposi-
tion 5.18 will allow highly scalable implementations that apply in real-life database au-
diting scenarios, where setsA andB are given via expressions in a query language. The
theorems below justify our interest in the cancellation criterion:

THEOREM 5.19. If setsA,B satisfy the Miklau-Suciu criterion, they also satisfy the
cancellation criterion.

PROOF. Assume that we have rearranged the coordinates so that onlyω[1 . . . k] deter-
mine if ω ∈ A, and onlyω[k+1 . . . n] determine ifω ∈ B (see Theorem 5.14). To prove
the cancellation condition (36), let us define an injective functionF from AB× ĀB̄ to
AB̄× ĀB that satisfies thematch-preservation property (38), as follows:

F (u, v) = F
(
u[1...k]u[k+1...n], v[1...k] v[k+1...n]

)

: =
(
u[1...k] v[k+1...n], v[1...k]u[k+1...n]

)
.

That is, functionF (u, v) swaps the lastn− k coordinates between the first and the second
argument. The result ofmatch(u, v) is the same as the result ofmatch

(
F (u, v)

)
because,

coordinate-wise, the same bits are matched. Therefore,F mapsCirc(w) into itself, for
every match-vectorw.

Why doesF mapAB× ĀB̄ into AB̄× ĀB? Take anyu ∈ AB andv ∈ ĀB̄, and
denote(x, y) = F (u, v). The firstk coordinates ofx are the same as ofu, thereforex
belongs toA just likeu does; the lastn−k coordinates ofx are the same as ofv, therefore
x belongs toB̄ just like v does. Analogously, the firstk coordinates ofy are the same as
of v, soy /∈ A, and the lastn − k coordinates ofy are the same as ofu, soy ∈ B. It
follows that(x, y) in AB̄× ĀB.

THEOREM 5.20. If setsA,B satisfy the monotonicity criterion, they also satisfy the
cancellation criterion.
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Before we show that the cancellation criterion subsumes themonotonicity criterion, let
us observe the following fact:

LEMMA 5.21. ∀w ∈ {0, 1, ∗}n, ∀S ⊆ Circ(w) define

δS :=
{
(u ∨ v′, v ∧ u′)

∣∣ (u, v), (u′, v′) ∈ S
}
. (40)

Then we have:δS ⊆ Circ(w) and |δS| > |S|.
PROOF. First, let us proveδS ⊆ Circ(w) by showing that

(u, v), (u′, v′) ∈ Circ(w) ⇒ (u ∨ v′, v ∧ u′) ∈ Circ(w)

Indeed, take some(u, v) and (u′, v′) in Circ(w), then by definitionmatch(u, v) =
match(u′, v′) = w. Let x be w with all stars replaced by 0, andy be w with all
stars replaced by 1. As explained in Remark 5.17, we havex = u∧ v = u′ ∧ v′ and
y = u∨ v = u′ ∨ v′. Then,

(u∨ v′) ∧ (v ∧u′) = (u∧ v ∧u′) ∨ (v′∧ v ∧u′) = (x∧u′) ∨ (x∧ v) = x ∨ x = x,

(u∨ v′) ∨ (v ∧u′) = (u∨ v′ ∨ v) ∧ (u∨ v′ ∨u′) = (y ∨ v′) ∧ (y ∨u) = y ∧ y = y.

Again by the same reasoning as in Remark 5.17, the above equalities imply
match(u∨ v′, v ∧u′) = w, and therefore(u ∨ v′, v ∧ u′) ∈ Circ(w).

The proof of |δS| > |S| is based on the Marica-Schönheim inequality [Marica and
Scḧonheim 1969] (see also Section 19 in [Bollobás 1986], and [Aharoni and Holzman
1993]), which states that∀U ⊆ {0, 1}n and for operationω − ω′ := ω ∧ ¬ω′:

|∆U | > |U |, where ∆U := {ω − ω′ | ω, ω′ ∈ U}.
Observe that in pairs(u, v) ∈ Circ(w) vectoru can be computed fromv by inverting
the bits that correspond to stars inw. Therefore, we can replace all pairs in the subsets
S andδS of Circ(w) by their second vectors, without change in the cardinality of these
subsets. We can also discard all non-star (inw) coordinates, because they are the same in
all vectors. Denote thus projectedS andδS by Ŝ and δ̂S, and denote vectorsu, v, u′, v′

without the non-star coordinates byû, v̂, û′, v̂′. We havêu = ¬v̂, û′ = ¬v̂′, and:

δ̂S =
{
v̂ ∧ û′

∣∣ (u, v), (u′, v′) ∈ S
}

= {v̂ ∧ ¬v̂′ | v̂, v̂′ ∈ Ŝ}
= ∆Ŝ, implying |δS| = |δ̂S| = |∆Ŝ| > |Ŝ| = |S|.

