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We present a novel definition of privacy in the framework of offline (retroactive) database query
auditing. Given information about the database, a description of sensitive data, and assumptions
about users’ prior knowledge, our goal is to determine if answering a past user’s query could have
led to a privacy breach. According to our definition, an audited property A is private, given
the disclosure of property B, if no user can gain confidence in A by learning B, subject to prior
knowledge constraints. Privacy is not violated if the disclosure of B causes a loss of confidence
in A. The new notion of privacy is formalized using the well-known semantics for reasoning about
knowledge, where logical properties correspond to sets of possible worlds (databases) that satisfy
these properties. Database users are modelled as either possibilistic agents whose knowledge is a
set of possible worlds, or as probabilistic agents whose knowledge is a probability distribution on
possible worlds.

We analyze the new privacy notion, show its relationship with the conventional approach,
and derive criteria that allow the auditor to test privacy efficiently in some important cases.
In particular, we prove characterization theorems for the possibilistic case, and study in depth
the probabilistic case under the assumption that all database records are considered a-priori
independent by the user, as well as under more relaxed (or absent) prior-knowledge assumptions.
In the probabilistic case we show that for certain families of distributions there is no efficient
algorithm to test whether an audited property A is private given the disclosure of a property B,
assuming P # NP. Nevertheless, for many interesting families, such as the family of product
distributions, we obtain algorithms that are efficient both in theory and in practice.

Categories and Subject Descriptors: H.Dafabase Managemerjt Database Administration; F.2.Apalysis
of Algorithms and Problem Complexity]: Numerical Algorithms and Problems
General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: privacy, disclosure, auditing, query logs, reasoning about
knowledge, supermodularity, Positivstellensatz

1. INTRODUCTION

Today, privacy protection has become a popular and everiofzasble area of database
research. This situation is, of course, quite natural, rgitree importance of privacy in
our social life and the risks we face in the digital world. $leisks were highlighted
by numerous recent reports of personal data theft and nmsppation, prompting many
countries to enact data protection laws [Australia 1998)ada 2000; Congress 1996; E.
U. Parliament 1995]. However, the current state of scierkifiowledge still does not allow
the implementation of a comprehensive privacy solutiot ¢hearantees provable protec-
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tion. In fact, the notion of privacy itself has many definittoand interpretations, some
focused on theoretical soundness, others on practicallassk. This paper attempts to
reduce the gap between these two aspects by exploring mxitddiget sound definitions.

One typical privacy enforcement problem, calbpaery auditing is to determine if an-
swering a user’s database query could lead to a privacy fbrdacstate the problem more
accurately, we assume that the auditor is given:

— The database at the time of the user’s query, or some pknialledge about that
database;

— A description of information considered sensitive, oftatied theprivacy policyor
theaudit query

— Assumptions about the user’s prior knowledge of the dambaf the audit
query/ privacy policy, and of the auditor’s privacy enforcemematggy if it exists;

— The user’s query, or a range of queries.

The auditor wants to check whether answering a given quemidcaugment the user’s
knowledge about some sensitive data, thereby violatingtivacy of that data. This prob-
lem has two extensiongroactiveprivacy enforcement (also calleshline auditing[Ken-
thapadi et al. 2005]), an@troactiveor offlineauditing.

In the proactive (online) privacy enforcement scenariersigsssue a stream of queries,
and the database system decides whether to answer or toatsnguery. The denial, when
it occurs, is also an “answer” to some (implicit) query thepends on the auditor’s privacy
enforcement strategy, and therefore it may disclose $emsiita. The strategy has to be
chosen in advance, before the user’s queries become deailAbstrategy that protects
privacy for a specified range of queries represents a salti¢his auditing problem. An
in-depth discussion of online auditing can be found in [Kexpadi et al. 2005; Nabar et al.
2006] and papers referenced therein.

In the retroactive (offline) scenario, the users issue tingéries and receive the answers;
later, an auditor checks if a privacy violation might havewted. The audit results are not
made available to the users, so the auditor’s behavior ngelofactors into the disclosure
of data, and this considerably simplifies the problem. Ttie allows for more flexibility
in defining sensitive information: while in the proactiveseahe privacy policy is typically
fixed and open to the users, in the retroactive case the augiy gself may be sensitive,
for example, based on an actual or suspected privacy brégcaal et al. 2004; Motwani
et al. 2008]. Retroactive auditing is the application thatisates this paper, although our
framework turns out to be fairly general.

To further illustrate the above, suppose Alice asks Bob ferHlV status. Assume
that Bob never lies and considers “HIV-positive” to be séwsiinformation, while “HIV-
negative” is for him OK to disclose. Bob is HIV-negative a¢tnoment; can he adopt the
proactive strategy of answering “I am HIV-negative” as lawit is true? Unfortunately,
this is not a safe strategy, because if he does become Hitiygos the future, he will
have to deny further inquiries, and Alice will infer that hentracted HIV. The safest bet
for Bob is to always refuse an answer.

For the retroactive scenario, suppose that Bob contradi¢dt2006. Alice, Cindy and
Mallory legitimately gained access to Bob’s health rec@mdd learned his HIV status, but

LIf Alice pays Bob for answers, he can balance privacy and tpgftossing a coin and answering “l am HIV-
negative” only if the coin falls heads.
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Epistemic Privacy . 3

Alice and Cindy did it in 2005 and Mallory did in 2007. Bob dis@rs that his disease is
known to the drug advertisers, and he initiates an audiGipeg “HIV-positive” as the
audit query. The audit will place the suspicion on Mallomyt hot on Alice and Cindy.

In legal practice, retroactive law enforcement has showbretbetter suited to the com-
plex needs of our society, although proactive measuressae o, especially in simple
or critical situations. For example, a valuable item can teguted from theft by lock
and key (a proactive measure) or by the fear of being caughjeéied (a retroactive mea-
sure). If it is simple to fence off the item and distribute #eys to all authorized users,
or if the item has extraordinary value, then proactive dedds the best option, but in less
clear-cut cases this would be too cumbersome or intrusiter All, even an authorized
user might steal or lose the item, and even a stranger soe®should be able to gain
access to it, for example, in an emergency. Healthcare [#agrat al. 2002] is one area
where the complexity of data management is just too high feHor a fully proactive
solution to privacy. The importance of offline disclosureliing in healthcare has been
recognized by the U.S. President’s Information Technoladyisory Committee [PITAC
2004], which recommended that healthcare informatioresysthave the capability to au-
dit who has accessed patient records. We believe in coagistend importance of both
auditing approaches.

1.1 Privacy Definitions in Query Auditing

The art of encryption and cryptanalysis goes back to arfighut the scientific maturity
of privacy theory was made possible only in modern times btheraatical modeling of
the eavesdropper’s knowledge. One of the first such modedspn@posed in 1949 by
Claude Shannon [Shannon 1949], who introduced the notigedéct secrecyShannon
suggested to represent the adversarial knowledge by alglibpdistribution over possible
private data values: prior distribution before the crypéog is revealed, and posterior
distribution after the adversary sees the cryptogram (buttime key). Perfect secrecy
corresponds to the situation where the posterior disiobus identical to the prior, for
every possible cryptogram. This general idea has beenddtgrted and extended to many
privacy frameworks and problems, including query auditing

Denote by the set of all possible databases, and4dgnd B two properties of these
databases; each database 2 either has or does not have each property. Assume that the
actual database satisfies bottand B. Suppose that property is sensitive, and property
B is what user Alice has learned by receiving the answer to heryq Was the privacy of
A violated by the disclosure d8? This depends on what Alice knew before learnisig
for example, if she knewB = A” (but did not know A), then B of course revealed to
her thatA is true. On the other hand, if Alice already knew thiis true, thenB could no
longer reveald and may be waved through by the auditor.

Miklau and Suciu [Miklau and Suciu 2004] applied Shannontdel to this problem
and declared to be private giverB if and only if, for all probability distributions? over
Q that might describe Alice’s prior knowledge about the datah we have

P[A|B] = P[4 1)

Unfortunately, if no constraints are placed &) no pair (A4, B) of non-trivial proper-
ties (A, B # @ or Q) will satisfy this privacy definition. To see this, take a alaase
w1 € Q — B, then take another databasge 2 so thatw; € A < w, ¢ A. This is possible
since neitherd nor B equalsa or 2. Assign the probability?(w;) = P(w2) = 1/2 and
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P(w) = 0 everywhere else; if the actual database, which must havezeno probability
(see why in Remark 2.3), is* ¢ {w1,w2}, assignP(w;) = P(ws) = P(w*) = 1/3.
We haveP[A|B] # P[A], because the (prime) denominator R#]A] cannot appear
in P[A| B].