Having proven Lemma 5.21, we are now ready to prove Theorem 5.20:

PROOF (THEOREM 5.20). LetA,B ⊆ Ω = {0, 1}n be two sets that satisfy the mono-
tonicity criterion (Corollary 5.15). Then∃z ∈ Ω such that setsAz = z⊕A andBz = z⊕B
satisfy either one of the following two conditions:

• AzBz ∧ ĀzB̄z ⊆ Az −Bz and AzBz ∨ ĀzB̄z ⊆ Bz −Az;

• AzBz ∨ ĀzB̄z ⊆ Az −Bz and AzBz ∧ ĀzB̄z ⊆ Bz −Az.

We want to show that they satisfy the cancellation criterion(i. e. the sufficient criterion in
Proposition 5.18).

First, note that, for everyz ∈ Ω, setsA andB satisfy the cancellation criterion if and
only if setsz⊕A andz⊕B also do, because(z, z)⊕Circ(w) = Circ(z⊕w). Therefore,
we can assume thatz = 00 . . . 0 and ignore it. In what follows, we shall assume without
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loss of generality thatAz = A andBz = B satisfy the second of the two conditions (if
they satisfy the first, just swap the order of pairs inδS):

AB ∨ ĀB̄ ⊆ AB̄, AB ∧ ĀB̄ ⊆ ĀB. (41)

Let us take an arbitrary match-vectorw ∈ {0, 1, ∗}n, define

S = (AB × ĀB̄) ∩ Circ(w)

and show that|S| 6
∣∣(AB̄× ĀB) ∩ Circ(w)

∣∣. Indeed, by Lemma 5.21, for setδS
defined in (40) we haveδS ⊆ Circ(w) and |S| 6 |δS|. By (41) all pairs inδS are in
AB̄× ĀB: every pair has the form(u ∨ v′, v ∧ u′) whereu andv belong toAB whereas
u′ andv′ belong toĀB̄. Therefore (36) holds, and the cancellation criterion is satisfied.

Remark5.22. The sufficient condition in the cancellation criterion is not necessary.
Here is a pair of sets that satisfies the privacy predicateSafeΠ 0

m

(A,B), but does not satisfy
the cancellation criterion:

A = {011, 100, 110, 111}; B = {010, 101, 110, 111}.
Sets(A−B) × (B−A) andAB × ĀB̄ can be conveniently represented in the form of
a table:

A−B B−A match match AB ĀB̄

100 010 ∗∗0 ∗∗0 110 000
100 101 10∗ ∗∗∗ 110 001
011 010 01∗ ∗∗∗ 111 000
011 101 ∗∗1 ∗∗1 111 001

We can see that
∣∣AB̄× ĀB ∩Circ(∗∗∗)

∣∣ = 0 and
∣∣AB× ĀB̄ ∩Circ(∗∗∗)

∣∣ = 2 for these
sets, violating (36). In the expression forP [A]P [B] − P [AB], written as in (39), the
product terms for the∗∗0-matching pairs and for the∗∗1-matching pairs cancel each other.
The remaining terms result in expression

p2
1 · (1− p2)

2 · p3(1− p3) + (1− p1)
2 · p2

2 · p3(1− p3)

− 2 · p1(1− p1) · p2(1− p2) · p3(1− p3),

which is non-negative due to inequalityx2 + y2 > 2xy.

6. THE COMPUTATIONAL COMPLEXITY OF TESTING SAFETY

We use techniques from multivariate polynomial optimization to test safety with respect to
certain familiesΠ of prior distributions on an agent’s knowledge. Recall thata setA ⊆ Ω
is Π -safe givenB ⊆ Ω when for all distributionsP ∈ Π , we haveP [A | B] 6 P [A], or
equivalently,P [AB] 6 P [A] · P [B]. As in some previous sections, we identify the setΩ
of possible worlds with the hypercube{0, 1}n.