Miklau and Suciu considered a quite limiting, yet populamstraint: that Alice treats
all database recordse w independently, that is? is a product distribution:

Pw) = Il,enPlrl x ITl,g, (1= PIr])
Under this constraint, they prove that propenyis private given the disclosure @ if
and only if they share noritical records(Theorem 3.5 in [Miklau and Suciu 2004]). A
database record is called “critical” fax (for B) if its presence or absence in some database
may decide the truth value af (of B). This can be a real recordhat belongs to the actual
databaser( € w*), or an imaginary record ¢ w* made up from an arbitrary combination
of attribute values. For many propertidsand B that, in practice, have nothing to do with
each other, we can make up an imaginary recoehd a pairw4 andwg of imaginary
databases such that insertingnto w4 (into wg) flips the truth value ofd (of B). For
example, if

A = 3X PaTIENTID (Bob, X') & DISEASE(X,HIV+)
B = —3Y PaTIENTID (Chris Y) & DISeASE(Y, HIV+)
w* = {PATIENTID (Diana 123), DISEASE(123 Flu)}

then A and B share a critical recordt = DISEASE(123 HIV+) even though patient #123
is Diana, all patients are HIV-negative, and Bob is not ewsgjistered at the hospital. The
imaginary databases are

wa = {PATlENTID(Bob, 123)}; wp = {PATIENTlD(Chris 123)}.

One can see that, even with prior knowledge restricted tdyrodistributions, very few
practical queries would get privacy clearance: perfectesgrappears too demanding to
be practical.

A number of recent papers studied ways to relax conditiomt)make it approximate.
They follow the same principle: for certain paiis:, p2) of numerical boundsy; < po,
require that

PlA] < pr = P[A|B] < p2

whereP is a prior knowledge distribution. This idea is behind théndtéon of p;-to-p,
privacy breach in [Evfimievski et al. 2003]; Kenthapadlial. [Kenthapadi et al. 2005] use
a slightly different version as part of their definition:

1-X < PIA|B]/P[A] < 1/(1-))

The Sub-Linear Queries (SuLQ) framework developed in [Biinal. 2005; Dinur and
Nissim 2003; Dwork and Nissim 2004] has a more sophistice¢esion with nice theoret-
ical characteristics:

P[A| B] PlA]
—— — log——— < 2
T PlA|B]  eT—pa] ~° S° @
Conceptually they all require that no user can gain much dentie in the audited prop-
erty A by learning the disclosed properB; subject to prior knowledge constraints.
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Perhaps surprisingly, however, all papers known to us, éir throofs if not in their
definitions, do not make any distinction betwegaining andlosing the confidence i
upon learningB. For example, the SuLQ results remain in force if the privdefinition
of [Blum et al. 2005] is changed by placing the absolute vaige “|...|” over the differ-
ence in (2). In some papers [Dwork and Nissim 2004] the|™ appears in the definition
explicitly.

It turns out that taking advantage of the gain-vs.-lossirdifibn yields a remarkable
increase in the flexibility of query auditing. To bring it infocus, we shall put aside the
approximate privacy relaxations and replace Eq. (1) widgurality

PIA[B] < P[4] (3)

That is, we call propertyl private given the disclosure of properfy when (3) holds for
all distributions P that are admissible as a user’s prior knowledge. One mighttéa
“semiperfect secrecy,” for it has the same sort of “abséligen as perfect secrecy. This
and related notions are the subject of this paper.

Let us illustrate its flexibility with a simple example of Ak (a user) and Bob (a patient).
The hospital’'s database has two recordsr; = “Bob is HIV-positive” andr, = “Bob
had blood transfusions.” The sensitive prope#tys the presence ofy, i.e. that Bob is
HIV-positive. The propertyB that Alice queries and learns is;" € w impliesry € w,”
in other words, that “if Bob is HIV-positive, then he had btbtwansfusions.'We make no
constraints on Alice’s prior knowledge distributioother than a nonzero probability of the
actual database. Could the disclosurdofiolate the privacy ofA? Look at the following
table of possible worlds:

| [ mew [ mdw |
r €w || Aistrue | Aistrue %
r1¢w || Aisfalse| Ais false

For Alice, learningB has the effect of ruling out the cell marked witlsa while leaving

the other cells untouched. Whatever the cells’ prior prdiisds are, the odds off can

only go down:P[A | B] < P[A]. Thus,A is private with respect t&, even thoughd and

B share a critical record, and regardless of any possible dependence among thesécord
A closely related phenomenon was noticed in the 1940’s byrththematician George

Poblya in the context of his studies of how mathematiciansestieir problems. He wrote

a popular and highly acclaimed book, recently re-issueduaproblem solving [Blya

1957], followed by more in-depth monograph[faa 1954; 1968]. Blya observed the

following rule of plausible reasoning

If AthenB  Bistrue
A more credible

where “more credible” means th&{A | B] > P[A]. Itis easy to show in the same manner
as above that the rule holds regardless of one’s prior krdyele

2Note that if Bob proactively tells Alice “If | am HIV-positi®, then | had blood transfusions,” a privacy breach
of A may occur, because Alice may learn more than jgstor example, Alice then learns that Bob is thinking
about his HIV status.
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1.2 Summary of Results

This paper studies a notion of database privacy that makiéegial for users to gain con-

fidence about sensitive facts, yet allows arbitrary confiddoss. We begin in Sections 2
and 3 by introducing two novel privacy frameworks that irmpént the above concept for
two different knowledge representations: possibilistid @robabilistic. We outline some
properties of our privacy definitions that are relevant opghoblem of testing privacy, and
give necessary and sufficient conditions for privacy withre@strictions on the user’s prior
knowledge.

Section 4 delves deeper into the possibilistic model. Fdageimportant cases, notably
when the constraints on a user’s prior knowledge are intdmseclosed (i. e. not violated
by a collusion of users), we give necessary and sufficietéraaifor testing possibilistic
privacy, which also reduce the complexity of this problem.

Sections 5 and 6 focus on the more complex probabilistic inader the set{0,1}"
of Boolean vectors that represent subsets of databaselse@ection 5 studies two prob-
abilistic prior knowledge constraints: bit-wise independe (product distributions) and
log-supermodularity. The bit-wise independence constraas used also in [Miklau and
Suciu 2004] by Miklau and Suciu, so our work can be viewed asxension of theirs.
Log-supermodularity is chosen to provide a “middle groubdtween bit-wise indepen-
dence and the unconstrained prior knowledge. We give sicqiebinatorial necessary
criteria and sulfficient criteria for privacy under the laggsrmodular and the product dis-
tribution constraints.

In Section 6, we study more general familifisof distributions over0, 1}" that can
be described by the intersection of a finite number of polyiabinequalities in a finite
number of real-valued variables. We prove that even foagextery restricted’, deciding
whether a seB C {0,1}" violates the privacy of a set C {0,1}" with respect to
distributions inIl cannot be done in polynomial time, unleBs= N P.

We overcome this negative result in two ways. First, usingesdeep results from alge-
braic geometry, we show that in certain interesting cases) as wher[ is the family of
product distributions, there are provably efficient algoris for deciding privacy. Second,
we describe the sum-of-squares heuristic, introduced m{3987; Shor and Stetsyuk
1997; Parrilo 2000], and its application for deciding pdydor any /7. The heuristic has
been implemented and works remarkably well in practicerfldaand Sturmfels 2001].

2. WORLDS AND AGENTS

Epistemology, the study of knowledge, has a long and hotetaddition in philosophy,
starting with the early Greek philosophers. Philosophesseveoncerned with questions
such as “What does it mean to say that someone knows sométhimgRe 1950's and
1960’s [Hintikka 1962; Kripke 1963; Wright 1951] the focusfstd more to developing
an epistemic logica logic of knowledge, and trying to capture the inherenpprties of
knowledge. Here there is a $etof possible worlds, one of which is the “real world™.
An agent’'sknowledges a setS C 2 of worlds that the agent considers possible. Since
we are modelingknowledgeather tharbelief we require that* € S. If F'is a (possible)
fact, andA C () is the set of possible worlds whefeis true, then we say that the agent
knowsF' if and only if S C A.

More recently, researchers in such diverse fields as ecasoimguistics, artificial in-
telligence, and theoretical computer science have becateessted in reasoning about
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knowledge [Fagin et al. 1995]. The focus of attention haftesthito pragmatic concerns
about the relationship between knowledge and action. Ehatii focus: the effect of an
action, such as the disclosure of certain information, erkitowledge of an agent.

Worlds Let Q2 be a finite set of all possible databases. We shall call a dstabe ()
aworld, and the entiré) the set of all possible worlds'heactual world denoted byu*,
represents the real database. Every property of the datadragssertion about its contents,
can be formulated asJ* € A” where A C Q) is the set of all databases that satisfy the
property. A subsel C Q that containss* shall be called &nowledge set

Agents We shall think of database usersaggntsvho know something about the worlds
in 2 and who try to figure out whicly € 2 is the actual worldv*. An agent’s knowledge
can be modelled in different ways; we shall consider two aaphes. In gossibilistic
agent, knowledge is represented by a$et € that contains exactly all the worlds this
agent considers possible. In particulat, € S. Here every world is either possible or not,
with no ranking or score assigned. Irpeobabilisticagent, knowledge is represented by
a probability distribution” : Q@ — R, that assigns a nonnegative weighfw) to every
world. We denote the suin, . , P(w) by P[A], requiring thatP[Q] = 1 andP(w*) > 0;
by R, we denote the set of all non-negative real numbers.

We say that a possibilistic agent with knowled§eknowsa property A C Q when
S C A. We say thatA is possiblefor this agent whers N A # @, that is, when the agent
does not know) — A. For a probabilistic agent with distributiat, to know A means to
haveP[A] = 1, and to consider possible means to have[A] > 0.

A function @ whose domain i$) shall be called guery; if its range is{0, 1} thenQ is
aBooleanquery. For a given actual world*, each query) corresponds to the knowledge
set associated with the query’s “actual” outp{it € Q2 \ Qw) = Q(w")}.

The Auditor There is a special “meta-agent” calldee auditorwhose task is to analyze
the queries disclosed to the users and determine which sé tilisclosures could breach
privacy. The auditor may or may not have complete infornmagibout the actual world*.
For example, if the query disclosure occurred several yages the record update logs
may provide only a partial description of the database sthtbat moment. Even more
importantly, the auditor does not know what the user’s krealge of the database was at
the disclosure time. We characterize the auditor’s knogéely specifying which pairs
of a database and the user’s knowledge (or P) the auditor considers possible. Let us
formally define the auditor’s knowledge about a user:

Definition 2.1. (Possibilistic case) Aossibilistic knowledge worlds a pair (w, S),
wherew is a world andS is a knowledge set, which satisfiese S C Q. The set of
all possibilistic knowledge worlds shall be denoted as

Qposs = {(w,95) |we SCO}

Qposs CaN be viewed as an extension(af For a given user whose knowledgeSis C (2,
the pair(w*, S*) € Q0 is called theactualknowledge world. The auditor's knowledge
about the user is defined as a non-empty/$et s of knowledge worlds, which must
include the actual knowledge world. We referkoas asecond-level knowledge set

We now give the intuition behind a second-level knowledge fse AssumeK =
{(w1,51), (we,S2),...}. Then the auditor knows that either (i) is the actual world
and the agent’'s knowledge setSs (the latter means that the agent knows that the actual
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world is contained inSy), or (ii) ws is the actual world and the agent's knowledge set is
Ss, or.... In particular, the auditor knows that (a) the actual wosldne ofw;,ws, ...,
and the auditor knows that (b) the agent’s knowledge setés0bf', Ss, . . .. The second-
level knowledge set provides richer knowledge for the awdhan simply the knowledge
of (a) and (b) together, since the second-level knowledy&esetogether choices for the
actual world with choices for the agent’s knowledge set. eNalso that if the auditor
knows that the actual world is*, then the second-level knowledge set is of the form
{(w*, 51), (w*, S2),...}.

Our knowledge worldgw, S) are similar to the 2-worlds of [Fagin et al. 1991], except
that the 2-worlds of [Fagin et al. 1991] would deal not onlthwihe knowledge that the
user has of the world, but also with the knowledge that thétaudas of the world, Also,
our second-level knowledge sets are similar to the 3-wafdsagin et al. 1991], except
that the 3-worlds of [Fagin et al. 1991] would deal not onlythwihe knowledge that the
auditor has about the user’'s knowledge of the world, but wiio the knowledge that the
user has about the auditor’s knowledge of the world.

Definition2.2. (Probabilistic case) Arobabilistic knowledge worlds a pair (w, P)
whereP is a probability distribution oveR such that?(w) > 0. The set of all probabilistic
knowledge worlds shall be denoted as

Qpob = {(w, P)| P is adistribution P(w) > 0}.

The actual knowledge worl@v*, P*) € Q.1 and the auditor’s second-level knowledge
setK C Qo1 are defined analogously to the possibilistic case.

Remark2.3. The requirement of € S for every pair(w, S) € Qp0ss and of P(w) > 0
for every pair(w, P) € Qp0b represent our assumption that every agent considers the
actual world possible. All pairs that violate this assumptare excluded as inconsis-
tent. Note that a probabilistic paiw, P) is consistent if and only if the possibilistic pair
(w,supp(P)) is consistent, whereupp(P) is defined next.

Definition2.4. The support setof a probability distribution” over Q2 is the set
supp(P) = {w|P(w) > 0}. For a family II of probability distributions ovef,
we define a familysupp(II) of non-empty subsets o2 as follows: supp(ll) :=
{supp(P) | P € II}.

Remark2.5. In practice, it may be computationally infeasible tegisely characterize
the auditor’s second-level knowledge and to use this pebcisharacterized knowledge
in the privacy definitions. Instead, the auditor makes aggiams about the database and
the user’s knowledge by placing constraints on the posgibiies (w, .S) or (w, P). These
assumptions and constraints are also represented by adsiesehknowledge set, which
must contain the auditor’s precise knowledge set as a subs®h now on, when we talk
about the auditor’s knowledge set, we mean the assumptenspted by the auditor, that
form a superset of the actual knowledge set, unless statedvase.

user’'s knowledge depend on the contents of the databaseexkomple, the auditor may
assume that, if the hospital database contains record $Baditor is Alice,” then Alice
knows Bob’s HIV status, but if there is no such record, theisédimay or may not know it.
However, in many situations we can separate the auditodsviatdge about the database
from the auditor's assumptions about the user. We do so byifgpey two sets:
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(1) A non-empty seC' C () that consists of all databases the auditor considers pgessib
with w* € C;

(2) A family X' of subsets of) and/or a family IT of probability distributions ovef).
The possibilistic agent’'s knowledge has to belond:toand the probabilistic agent’s
knowledge has to belong 3.

If the auditor knows the actual database exactly, for exarbgl reconstructing its state
from the update logs, thefi = {w*}; if the auditor has no information about the database
or is unwilling to take advantage of it, ther = 2. Some choices fog’ and IT will be
discussed in the subsequent sections.

When we say that the auditor’s knowledge is represented bpd X' described above,
we mean that all knowledge worlds, S) with w € C andS € ¥, and none other,
are considered possible by the auditor. However, in mostsciee auditor’'s second-level
knowledge set cannot be the Cartesian prodtict X', because it contains inconsistent
(w, S) pairs (see Remark 2.3). The same is true in the probabitiate, for” and/I. Let
us then define a product operation that excludes all incamtipairs:

Definition 2.6. Theproductof a setC' C 2 and a family)’ of subsets of) (a fam-
ily IT of probability distributions ovef?) is a second-level knowledge €t X (C ® II)
defined by

CoY :={(w>5) eCxZ|weS} = (CxX)N Qposs

C®Il := {(w,P) € CxII|P(w)>0} = (CxIT) N Qprob
We call the pair(C, X') or (C, IT) consistentf their productC ® X' or C'® II is non-
empty, becausg is not a valid second-level knowledge set.

Remark2.7. The producC ® X (or C' ® II) computes thanaximumsecond-level
knowledge sef{ C Q455 (0Fr K C Qp101) thatis a subset af’ x X' (or C x II).

The auditor can safely discard from all sets that have empty intersection with and
from II all probabilitiesP that haveP[C] = 0, because they do not allow* € C as a
possibility. In particular, the empty set, if present inX, is always discardéd In the
same way, a world € C can be safely discarded if for al € X' (P € II) we have
w ¢ S (P(w) = 0). When a pair(C, X') has nothing to discard in this manner, we shall
call it non-excessivenalogously fofC, IT).

Remark2.8. Itis easy to see that the following conditions are eajeivt:
(1) Pair(C, X') is non-excessive;
(2) m(C®XY)=Candm(C ® X) = X, wherer; is the projection operation;
(3) K C Qposs such thatC' = m (K) and X = mo(K);
(4) In the bipartite graph with vertices € C andS € X, where(w, S) is an edge if and
only if w € S, there are no isolated vertices.
A probabilistic-knowledge paifC, IT) is non-excessive if and only if the possibilistic
knowledge paif(C, supp(I7)) is non-excessive.

3The empty set may be addedbin order to make in-closed:V S1,Se € X' : S1 NSe € X. See Section 4.1
for more onN-closed knowledge.
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10 . A. Evfimievski, R. Fagin and D. Woodruff

3. PRIVACY OF KNOWLEDGE

This section introduces the definition of privacy for the gibaistic and the probabilistic
knowledge models. Let, B C Q be two arbitrary non-empty subset<gfas a shorthand,
write A = Q — AandAB = AN B. SetsA and B correspond to two Boolean queries on
the database™*; for example, query returns “true” ifw* € A and “false” otherwise.

We shall study the following question: When could the disatesof B violate the
privacy of A? In our model, a positive result of queryis considered private and needs
protection, whereas a negative result (that ass€ris not protected. Neither the user nor
the auditor are assumed to knowAfis true, andA may actually be false. On the other
hand, B represents the disclosed fact, and theref@reas to be true. The auditor knows
that B is true; the user transitions from not knowiigto knowing B.