For eachx ∈ {0, 1}n, we create variablespx ∈ [0, 1]. We consider those families
Π consisting of distributions(px)x∈{0,1}n that can be described by a finite numberr of
polynomial inequalities, together with the standard distribution equality and inequalities:

α1((px)x∈{0,1}n) > 0, . . . , αr((px)x∈{0,1}n) > 0,
∑

x∈{0,1}n px = 1, ∀x px > 0.
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We call such a familyΠ algebraic. For example, if we had the family of log-submodular
distributions, then for allx, y ∈ {0, 1}n, we would have the constraintpxpy−px∧ypx∨y >

0. For the family of log-supermodular distributions, we would instead havepx∧ypx∨y −
pxpy > 0. Finally, for the family of product distributions, we wouldhave bothpxpy −
px∧ypx∨y > 0 andpx∧ypx∨y − pxpy > 0.

For setsA andB, and a familyΠ of distributions, we define the setK(A,B,Π ) of
distributions(px)x∈{0,1}n that satisfy

∑

w∈AB

pw >
∑

x∈A

px

∑

y∈B

py

α1((px)x∈{0,1}n) > 0, . . . , αr((px)x∈{0,1}n) > 0
∑

x∈{0,1}n px = 1, ∀x px > 0.

The following proposition is an equivalent algebraic formulation of the fact that in order
for SafeΠ (A,B) to hold, there cannot be a single distributionP ∈ Π for whichP [AB] >
P [A] · P [B]. It follows immediately from the definition ofK(A,B,Π ).

PROPOSITION 6.1. SafeΠ (A,B) if and only if the setK(A,B,Π ) is empty.

We are interested in algorithms that decide emptiness ofK(A,B,Π ) in time polynomial

or nearly polynomial inN
def
= 2n. Recall thatn corresponds to the total number of possible

records, and for a worldω ∈ {0, 1}n, recordi occurs inω if and only if ωi = 1.

6.1 Specific Distributions

In this section we obtain efficient algorithms for testing safefty for certain interesting fam-
ilies Π of distributions.

We first obtain a necessary and sufficient condition forA,B ⊆ {0, 1}n to be safe with
respect to the familyΠ of product distributions by providing a deterministic algorithm. Its
running time isNO(lg lg N), which is essentially polynomial for all practical purposes. The
key observation is that whileK(A,B,Π ) is N = 2n-dimensional for general families of
distributions, for product distributions it can be embedded intoRn.

Indeed, it is easy to see thatK(A,B,Π ) can be defined in variablesp1, . . . , pn ∈ R
constrained bypi(1 − pi) > 0, and for whichP [AB] > P [A] · P [B], whereP (ω) =∏n

i=1 p
ω[i]
i · (1−pi)

1−ω[i] for all ω ∈ {0, 1}n. We can write this withn variables andn+1
inequalities. Notice that the inequalityP [AB] > P [A] · P [B] can have an exponential
number of terms inn. We apply the following simplified form of Theorem 3 of Basu,
Pollack, and Roy [Basu et al. 1996]:

THEOREM 6.2. Given a setK = {β1, . . . , βr} of r polynomials each of degree at
mostd in s variables with coefficients inR, the problem of deciding whether there exist
X1, . . . ,Xs ∈ R for whichβ1(X1, . . . ,Xs) > 0, . . . , βr(X1, . . . ,Xs) > 0, can be solved
deterministically withτ(rd)O(s) bit operations, whereτ is the number of bits needed to
describe a coefficient inβ1, . . . , βr.

We apply this theorem to the setK = K(A,B,Π ). From the program above it is easy to
see thatτ, r, d, ands are all linear inn, and so emptiness (and hence safety) for product
distributions can be decided innO(n) = NO(lg lg N) time.