The user modifies his knowledge when he receives a disclosey gesult. The dis-
closed knowledge sd® C (2 tells him that every world if2 — B is impossible. We model
the user’s acquisition aB as follows. A possibilistic agent with prior knowledgeC (2,
upon receivingB such thatSB # @ (becauses* € SB), ends up with posterior knowl-
edgeSB. A probabilistic agent with prior distributio® : @ — R, upon receivingB
such thatP[B] > P(w*) > 0, ends up with posterior distributiaR(- | B) defined by

P(w)/P[B], weB

Pw|B) =
0, weN—B

Notice that the acquisition of3; followed by B, is equivalent to the acquisition of
BBy = B; N Bs.

Conceptually, we say that propertyis private, given the disclosure of propeBy if
the user could not gain confidencednby learningB. Below we shall make this notion
precise for the two knowledge models, possibilistic andophilistic. From this section
on, we shall use pronoun “he” for the user and “she” for thetaud

3.1 Possibilistic Privacy

Let us suppose first that the auditor knows everything: ttieahclatabase™ such that
w* € B, and the actual knowledge s6t of the user at the time of the disclosure. In
the possibilistic model, the user may have only two “gradesomfidence” in property
A: he either knowsA (S* C A), or he does not{* ¢ A). The user gains confi-
dence when he does not knadv before learningB (i.e. S* ¢ A) and knowsA after
learning B (i.e. S* N B C A). Therefore, the privacy of is preserved if and only if
- (S*Z A & S*N B C A), orequivalently, if and only if

S*ABC A = S*CA (4)

Now, suppose that the auditor does not knotvand S* precisely, but has a second-level
knowledge sef{’ C Q.4 such thafw*, S*) € K. Then the auditor makes sure this
private givenB by checking condition (4) for all pairs iKk". Before doing so, the auditor
must discard fron¥ all pairs(w, S) such thatw ¢ B, because they are inconsistent with
the disclosure of3. We arrive at the following possibilistic privacy definitio

Definition3.1. SetA C Q is called K-private given the disclosure of sé¢ C , for
K C Qp0ss, When

VwS)eK: (weB & SNBCA) = SCA. (5)
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Epistemic Privacy . 11

We denote this predicate Bafex (A, B).

When the auditor wants to separate her knowledge about tladatkst from her as-
sumptions about the user’s knowledge, she represents temdséevel knowledge set’
as a product’ ® X, whereC' C Q and Y’ is a family of subsets of2. In this case we
shall use the term(C, X)-private” and the notatioBafe ¢ 5 (A, B), which is defined as
Safe cg (A, B). We useP () to denote the power set 6f.

PropPoOsITION 3.2. For a consistent pairC, X') such thatC C Q and X C P(Q),
the privacy predicateSafe ¢ 5 (A, B) can be equivalently defined as follows (denoting
SNBNCasSBC):

VSeX: (SBC#@ & SBCA) = SCA. 6)

PrRoOOFE The following sentences are trivially equivalent:

VSelX: (SBC#2 & SBCA) = SCA
vVSeX: (EwGSC:wGB&SBQA)éSQA
VS el YweSC: (weB & SBCA) = SCA
V(w,S) € C®X: (weB & SBCA) = SCA

Thus, we have (6% (5) forK =C® Y. O

3.2 Probabilistic Privacy

Once again, suppose first that the auditor knows the acttathadse,* € B and the actual
probability distributionP* that represents the user’s knowledge prior to the disctoAs
opposed to Section 3.1, in the probabilistic model the ussrécontinuum of “grades
of confidence” inA, measured byP*[A]. The user gains confidence whenever fier
probability of A before learningB, which is P*[A], is strictly smaller than hiposterior
probability of A after B is disclosed, which is?*[A | B]. Therefore, the privacy ofl is
preserved if and only if

P[A|B] < P*[A] )

The conditional probability?*[A | B] is well-defined sincé”*[B] > P*(w*) > 0.

When the auditor does not know* and P*, but has a second-level knowledge set
K C Qp0b such thatw*, P*) € K, she has to check inequality (7) for all possible pairs
(w, P) in K. Before doing so, she must discard all pgies P) such thato ¢ B. We
obtain the following probabilistic privacy definition:

Definition 3.3. SetA C Q is called K -private given the disclosure of sé C (, for
K C Qpron, When
V(w,P)e K: we B = P[A|B] < P[A]. (8)
As before, we denote this predicate $yfex (A, B).

When the auditor’s knowledge can be represented as a pradustil for some
C C © and some familyll of probability distributions ovef, we shall use the term
“(C, IT)-private” and the notatioSafe ¢ 7 (A, B), which is defined aSafe cg 11 (A, B).
In this case the following proposition can be used:
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12 . A. Evfimievski, R. Fagin and D. Woodruff

PrROPOSITION 3.4. For a consistent pai(C, IT) whereC C Q and I1 is a family of
distributions ovel?, the privacy predicat&afe ¢ ;7(A, B) can be equivalently defined as
follows:

VPelIl: PIBC]>0 = P[AB] < P[A] P[B]. 9)

PrRoOF The following sentences are trivially equivalent:

VPell: P[BC] >0 = ineq
VYPell: (3w e BC: P(w)>0) = ineq
VYPell, VweC: (P(w) >0 & we B) = ineq
V(w,P) e CQII: w € B = ineq,

where ‘ineq” stands for ‘P[AB] < P[A] P[B],” which is equivalent to P[A|B] <
P[A]" as long as the left-hand side of the implication is true. §hwue have (9} (8) for
K=CwlIl. O

In fact, the definition of privacy given by (9) can be furthenplified, for many families
II that occur in practice:

Definition 3.5. For a familyII of distributions ovef?, denote

Safe;(A,B) <% vPeIl: PIAB] < P[A]P[B). (10)

Notice thatSafer; (A, B) is symmetric with respect td and B, which may not be the
case forSafe ¢ ;7 (A, B). Let us state the relationship between these two prediediies
the following definition:

Definition 3.6. We shall call a familyT w-liftable for w € Q whenV P € II such that
P(w) = 0 it satisfies the condition

Ve>0 3P €ll: P(w)>0 & [|P— Pl|o <. (11)

Family IT is calledS-liftable for a setS C Q when I is w-liftable for allw € S. The
norm ||P — P'||e := max,eq |P(w) — P'(w)|.

ProPOSITION 3.7. For every consistent paifC, I7) and for all A, B C Q such that
BC # @ (sincew™* € BC), we have:

Safer;(A,B) = Safec (A, B);
Safec 7(A,B) & II is C-liftable = Safey (A, B). (12)

ProOF Trivially, the definition (10) forSafe ; (A, B) implies the characterization (9)
for Safe ¢ ;7 (A, B). To prove implication (12), assume that (9) holds, Bufe;; (A, B)
does not hold, and arrive at a contradiction. Take sameBC and P € II such that
P[AB] > P[A] P[B], to violate (10). By (9) we must havB[BC|] = 0, so in particular
P(w) = 0. However, sincev € C andII is C-liftable, we can use condition (11) and
pick P’ € II that is close enough t& to still have P'[AB] > P'[A] P'[B], yet already
P'(w) > 0andP’'[BC] > 0, violating (9). O
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3.3 Properties of Privacy

Conservative assumptions. It is easy to see from Definitions 3.1 and 3.3 that
Safex (A, B) and K’ C K imply Safeg (A, B), in both the possibilistic and the proba-
bilistic models. As a special case(f C C, X/ C ¥, andlI’ C II, thenSafe ¢ (A, B)

= Safe ¢ 5/ (A, B), andSafe ¢ ;1 (A, B) = Safe ¢ 1- (A, B). Therefore, the auditor may
assume less than she actually knows, i. e. consider morel&dge/worlds possible, and
still catch all privacy violations, at the expense of reting more queries.

Disclosing less knowledge. In the possibilistic model, for all second-level knowledge
setsK C (¢ that the auditor might have, for all private properti¢sC €2 and for all
setsB, B’ C Q) we have:

Safer (A, B) & Safex(A,B’) = Safex(A,BUDB’). (13)

This immediately follows from (5) once we observe that B U B’ implies one ofv € B
orw € B’. Moreover, if the auditor has excluded frashall pairs(w, S) such thatv ¢ B,
then the conditionSafex (A, B’)" is not necessary in (13} B, B’ C Q

m(K) C B & Safex(A,B) = Safex(A,BUB').

In other words, in the possibilistic model it is always saféren less information has
been disclosed. However, in the probabilistic model, ebenprivacy preservation under
union (13) does not hold. Take, for example,= {1,...,6}, K = {1} ® {P} where
P = uniform distribution,A = {1,2,3,4}, B = {1,2,6} and B’ = {1,3,6}; then
we have:

P[A] = P[A|B] = P[A|B| =2/3 < 3/4= P[A|BUB.
Both Safex (A, B) andSafex (A, B) hold, butSafex (A, B U B’) does not hold.

Probabilities refine possibilities. If P: Q@ — R, is a probability distribution that
represents a user’s knowledge, then its supportigei( P) is the set of all worlds that this
user considers possible. More generally, every secoral-fgobabilistic knowledge set
K C Q.01 can be converted into the possibilistic knowledge set

K' = {(w,supp(P)) | (w,P) € K}.
It is easy to check directly by verifying Definition 3.1 that
VA, BCQ: Safex(A,B) = Safex/(A,B). (14)

Indeed, for every(w, S) in K’ such thatwv € B andS N B C A, take(w,P) € K
such thatS = supp(P). We haveP[A | B] = 1 becaused has all the support oP that
lies inside B, and we haveP[A | B] < P[A] because&afex (A4, B), (w,P) € K, and
w € B (see Definition 3.3). ThereforB[A] = 1 too, implying.S = supp(P) C A.

Equation (14) gives a useful necessary conditionSilie - (A, B). Also, as we shall
see in Section 5, it helps to understafidprivacy better by focusing our attention on the
important aspects of the auditor’'s probabilistic knowledgsumption.

For the simplified privacy predicatéafe ; (A, B) introduced in Definition 3.5, where
IT is a family of probabilities, we can make (14) slightly stgen and write, for
X = supp(Il):

VA,BCQ: Safe;(A,B) = Safeq (A, B) & Safeq s (A, B). (15)
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First, Safe;; (A, B) = Safeq (A, B) by Proposition 3.7, which in turn implies
Safeq (A, B) by (14); and secondiafer; (A, B) < Safe;; (A, B) due to the follow-
ing proposition:

PROPOSITION 3.8. For all A, B C Q and for all probability distributionsP over(,
we have:

P[A] P[B] — P[AB] = P|AB] P[AB] — P|AB] P|AB]
— PJA| P[B] - P[AB). (16)

PrROOF The first equality can be obtained as follows:
P[A]P[B]— P[AB]-1 =
(P[AB] + P[AB)) (P[AB] + P[AB]) — P[AB](P[AB] + P[AB] + P[AB] + P[AB])

= P[AB] P[AB] — P|AB] P|AB].
Equality (16) follows by symmetry. ]

Multiple disclosures. Assume that the user learns knowledge Beffollowed by B,
which is equivalent to the acquisition 8f Bo. When the auditor’s second-level knowledge
setK represents her assumption about the user’s knowledger tamn her knowledge of
the user’s knowledge (see Remark 2.5), she may want to eethat X' remains a valid
assumption after each disclosure. This property is fozadlbelow:

Definition 3.9. Let K be a second-level knowledge set, which may be possibilistic
(K C Qposs) Or probabilistic ¢ C Qp,01). AsetB C Q is calledK -preservingwhen

PossibilisticK. For all(w, S) € K such thatv € B we have(w, SN B) € K;
Probabilistic K. For all (w, P) € K such thaty € B we have(w, P(-| B)) € K.

Suppose that knowledge sés and B, are individually safe to disclose, while protect-
ing the privacy ofA, to an agent whose knowledge satisfies the constraints ddfin&’.
If, after By is disclosed, the updated agent’s knowledge still satifiesonstraints, then
it is safe to disclosé3, too. Thus, it is safe to disclose both sets at once—as long as at
least one of them preserves the constraints:

PrRoPOSITION 3.10. For every second-level knowledge g€t possibilistic or proba-
bilistic, we have:

(1) B; and B, are K-preserving=- Bj B, is K-preserving;

(2) If Safex (A, By) and Safex (A, B2) and if at least one oB3;, B, is K-preserving,
thenSafeK(A, BlBg).

PrRoOOFE (1) trivially holds; just notice that Definition 3.9 checksowledge worlds
(w,S) € K or (w, P) € K only where bothw € B; andw € Bo;

(2) Without loss of generality, assume that is K-preserving. IfK is possibilistic,
we must take an arbitrarfw, S) € K such thatv € B1B; andSB;Bs C A, and show
thatS C A. Indeed, we havéw, SB;) € K becauseB; is K-preserving,SB; C A
by applying K -privacy definition (Def. 3.1) taB2, andS C A by applying K-privacy
definition toB;.
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If K is probabilistic, take an arbitrarf, P) € K such thatv € B;Bs, and denote
Py := P(-| B1). We have(w, P;) € K becauseB, is K-preserving, and

P[ANBiB,]  P[ANB:|B]

P[B.iBs] P[B:|Bi
= P[A|By] < Py[A] = P[A|Bi] < PA],

P[A| B, By]

by applying K -privacy definition (Def. 3.3) first td” andBs, then toP andB;. [

Remark3.11. Proposition 3.10 implies that both the family I6fpreserving sets and
its sub-family of theK -preserving sets safe to disclose while protectingre N-closed.
Without the “K -preserving” constraint, the family of sets that are saf@isolose does not
have to ben-closed (Remark 4.2). See Section 4 and especially Theorbfnfdr a class
of situations where theR -preserving” constraint can be lifted.

3.4 Unrestricted Prior Knowledge

What is the characterization of privacy when the auditor kmowthing? More formally,
which knowledge setsl and B satisfy K -privacy for K = Qs = Q ® P(£2) and for

K = Quop = Q ® PPP(Q), wherePP™P(Q) is the set of all probability distributions
over Q? Also, what is the answer to this question if the auditor laeplete informa-
tion about the actual world*, but knows nothing about the user’'s knowledge, i.e. for
K ={w*} ® P(Q) and forK = {w*} ® PP™P(Q)? Here is a theorem that answers these
guestions:

THEOREM 3.12. For all setsA, B C Q and for allw* € B the following four condi-
tions are equivalent:
(1) Safex (A, B) for K = Qposs;
(2) Safex (A, B) for K = Qpron ;
(3) Safer (A, B) for K = {w*} ®@ PPP(Q);
(4) EitherANB=g,0r AUB=Q.
Also, the following two conditions are equivalent (agaihe B):

(i) Safex (A, B) for K = {w*} @ P(Q);

(i) ANB=g,o0rAUB=Q,0rw*¢ A.

PrROOF First, we assume condition (4), that is, eittbknN B = @ or AU B = (),
and proveSafex (A, B) for all second-level knowledge sets of the fofth= C @ P(Q)
andC ® PPrP(Q), including those wher€ = Q or {w*}. In the possibilistic case, by
Proposition 3.2 it is enough to check implication (6), whish

VSex: (SBC+#@ & SBCA) = SCA. (17)

If AB = g@,thenSB C A = SB = @, making the left-hand side of (17) always false and
the entire implication true. Il U B = Q, thenS — B C A, henceSB C A alone implies

S C Ain (17). In the probabilistic case, for evely € PP (), the privacy inequality
P[AB] < P[A] P[B] trivially holds whenAB = &, and holds wheml U B =  due to
Proposition 3.8:

P[A|P[B] — P[AB] = P[A|P|B] — P[AB] = P[A]P|B] > 0.
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To verify that (ii) = (i), observe that i’ = {w*} andw* ¢ A in (17), thenSBC # @
impliesSB ¢ A, and the left-hand side of (17) is again false, making thdigafon true.

Now assume condition (4) to be false, thatdd? # @ andA U B # (). Pickw;, € AB
andw, € AB; if w* € A, choosew; = w*. Consider the following possibilistic and
probabilistic knowledge worlds:

o If C'=1, consider the world§w;,S) and (wy,P) where S = {w;,w2} and
P(wy) = P(ws) = 1/2;

e If C' = {w*}, consider the worldéw*, S) and (w*, P) whereS = {w*,w;,w2} and
P is uniform with supportS. Note thato* € A & |S| = 2.

WhenC = {w*}, in the possibilistic case we also assume thiaie A (i. e. (ii) is false).
Let us show that, for these worlds, Definitions 3.1 and 3.Jath violated; that is:

SBCA & S¢ A, P[A|B] > PlAl

The possibilistic part is obvious, sinéB = {w; } andS = {w1,w-}. For the probabilistic
part, if |S| = 2 thenP[4] = 1/2 andP[A|B] = 1, if |S| = 3 andw* ¢ A then
P(w;) = P(wz) = P(w*) = 1/3 and we have:

P[A|B] = P[AB]/P[B] = P(w1)/(P(w)+ Pw"))
= 1/2 > 1/3 = P(w) = PJA]. O

Remark3.13. Inthe auditing practice, the interesting case‘i€ A N B, thatis, when
the protected and the disclosed properties are both trubisicase, unconditional privacy
can be tested simply by checking whethet) B = Q, that is, whether 4 or B” is al-
ways true.

4. POSSIBILISTIC CASE

In this section, we shall focus exclusively on the posshdi case; thus, the auditor’s
assumption about the user’s knowledge shall be represégtéd C Q.. While the
probabilistic case is perhaps more interesting from theapyi perspective, the possibilistic
case is simpler and provides intuition that sometimes etén the probabilistic case. In
fact, the possibilistic case is simple enough that use&tkstents can be proven in general,
for arbitrary auditor's second-level knowledge sBts_ s, Of for a wide class of these
sets.