The algorithm of Basu, Pollack, and Roy uses sophisticated ideas from algebraic ge-
ometry overR, and we cannot do it justice here. The general approach takenby such
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algorithms is to reduce a system of polynomial inequalitiesinto a system of polynomial
equalities by introducing slack variables, and then combining the multivariate polynomial

equalitiespi(x) = 0 into a single equalityq(x)
def
=
∑

x p2
i (x) = 0. One finds the critical

points ofq(x), that is, the setVC of common zeros of its partial derivatives over the com-
plex fieldC. By perturbingq(x) and applying B́ezout’s Theorem, one can show that|VC |
is finite. Various approaches are used to find the subsetVR of VC of real-valued points.
SinceVR is finite, once it is foundq is evaluated on each of its elements and the mini-
mum value is taken. The main step is findingVR, and approaches based on Gröbner bases,
resultant theory, and homotopy theory exist (see [Parrilo and Sturmfels 2001]). The algo-
rithm of [Basu et al. 1996] may be practical. Indeed, a similar algorithm of Canny was
implemented [Canny 1993].

We remark that a simple trick allows one to further reduce therunning time to(|A| +
|B|)O(lg lg(|A|+|B|)). First, observe that if either|A| or |B| is at least

√
N , then

NO(lg log N) = (|A|+ |B|)O(lg lg(|A|+|B|)),

and in this case we can simply run the algorithm above. Otherwise, we have that|A| ·
|B| < N . Now, notice that the uniform distribution in which eachpi = 1

2 is a product

distribution. In order forP [AB] 6 P [A]P [B] for this distribution, we need|AB|
N 6

|A|·|B|
N2 , or equivalently,N |AB| 6 |A| · |B|. If AB 6= ∅, then since|A| · |B| < N we

cannot haveN |AB| 6 |A| · |B|. On the other hand, ifAB = ∅, thenP [AB] 6 P [A]P [B]
for any product distribution. It follows that if|A| · |B| < N , testing safety reduces to
testing whether or notA andB intersect, which can be done inpoly(|A| + |B|) time by
a simple sorting algorithm. Thus, in all cases, the time complexity of testing safety for
product distributions is(|A|+ |B|)O(lg lg(|A|+|B|)).

This approach generalizes to other algebraic familiesΠ described bypoly(n) con-
straints andO(n) variables. For instance, a family of distributions for which px = py

whenever the Hamming weight ofx andy are equal is described byn + 1 variables.
Even when the familyΠ of distributions requiresN variables to describe, in certain

cases we can obtain a polynomial-time algorithm for testingsafety with respect toΠ .
Indeed, if the constraintsαi definingΠ have degree at most2 and there are only a constant
numberr of them, an algorithm in [Grigoriev et al. 2003] shows how to decide emptiness
of K(A,B,Π ) in NO(r) time. This algorithm makes black-box use of the earlier algorithm
of Basu, Pollack, and Roy [Basu et al. 1996]. As an optimization, we note that if there are
multiple linear equality constraintsLi(X1, . . . ,Xs) = 0, it is helpful to combine them into
a single quadratic constraint

∑
i L2

i = 0. This is because the running time is exponential
in the number of constraints.

6.2 Hardness Results

As the following theorem shows, even when the numberN is not too large, we may need
to restrict the class of distributionsΠ that we consider in order to efficiently test safety.

THEOREM 6.3. If NP 6⊆ P/poly9, then there is an algebraicΠ for which the number
of constraints ispoly(N), each constraint has degree at most2, and for which deciding
SafeΠ (A,B) cannot be done inpoly(N) time. This holds even if the deciding algorithm

9Recall thatP/poly is the set of languagesL for which there exists a polynomial-time algorithmA and an
infinite advice sequence(an)n∈N such that for everyx ∈ {0, 1}∗, A(a|x|, x) = 1 if and only if x ∈ L.
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is allowed to preprocess the distributionΠ with an unbounded amount of computational
work, provided that the output of its preprocessing stage isa poly(N)-length bit string.

Before proving the theorem, we first recall the optimizationproblemMAX-CUT. For an
undirected unweighted graphG = (V,E) on t vertices, a cutS of G is a setS ⊆ V of
vertices, and the cut size of the cut is the number of edges with one endpoint inS and the
other inV \ S. A maximum cut is a cut of the largest possible cut size inG. The number
of such edges is called the maximum cut sizeγ(G), and the problemMAX-CUT is the
problem of computingγ(G). Note that one does not need to output a cut realizingγ(G)
to solve theMAX-CUT problem. However, given an oracle for computingγ(·), there is
a standard reduction to obtain a maximum cut by iteratively deleting edges and checking
whether they change the maximum cut size. AssumingP 6= NP , it is known [Karp 1972]
thatMAX-CUT cannot be solved in polynomial time.