Proposition 4.1 below gives a necessary and sufficient dondior K -preserving sets
B to satisfy the privacy predicatéafex (A, B), for a given and fixed sed. It associates
every worldw € A with a “safety margin"g(w) C Q — A which depends only ow, A
and K. Given B, the condition verifies whether evety € A occurs inB together with
its “safety margin,” or does not occur i at all. The “safety margin” ensures that this
will not reveal A to the agent, no matter what prior knowledgje 7 (K) the agent might
have. (Recall that by; we denote the projection operation.)

PropPosITION 4.1. Let K C (2,4 be an arbitrary second-level knowledge set, and
assumed C (). There exists a functiofi: A — P (2 — A) such thatvB C Q

(Vwe AB: B(w) C B) = Safex(A,B), (18)
and if B is K-preserving, then the converse holds:
Safer (4,B) = (Vw€ AB: B(w) C B). (19)
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PROOF. For eachw € A, define(w) to be theA-portion of the most informative
K-preserving and{-privacy preserving disclosui®,(w) that is true atv:

w € B', Safex (A, B')

B(w) = By(w)— A, where By(w) = ) {B/ B’ is K-preserving

} (20)

As an intersection of(-preserving set®’ that satisfySafe (A, B’), by Proposition 3.10
the setBy(w) itself is K-preserving and satisfiéafe (A, Bo(w)).

To prove (18), let us assunivev € AB: f(w) C B and verifySafex (A, B). Following
Definition 3.1, we take somgv, S) € K such thatv € B andS N B C A, and show that
S C A. Sincew € SB C A, we havew € AB, implying 5(w) C B by our assumption.
We substituted(w) := By(w) — A and getBy(w) — A C B — A, which in turn implies

SNBy(w)—A C SNB-A = g,

that is,S N By(w) C A. By (20) we also havey € By(w). By the privacy definition
for By(w) we obtainS C A.

To prove (19), assume that is K-preserving and satisfiéife (A, B); take an arbi-
traryw € AB. ThenB is one of the sets intersected to defiBgin (20), which gives us
Blw)SBySB. O

Remark4.2. In the converse implication (19) of Proposition 4.1, semnot drop the
condition of B being K -preserving. Indeed, for all fixed andj, the propertyQ(B)
defined asYw € AB: 3(w) C B”is preserved under intersectio@(B;) & Q(B2) =
Q(B1 N By). ButSafex (A, B), in general, is not preserved under intersection. For a
simple example, le© = {1,2,3}, K = Q ® {Q}, andA = {3}. Then bothB; = {1, 3}
and B, = {2, 3} protect theK -privacy of A, yet B; N By = {3} does not. However, see
Theorem 4.14 for more on this subject.

The characterization in Proposition 4.1 could be quiteuldef auditing a lot of prop-
erties By, Bs, ..., By disclosed over a period of time, using the same audit query
Given A, the auditor would compute the mappifigonce, and use it to test eveB;. This
comment applies to Section 4.1 as well.

4.1 Intersection-Closed Knowledge

Motivation. When two or more possibilistic agents collude, i. e. join & attacking
protected information, their knowledge sets intersed@y fbintly consider a world possible
if and only if none of them has ruled it out. Therefore, if thel#or wants to account for
potential collusions, she must consider knowledge wardS; N .Sy) possible whenever
she considers botfw, S;) and(w, S3) possible. This motivates the following definition:

Definition4.3. A second-level knowledge s&f C . is intersection-closedor
N-closedfor short, wherV (w, S7) € K andV (w, S3) € K we have(w, S;1 N S3) € K.
Note that we intersect the user's knowledge getsS;) and(w, Sz) only when they are
paired with the same world.

One way to obtain a second-level knowledge BetC Q. that isN-closed is by
taking ann-closed familyY of subsets of (such thatv S;, 5, € ¥: S; NS, € X) and
computing the produck’ = C' ® X' with some knowledge set.

Intervals. When the auditor’'s knowledge is-closed, the notion of an “interval” between
two worlds becomes central in characterizing the priva@tian:
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Definition4.4. LetK C Q. ben-closed, and leb;, w, € € be two worlds such that
w € m(K), wy €| J{S](w1,8) €K} (21)

The K-interval from w; to w9, denoted bylk (w1, w2), is the smallest sef such that
(w1,95) € K andws € S, or equivalently:

Ig(wi,wsy) = m {S| (w1,8) € K, wq € S}.

If the worldsw, ,ws do not satisfy conditions (21), we shall say that intedialw , w»)
does not exist.

Intuitively, Ik (w1,w2) represents the “most knowledgeable” user who has not ruled
out wy when the actual world is;;. The following proposition shows that we need to
know only the intervals in order to check whether or fefex (A, B) holds:

PrROPOSITION 4.5. For an N-closed set’X’ C Qs and for all A, B C 2, we have
Safex (A, B) if and only if

VIK(wl,wg): w1 € AB & w2§§A = IK(wl,oJQ) n (B—A) %+ O. (22)

PrROOF (if) Assume (22) and let us proBafe (A, B). By Definition 3.1, we want to
show that

Vw,S)eK: (weB & SNBCA) = SCA. (23)

Suppose that (23) is violated fap;, .51) € K; we havew; € AB and3ws € S; — A. In-
terval I (w1, w2) C 57 is well-defined and satisfies the left-hand side of implmaii22),
hence it satisfies the right-hand side too:

Ik (wy,wa) N (B —A) # &, whichimplies SN (B —A) # @.

But then (w, S1) does not violate (23) because the left-hand side of the @afitin
(namely,S; N B C A) is false. Contradiction.

(only if) AssumeSafe (A, B), i.e. (23), and let us prove (22). Take an arbitrary interval
S = Ig(wi,ws) such thatw; € AB andws ¢ A, and consider a knowledge world
(w1,S) € K. Sincew, ¢ A, we haveS ¢ A; to keep (23) true, we must also have
SN B¢ A. This is the same as the right hand side of (22)1

Remark4.6. Asimplied by Proposition 4.5, there is no need to stoeeentiren-closed
second-level knowledge s&t (which could requiré(| - 22! bits of data) in order to test
the possibilistic privacy. It is sufficient to store one $gf{w;,w2) C Q, or the fact of its
non-existence, for each pdiv;,ws) € Q x Q, i. e. at most|? bits of data.

Minimal intervals. In fact, in Proposition 4.5 we do not even have to check adirivdls;
it is enough to consider just “minimal” intervals defined adws:

Definition4.7. For anN-closed second-level knowledge g€tC ., for a world
wy € Qand for a sefX’ C Q not containingwy, an intervallx (wy,ws) is called aminimal
K-intervalfromw; to X whenw, € X and

Vwy € X Nlg(wi,wa): Ig(wi,wh) = I(wr,ws).
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Fig. 1. An example of am-closedK C Q055 Where the worlds are the pixels inside thex 7 rectangle (such
aswi, wp andw}), and the permitted user’s knowledge sets are the integeresibingles (rectangles composed
of whole squares). Set is the complement of the privacy-sensitive knowledge set.Eeenple 4.9 for details.

PrROPOSITION 4.8. For an N-closed setk C Q. and for VA, B C 2, we have
Safer (A, B) if and only if the formula (22) holds over all intervalg (w1, ws) that are
minimal from a worldw; € AB to the sef) — A.

PROOF We wantto prove that, if (22) holds for all minimal intersathen (22) holds for
all intervals. It is sufficient to take an arbitrary interval (w1, wo) that satisfiess; € AB
andw- € A, and show that it contains a minimal interval framto A. To find the minimal
interval, start by settingd = w», and continue to iteratively select ™ givenwy so that

witt € ANTg(wi,wd), Ix(w,ws™) ¢ Ix(w,wd)

until it is no longer possible, i. e. untlly (w1, w?) is minimal. O

Exampled.9. LetQ) be an area of the plane that is bounded by a rectangle and dis-
cretized into pixels to ensure finiteness (the area withénithx 7 rectangle in Figure 1).
Let the worlds be the pixels. Consider an auditor who doekmow the actual database
and who assumes that the user’s prior knowledgeSset X' is an integer rectangle, i. e.
a rectangle whose four corners have integer coordinateseéponding to the vertical and
horizontal lines in the picture). The family of integer rectangles, and hence the auditor’s
second-level knowledge sét = Q2 ® X, aren-closed.

Givenwy,wy € Q, the intervall x (w1, w2) is the smallest integer rectangle that contains
bothw; andws. Forw; andws in Fig. 1, the intervall k (w1, w2) is the light-grey rectangle
from point (1, 1) to point (4, 4); forw; andw}, the intervallx (w1,w}) is the rectangle
from point(1, 1) to point(9, 3).

The intervall x (w1, w2) shown on the picture is one of the three minimal intervalsfro
w to setA (the area bounded by the ellipse). The other two minimahiate are the rect-
angles(1,1)—(5,3) and(1,1)—(6,2). Every knowledge se$ that the auditor considers
possible in the case of* = w1, i. €. everyS such thafw;, .S) € K, must contain at least
one of these three minimal intervals, unlessC A. For example,S = Ik (wq,w5) in
Fig. 1 contains two minimal intervald, 1)—(5, 3) and(1, 1)—(6, 2). Thus, when looking
for privacy violations, rather than going through all ptsipairs(w;, S) € K such that
w1 € B & S ¢ Aand checking ifSN B C A, the auditor has to go only through those
(w1, S) that define minimal intervals td, a case of using Proposition 4.8.
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Interval-induced partitions of A. Let us have a closer look at the minim&l-inter-
vals from a given worldv; € A to the setd = Q — A. For everyw, € A, the interval
I (w1, ws), ifit exists, is either minimal or not; if it is not minimalhenw, cannot belong
to any minimal interval fromw; to A. Now, take some paiws,w) € A such that both
I (w1, we) andIk (wy,wh) are minimal. There are two possible situations:
(1) IK(wl,LUQ) = IK(wl,w’Q), or
(2) Ix(wi,wa) N Ig(wr,wh) N A= @.
Indeed, if 3wy € Ix(wi,ws) N Ix(wi,w)) N A, then by Definition 4.7 the interval
Ik (w1, wY) equals both of the minimal intervals, making them equal. \&keetthus shown
the following

PROPOSITION 4.10. Given ann-closed set’ C .., a setA C 2, and a world
w; € A, the minimalK-intervals fromw, to A partition setA into disjoint equivalence
classes

A=D UDy,U...UD,, UD

where two worldsv,, wh, € A belong to the same clad3; when they both belong to the
same minimal interval, or (clas®’) when they both do not belong to any minimal interval.

Definition4.11. In the assumptions and in the notation of Propositi@f,4enote
AK(Avwl) = {Dla D27 s 7D7n}-

In other words A (A, w,) is the disjoint collection of all sets formed by intersegtiA
with the minimal intervals fronw; to A.

COROLLARY 4.12. Given ann-closed set’ C €., for all A, B C 2 we have
Safer (A, B) if and only if

Vw, € AB, VD; € AK(A,wl) : BN D; 7é . (24)

PROOF. By Proposition 4.83afex (A, B) holds if and only if forv w; € AB and for all
intervals/k (w1, ws) that are minimal fronw; to A we havely (w1, ws) N (B — A) # @,
or equivalently,

Vwi € AB, Vg (w1, wz) minimal fromw; to A: B N (Igx(wi,w2) NA) # 2.

By Proposition 4.10, for every minimal (w;,ws) from w; to A, the intersection
I (wi,ws) N A belongs toAg (A, w;). Moreover, Ag (A, w;) contains all such inter-
sections for the givel andw,, and contains nothing else. Replacing the quantifier over
I (w1, ws) with the quantifier oveD; € Ax (A, w;) gives us (24). O

As Figure 1 illustrates for Example 4.9, the three minimakiwals fromw; to A
formed by integer rectangled, 1)—(4,4), (1,1)—(5,3) and (1,1)—(6,2) are disjoint
inside A. Their intersections wittd, shown hatched in Figure 1, constitute the collec-
tion Ax(A,w). A disclosed seB is private, assuming* = w1, if and only if B inter-
sects each of these three intervals inside

The case of all-singletonAk’s.  If set K satisfies the property defined n&xprivacy
testing is simplified still further:

4This definition slightly differs from the one given in the derence version: [Evfimievski et al. 2008].
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Definition4.13. AnN-closed sef{ C (¢ hastight intervalswhen for everyK -inter-
val I (w1, ws) such thatv; # ws we have

V(UIQ S IK(w17w2> — {whwg} : IK(wl,wé) g IK(wl,wg).
Informally, an interval fromwu; to ws is “tight” when for every pointv} in its “interior” the
interval fromw; to w} is strictly smaller (and hence no longer contain3.

When K has tight intervals, every minimal intgrva}((wl,wg) fromw, € Ato A
hasexactly oneof its elements in4, namelyws: AN I (wy,wa) = {wz}. Indeed, if
AN Ig(wi,ws) contains another point, # wo, thenw; ¢ {wq,w)} sincew, € A, and
by Definition 4.13 we gef x (w1,w}) & Ik (wi,ws), that is, intervalIK(wl,c@) is not
minimal. Thus, forK that has tight intervals, all equivalence clasfgsn Ak (A, w,) are

singletons, and Corollary 4.12 gives us the following chazation theorem (cf. Propo-
sition 4.1):

THEOREM 4.14. Let K C . be ann-closed second-level knowledge set. The
following three conditions are equivalent:
(1) K has tight intervals;
2 VACQ 3[8: A—P(Q2—A)suchthaty B C Q:

Safex(A,B) < (Vw€ AB: B(w) C B);

(3) VA,B,B' C Q: Safex (A, B) & Safex (A, B') = Safex (A, BN B'),i.e. the pri-
vacy of individual disclosures always implies their joinivacy.

PROOF (1 = 2): Let K have tight intervals, and assureC (2. Define the function
B:A— P(Q—A) as given by

Yw € A: B(wy) := UAK(/Lwl)

As we explained above, ald; inthe A (A, w;) of Corollary 4.12 are singletons, therefore
B N D; # @isequivalenttaD; C B, and in (24)

(VDi € Ax(A,w): BN D; # @) & |JAx(Aw) C B

(2 = 3): If property Yw € AB : ((w) C B”is satisfied forB and B’, then it is
also satisfied fo3 N B’. Indeed, take an arbitraty € AN BN B’, thenw € AB implies
B(w) € B andw € AB’ implies3(w) C B’; therefore,3(w) C BN B’. By ltem 2, the
property is equivalent tBafex (A, B).

(3 = 1): We shall prove{1 = —3) by assuming thak{ does not satisfy the tight
intervals property (Def. 4.13) and constructing sétB, B’ C ( that violate ltem 3. Let
Ik (w1, ws) be a “non-tight” interval; that isy;, # w»s and

Jwh € Ix(wi,ws) — {wi,wa}: Ik(wi,wy) = Ik (wi,ws).
Notice that the three worlds;, w2, andw}, are all different. Choose the sets as follows:
A=Q—{wy,wh}, B={wy,ws}, andB’ = {w;,w}}. Then we have:
e AB=AB' = ABB' = {w};
o [:=Ig(wi,ws) = Ix(wi,w)) is the only minimal interval fronw; to {ws, wh} = A;
o IN(B—-A)={w},IN(B'—A)={wb},andI N (BB - A) = @.
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By Proposition 4.8, we havéafex (A, B), Safex (A4, B'), but notSafex (A, BB'). O

In practice, Condition 3 in Theorem 4.14 is very desiralflallows the auditor to verify
the safety of a sequende, ..., B, of disclosed queries by testing each query individu-
ally, even though the auditor’s prior assumptidiisabout the user’s knowledge no longer
hold after some or all of the disclosures. For example, ifdlselosure of subsequence
By, ..., B,_1 protects the privacy of a certain database propdrthut the disclosure of
the entire sequence violates it, then Condition 3Koimplies — Safex (A, By); the same
is true for any other subsequence of the disclosed queries.

Several important examples of second-level knowledgetatdave tight intervals are
discussed in Section 5.1. See Remark 4.2 for a countereramiydre am-closedk does
not have tight intervals.

Remark4.15. When the auditor knows that the actual database isspigci*, her
second-level knowledge sét contains only knowledge worlds of the forfw*, S). Then
all collectionsA g (A4, w;) and sets3(w;) are empty for all; # w* because there exist
no intervals/k (w1,w2), and we have to check only the casewgf= w* in the above
privacy tests.

5. MODULARITY ASSUMPTIONS FOR PROBABILISTIC KNOWLEDGE

In the previous section we clarified some general propedigsossibilistic knowledge;
now we turn to the more complex probabilistic case. Rathen 8tudying arbitrary prob-
abilistic knowledge families, here we shall focus on a feecsiic, yet important, families
of distributions. We shall also see some concrete examplasssibilistic knowledge fam-
ilies induced by the probabilistic ones. Later, in Sectipm6 present more sophisticated
approaches that extend beyond these families.

From now on, we assume th@t= {0, 1}" for some fixedn. Letw; A wa (w1 V wo,
w1 @ wo) be the bit-wise “AND” (“OR”, “XOR"), and define the partialrderw; < ws to
meanVi=1...n:wifi]=1 = weli] =1"

Definition5.1. A probability distribution P over Q is called log-supermodular
(log-submodulay® when the following holds:

Vwi,we € Q: Plwy) P(wz) < (2) Plwi Aws) P(wy V wa)

The family of all log-supermodular distributions shall kendted by/7,, the family of all
log-submodular distributions bi/,; .

A distribution P is called aproduct distributionif it makes every coordinate indepen-
dent. Every product distribution corresponds to a ve@tor. . ., p,,) of Bernoulli proba-
bilities, eachp; € [0, 1], such that

Vwe {01} Pw) = [T, p (1 —po)'eld (25)
The family of all product distributions shall be denoted/5§.