We further restrict theMAX-CUT problem so thatt is a power of2. This is possible
because we can increase the number of vertices ofG by less than a factor of2, so that now
the number of vertices is a power of2. If we make the vertices that we add be isolated
vertices, then the maximum cut size ofG remains the same.

Definition 6.4. The problemspecial MAX-CUT is the problem of determining whether
γ(G) > 365t2

4608 , given that the numbert of vertices ofG is a power of2.

LEMMA 6.5. AssumingP 6= NP , special MAX-CUT cannot be solved inpoly(t)
time.

PROOF. Notice thatMAX-CUT on graphsG′ on t
4 vertices cannot be solved inpoly(t)-

time assumingP 6= NP . This is because if there were apoly(t)-time algorithm for solving
MAX-CUT on graphs ont4 vertices, the same algorithm would be apoly(t)-time algorithm
for solvingMAX-CUT on graphs ont vertices. It is not hard to show that any graphH on
t
4 vertices satisfies0 6 γ(H) 6 t2

64 , where the latter inequality is achieved by takingH to

be a bipartite clique witht8 vertices in each part. It is easy to see thatt2

64 < 365t2

4608 .

We need the fact that for every even integers > 2 and non-negative integerr 6 s2

4 ,
there is a graphHr on s vertices withγ(Hr) = r. This can be proven by induction on
even integerss. It is clearly true fors = 2, since we can takeH0 to be the empty graph on
2 vertices, andH1 to be a single edge. Suppose, inductively, that it is true forsome value

of s > 2. We want to show that for everyr 6
(s+2)2

4 , there is a graphGr ons + 2 vertices

with γ(Gr) = r. This clearly holds forr 6 s2

4 , since we can takeGr to be the disjoint

union ofHr and2 isolated vertices. Forr > s2

4 , letS be a maximum cut ofHs2/4. Denote
the vertices ofHs2/4 by V . Let u andv be two vertices not inV . We connectu to a subset
of vertices inS andv to a subset of vertices inV \ S so that the total number of edges
added isr − s2

4 . The cutS ∪ {v} is a maximum cut of the newly constructed graphGr

since allr edges inGr participate in the cut. This works for allr 6 s2

4 + s. Notice that
(s+2)2

4 − s2

4 = s + 1. If r = s2

4 + s + 1, then we also connectu to v, which increases the
cut size ofS ∪ {v} by one. This proves the inductive step.

Returning to the proof of the lemma, for eachr with 0 6 r 6 9t2

64 , let Jr be a graph on
3t
4 vertices withγ(Jr) = r.

Given a graphH on t
4 vertices, consider the graphsIr on t vertices, whereIr is the

disjoint union ofH with Jr. Thenγ(Ir) = γ(H) + γ(Jr) = γ(H) + r. Sinceγ(H) 6 t2

64
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andγ(J0) = 0, we have thatγ(I0) < 365t2

4608 . On the other hand, sinceγ(J9t2/64) = 9t2

64 >
365t2

4608 , we have thatγ(I9t2/64) > 365t2

4608 . Thus, there is some minimal value ofr for which

γ(Ir) > 365t2

4608 . For this value ofr, we haveγ(H) = d 365t2

4608 e−r. Thus, by solvingspecial
MAX-CUT for each graphIr, we can determineγ(H). It follows thatspecial MAX-CUT
cannot be solved inpoly(t) time, if P 6= NP .

We now prove Theorem 6.3.

Proof of Theorem 6.3: Put n = 1 + 2 log2 t, so thatN = 2t2. For eachu ∈ [t]
def
=

{1, 2, . . . , t}, associate an elementxu ∈ {0, 1}n. Associate each setS = {u, v} ⊆ [t] of
size2 with a distinct elementyS ∈ {0, 1}n. Call such anS a 2-set. LetD1 andD2 be
disjoint subsets oft

2

2 unassociated elements of{0, 1}n. Assume that0n is not inD1 ∪D2,
and is not associated with any2-set. Note that all of this is possible because|D1∪D2| = t2

and the number of elements associated with a2-set is
(

t
2

)
6 t2

2 , while only t elements are
associated with a valuexu. Thus, there are at least

N − 3t2

2
− t = 2t2 − 3t2

2
− t > 0

unassociated elements of{0, 1}n and not inD1 ∪D2 (for sufficiently larget).
We defineΠ by the following constraints. For each2-set S = {u, v}, include the

constraint:

pyS
= 360pxu

(
1

20t
− pxv

)
+ 360pxv

(
1

20t
− pxu

)
.

For eachu ∈ [t], include the constraint:

0 = pxu

(
1

20t
− pxu

)
.

From this we deduce thatpxu
∈ {0, 1

20t}. Moreover, we claim thatpyS
∈ {0, 9

10t2 }. To
see this, note that forS = {u, v}, there are four cases: (1)pxu

= pxv
= 0, (2) pxu

= 0
andpxv

= 1
20t , (3) pxu

= 1
20t andpxv

= 0, and (4)pxu
= pxv

= 1
20t . We see that in cases

(1) and (4), we havepyS
= 0, while in cases (2) and (3) we havepyS

= 9
10t2 .

For eachz ∈ D1∪D2, putpz = 1
2t2 . For thosez /∈ D1∪D2∪{0n} that are unassociated

with any2-set, putpz = 0. Finally, put

p0n = 1−
∑

2-setsS={u,v}

pyS
−
∑

u∈[t]

pxu
−

∑

z∈D1∪D2

pz.

We thus have,

p0n > 1−
(

t

2

)
· 9

10t2
− t · 1

20t
− t2 · 1

2t2
> 0.

Observe thatpz > 0 for all z ∈ {0, 1}n and
∑

z pz = 1.
The constraints definingΠ are equality constraints, which can each be converted into

two inequality constraints. Observe thatΠ is algebraic and non-empty, the number of
constraints ispoly(N), and the constraints definingΠ have degree at most2. Moreover,
each constraint can be described withO(log N) bits.

Given an input graphG = ([t], E) and a parameterk, observe that the verticesu ∈ [t]
can be partitioned into two setsJ and [t] \ J , whereu ∈ J if and only if pxu

= 0. If
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u ∈ [t] \ J , thenpxu
= 1

20t . Then, by the case analysis above,pyS
= 9

10t2 if and only if

one endpoint ofe is in J and the other is in[t] \J . Putγ̄(G) = γ(G)
t2 . Putm =

∑
e∈E pye

.

Hence, the maximum value ofm is 9γ(G)
10t2 = 9γ̄(G)

10 .
We define query setsA andB as follows. LetF1 ⊆ D1 be an arbitrary subset of size

247t2

512 , which is an integer fort > 512. Let F2 ⊆ D2 be an arbitrary subset of size247t2

512 .
Let A = ∪e∈Eye ∪ F1, andB = ∪e∈Eye ∪ F2. ThenAB = ∪e∈Eye. Then, using that

for eachz ∈ D1 ∪D2 we havepz = 1
2t2 , the constraintP [A]P [B] < P [AB] becomes

(
m +

247

1024

)2

< m, (42)

sinceP [A] = P [B] = P [ ∪e∈Eye ∪F2] = m+ 1
2t2 · 247t2

512 = m+ 247
1024 , andP [AB] = m.

The quadratic formula shows that this inequality holds if and only if

m ∈
(

1

2
− 247

1024
− 3

16
,

1

2
− 247

1024
+

3

16

)
.

We showed thatm 6
9γ̄(G)

10 , and so if

γ̄(G) 6
10

9
·
(

1

2
− 247

1024
− 3

16

)
=

365

4608
,

then inequality (42) cannot hold.
We now turn to showing the converse, namely, that ifγ̄G > 365

4608 , then inequality (42)
does hold for some distribution inΠ . So suppose that̄γ(G) > 365

4608 . If, also, γ̄(G) 6
10
9 ·
(

1
2 − 247

1024 + 3
16

)
, then by choosing the vertices in a maximum cut ofG to be the set

of verticesv for which pxv
= 0, we have thatm ∈

(
1
2 − 247

1024 − 3
16 , 1

2 − 247
1024 + 3

16

)
, and

so inequality (42) holds.
The only wrinkle comes when̄γ(G) is larger than10

9 ·
(

1
2 − 247

1024 + 3
16

)
. In this case it

suffices to exhibit a cut whose cut size lies in the interval

I =

(
10

9

(
t2

2
− 247t2

1024
− 3t2

16

)
,

10

9

(
t2

2
− 247t2

1024
+

3t2

16

))
.

By assumption on the maximum cut size, there is a cutS with cut size at least109 ·(
t2

2 − 247t2

1024 + 3t2

16

)
. Let S = {v1, . . . , vr}. Consider the sequence of cutsS0 = S, S1 =

S \ {v1}, S2 = S \ {v1, v2}, . . . , ∅. The difference in cut sizes between consecutive cuts
in this sequence is bounded byt − 1, the maximum degree of a vertex inG. Notice that
the length of intervalI is 10

9 · 3t2

8 = Ω(t2). Since the last cut in the sequence, namely,∅,
has cut size0, it follows that some cut in the sequence has cut size which isin intervalI
(for sufficiently larget). By the arguments above, it follows thatP [A]P [B] < P [AB].

It follows thatP [A]P [B] < P [AB] if and only if γ(G) > 10
9 ·
(

t2

2 − 247t2

1024 − 3t2

16

)
=

365t2

4608 . By Lemma 6.5, this cannot be solved inpoly(t) = poly(N) time unlessP = NP .
To prove the theorem, we must also allow the deciding algorithm access to apoly(N)-

length bit string which does not depend on the query setsA and B. In this case, if
SafeΠ (A,B) could be decided inpoly(N) time, thenSpecial MAX-CUT on graphs con-
taining t vertices could be solved inpoly(t) time given apoly(t)-length bit string, and
hence by the reduction in Lemma 6.5,MAX-CUT could also be solved inpoly(t) time
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given apoly(t)-length bit string. But this implies there is aP/poly-algorithm for solv-
ing MAX-CUT, and sinceMAX-CUT is NP -complete, this would implyNP ⊆ P/poly.
This contradicts the assumption of the theorem.

6.3 Heuristics

For most families of distributions we will have to settle fora heuristic or an approximation
for testing safety. If the program describingK(A,B,Π ) is multilinear (e.g., one can show
this is the case for log-submodular and log-supermodular distributions), there are heuristics
such as branch-and-bound or cutting-plane techniques. Seepage 2 of [de Campos and
Cozman 2005].

Here we describe the arguably most practical heuristic, thesum-of-squaresheuristic,
introduced in [Shor 1987; Shor and Stetsyuk 1997; Parrilo 2000], which works even for
systems that are not multilinear. This heuristic was implemented with great success in
[Parrilo and Sturmfels 2001]. IfK(A,B,Π ) is non-empty, that isSafeΠ (A,B) does not
hold, then the heuristic is guaranteed to report thatK(A,B,Π ) is non-empty. On the
other hand, there may be a false negative in the sense that ifK(A,B,Π ) is empty, and so
SafeΠ (A,B) holds, then the heuristic may report thatK(A,B,Π ) is non-empty, meaning
that SafeΠ (A,B) does not hold. One can reduce the likelihood of a false negative by
increasing a parameterD given in the following description of the method.

The problem of minimizing a degree-d multivariate polynomialf over a setK ⊆ Rs

is equivalent to finding the maximumγ ∈ R for which f(x) − γ > 0 for all x ∈ K.
Let Pd

+(K) be the set of all polynomials inR[x1, . . . , xs] of degree at mostd which are
non-negative on every point inK. Thus, our problem is to find the maximumγ ∈ R for
whichf − γ ∈ Pd

+(K).
It is unknown how to optimize overPd

+(K) efficiently, and so the following indirect
route is taken. Define the setΣ2 :

Σ2 =
{

f ∈ R[x1, . . . , xs] | ∃g1, . . . , gt ∈ R[x1, . . . , xs] s.t.f =
∑t

i=1 g2
i

}
.

Notice thatΣ2 is a subset of non-negative polynomials, as every sum of squares of poly-
nomials is non-negative. It turns out thatΣ2 is in fact a strict subset of the non-negative
polynomials, as shown non-constructively by Hilbert, and constructively by Motzkin who
provided the polynomial

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2.

Motzkin showedM(x, y, z) is non-negative onR3, yet inexpressible as a sum of squares
of polynomials. It turns out that every non-negative polynomial can be written as a sum of
squares of rational functions (functions of the formgi(x)/hi(x) for polynomialsgi andhi),
which was Hilbert’s 17th problem, solved by Artin in 1927. While Σ2 fails to capture all
non-negative polynomials, the following proposition is a compelling reason for studying
it. The proposition is folklore, and is proven using semidefinite programming.

PROPOSITION 6.6. For f ∈ R[x1, . . . , xs] of bounded degree, the test “f(x) ∈ Σ2”
can be done inpoly(s) time.

Let Σ2,d be thosef(x) ∈ Σ2 of degree at mostd. ThenΣ2,d ⊆ Pd
+(R). To minimizef(x)

overRs, we find the largestλ ∈ R for whichf(x)−λ ∈ Σ2,d via a binary search onλ and
the proposition above. The valueλ is a lower bound onf(x) and in practice almost always
agrees with the true minimum off [Parrilo and Sturmfels 2001].
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To minimizef(x) over a setK constrained by polynomials, we need a few more tools.
We could reduce the problem to minimizing a single polynomial, as mentioned in Section
6.1, but the following may work better in practice. We followthe presentation in [Carama-
nis 2001].

Definition 6.7. The Algebraic Cone generated by elementsβ1, . . . , βt ∈ R[x1, . . . , xs]
is the set

A(β1, . . . , βt)
def
= {f ∈ R[x1, . . . , xl] | f = η +

∑

I⊆[t]

ηI

∏

i∈I

βi},

whereη and theηI are inΣ2, and[t] = {1, 2, . . . , t}.
Thus, the algebraic cone can be thought of as the set of all affine combinations of all pos-
sible products of polynomialsβ1, . . . , βt, where the coefficients of the affine combination
are taken fromΣ2.

Definition 6.8. The Multiplicative MonoidM(β1, . . . , βt) generated byβ1, . . . , βt ∈
R[x1, . . . , xs] is the set of finite products of theβi, including the empty product which we
set to1.

The key result is a simplified form of the Positivstellensatz[Stengle 1974]:

THEOREM 6.9. Given polynomials{f1, . . . , ft1}, {g1, . . . , gt2} in R[x1, . . . , xs], the
set

K
def
= {x ∈ Rs : fi(x) > 0, gj(x) 6= 0,∀i ∈ [t1], j ∈ [t2]}

is empty if and only if∃F ∈ A(f1, . . . , ft1) andG ∈ M(g1, . . . , gt2) for whichF + G2

is the zero polynomial.

Thus, for a setK described byfi, andgj of the form above, we considerK ′ = K ∩ {x ∈
Rs | γ − f(x) > 0, f(x)− γ 6= 0}. K ′ is empty if and only iff(x) > γ for all x ∈ K.

Heuristics implemented in practice work by choosing a degree boundD, generating
all G ∈ M(f − γ, g1, . . . , gt2) of degree at mostD (there are at mosttD2 suchG), and
checking if there is anF ∈ A(γ − f, f1, . . . , ft1) for whichF + G2 = 0 via semidefinite
programming. This is efficient for constantD, which usually suffices in practice. Better
algorithms for special cases are based on alternative formsof the Positivstellensatz; see
[Putinar 1993; Schm̈udgen 1991].

7. CONCLUSION

We presented a novel approach to privacy where only gaining confidence in a sensitive fact
is illegal, while losing confidence is allowed. We showed that this relaxation is significant
and permits many more queries than with well-known approaches. In exchange, this gave
us an opportunity to relax prior knowledge assumptions beyond current standards. Our
hope is that work in this direction will help bridge the gap between theoretical soundness
and practical usefulness of privacy frameworks.

One possible future goal is to obtain a better understandingof the families of sets and
distributions that arise in practice, and to understand whether they admit efficient privacy
tests. Another goal is to apply the new frameworks to online (proactive) auditing, which
will require the modeling of a user’s knowledge about the auditor’s query-answering strat-
egy.
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