PROPOSITION 5.2. We havell? = II; N II} . Equivalently,P is a product distribu-
tion if and only if

Vwi,wy € Q: P(wl)P(wg) = P(wl /\wQ)P(wl \/WQ). (26)

5The “log-" means that supermodularity is multiplicative, ®atfthan additive. The subscripte® in T, , IS
etc. means “modular.”
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PrROOF This is a minor variation of a statement proven in [Bez 1983]; we include
the proof below for the sake of completeness.

For everyi = 1...n the bit pairw, [i],ws[¢] contains the same number of 0's and 1's
as the bit paif(w; Aws)[i], (w1 Vws)[i]. Therefore, ifP is a product distribution, then
Vi =1...nthe termgp; andl — p; appear the same number of times on the left-hand side
and on the right-hand side of (26), making the sides equal.

Conversely, (26) implieSw,w’ € Q,Vi=1...n:

P(W|w[z’}ho) : P(w/‘w'[i]hl) = P(w|w[7‘,]<—1) : P(w/|w’[i]<—0)v (27)
where ‘W[i] « b” means “set the-th bit in w to b.” As a probability function,P” must

sum up to 1, henc® must be non-zero at someé € Q. Take an arbitrary = 1...n and
assume that'[;] = 0; then we can rewrite (27) as

VweQ: P(u}|wmgl) = C; - P(w|w[i]&0), C; = P(W/|w’[i]91) /P(W/‘w’[i]&o)-
Setp;, = ¢;/(1 + ¢;). If instead we have/[i] = 1, then rewrite (27) as
Vwe Q: Pwlypeo) = ¢ Plop—1), ¢ = PW']wrjieo) / P |wrfi—1);

and setp; = 1/(1 + ¢}). By induction on the Hamming distance offrom ', we can
check that everyP(w) is proportional to the product distribution (25). TherefoP is a
product distribution. (]

Supermodular and submodular functions occur often in nnagties and have been ex-
tensively studied [Fujishige 2005; Lasz 1983]. Our goal in considering these assump-
tions was to substantially relax bit-wise independencdendtaying away from the uncon-
strained case. Besides that, the log-supermodular asgimias implied by Theorem 5.10
in Section 5.2) describes situations where no negativelations are permitted across in-
dividual database records—something we might expect froowledge about, say, HIV
incidence among humans. The following example providesa rapoint:

Example5.3. Let us consider a probability distributiéh: Q@ — R, that has the form

P(w) C’exp(Z a; w Jrz b; ; w(i] '), whereVi,j: b;; > 0. (28)
1<i<j<n

The log-linear expression in (28) naturally arises wlieis the maximum entropy distri-
bution with equality constraints on single-bit expectasi@nd two-bit covariances [Cover
and Thomas 2006]. Itis used extensively in machine learfiarggxample in the definition
of the Boltzmann machine [Ackley et al. 1985], but without cequirement that all; ; be
nonnegative.

It is easy to see that a distribution of the form (28) is alwagssupermodular. Indeed,
since Cexp(x) - Cexp(y) = C? exp(z + y), for all w; andws in 2 we have:

P(w1) P(wg) = C? exp(Z al(wl i] + wali] Z b,] w1 [i] wy }+w2[i]w2[j])>

i=1 1<i<j<n

P(wi Aws) P(wy Vws) = C2exp (Z ai ((wl/\wg)[i] + (wl\/wg)[i]) +

> b ( w1 Awa)[i] (w1 Aw2)[j] + (w1 Vw2)i] (w1 \/wz)[JD),

1<i<jg<n
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where, because; andw, are fromQ = {0, 1}", for all i and; we always have

w1 [Z] + wg[i] = (wl /\UJQ)[’i] + (w1 \/wz)[i]
wifiwilf] + woli]welf] < (w1 Aws)[i] (w1 Aw2)[j] + (w1 Vw2)[i] (w1 Vws)[],
which giVES USP(wl) P(w2) < P(w1 /\w2) P(w1 \/wg), since allbi,j > 0.

5.1 Modularity for Sets
Let us define three families of sets composed of the suppbe8 distributions iniI,
I}, and19:

Su = supp(Ily), X = supp(Il}), Zn = supp(Ily);

here, as beforesupp(II) denotes{supp(P)|P € II}. These families of sets have a
simple characterization, given in the following definitiand in Propositions 5.6 and 5.7,
which we now derive.

Definition5.4. A setS C Q is anup-set(a down-set whenVw; € S, Vwy > w;
(Vws < wy) we havews € S. A non-empty intersection of an up-set and a down-set shall
be called azonvex setA nonempty sef C 2 is asublatticewhen

Vwi,ws €S: wiAwr €S andw; Vwy € 8. (29)
A nonempty sef5 C 2 is aproduct setvhen
S =5 x8x...x8, S;={0}or{1}or{0,1}.

Remark5.5. An intersection of up-sets is an up-set, of down-sets down-set; set
S C Qis an up-set if and only if is a down-set. A non-empty intersection of convex sets
is a convex set, of sublattices is a sublattice, of produstisea product set.

PROPOSITION 5.6. (a) A nonempty sef C € is convex if and only if
Vwi,ws €8, VweQ: wi <w<wy = wes. (30)

(b) A nonempty seb C () is a sublattice if and only if the property)' € S” can be
expressed as a conjunction of two-bit implicatibosthe form “w[i] — w[j]” and one-bit
lookups of the form &[i] = 0" or * w[i] = 1".

PROOFE (a) Anintersection of an up-sétand a down-seb must satisfy (30) because
wy € Uimpliesw € U andws € D impliesw € D. Conversely, every set that satisfies (30)
can be represented as such an intersecfionD as follows:

Uz{weQ‘ElwleS:wléw}, D:{w€Q|3w2€S:w<w2}.

(b) For the “if” direction, it is easy to see that sefs € Q | w[i] — w[j]} and
{w € Q| w[i] = b} are sublattices, for aflandj; a conjunction of such implications and
lookups gives an intersection of sublattices, which is alsublattice (if nonempty). A
straightforward proof for the “only if” direction by induicn onn is a bit tedious, so we
instead refer to Table 2 of [Creignou et al. 2008]. The setllcdwblattices over 0, 1}"
is a special case afo-clone the notion studied in that paper. Given a $ebf Boolean

6 An implication “w[i] — w[j]” is the same as formula*w(i] V w[j]”.
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functions, the co-clonénv(F) is the collection of all subsetS C {0,1}" (for somen)
that satisfy

VfeF, m:=arity(f), Vwi,..,wm€S: [flwi,...wn)€S,
where

f(wi,oywp) == we {0,1}" suchthatVi=1,...,n: w[i] = f(wi[i, ..., wmli]).

Informally, S € Inv(F) meansS is “preserved” under all Boolean operationsArapplied
bit-wise to vectors inS. In particular [Bdhler et al. 2003], co-clon&\; = Inv({A,V})
gives the set of all sublattices, as defined by (29). Table[Ziaignou et al. 2008] gives
a “plain basis” for every Boolean co-clone, that is, a set obBan relations whose con-
junctions generate precisely all subsets in the co-clon@ut special case, it shows that
IM, is generated by two-bit implications and single-bit loogup]

PrROPOSITION 5.7. The following equalities hold:
e X = {all convex sets ove® };
e X1 = {all sublattices ovef2};
e XY = {all product setsovef)} = X nX.

PrROOF By Proposition 5.6, a s&t # @ is convexifand only iV u,v € St u < w < v
= w € 5. We now show that this is equivalent to

le,wQGQ: {wl/\wg,wl\/wg}gs = {wl,wg}QS (31)

Indeed, for a conve¥ the above implication holds becauseA ws < w; < wy Vws for
i = 1,2. Now let us assume (31), take some € S andu < w < v, and showw € S.
Definew’ = w®ud v, i. e. we havey'[i] = wli] iff u[i] = v[i]. Itis not hard to verify that
u=wAw andv = w VW', so by (831)u,v € S impliesw,w’ € S.

Given a nonempty sef, define a probability distributio®s to be identical (uniform)
on allw € S and zero everywhere else. For a conggxlistribution Ps is log-submodular
dueto (31)Vwi,wsy € Q,

P(wl /\wg)P(wl \/WQ) 7é 0 = P(wl)P(wQ) = 1/‘S|2 :P(wl /\wg)P(wl \/LUQ).

SinceS = supp(Ps), we obtainS € X_ . Conversely, ifP is log-submodular, then (31)
must hold forS = supp(P) in order to satisfy Def. 5.1, proving the convexitysofpp(P).

In the same way, given a sublatti§ethe distributionPs is log-supermodular due to (29)
in Def. 5.4, and conversely, P € I1} the setsupp(P) has to be a sublattice in order to
satisfy Def. 5.1. Lastly, for a product s&t the distributionPgs is a product distribution
with vector (p1, ..., p,) where allp; € {0,1,1/2}, and conversely, supports of product
distributions must be product sets. Equally)y = X+ n X for setsS is implied by
I8 = I} N I for distributionsPs. [

FamiliesX_, XF and X can also be viewed as possibilistic knowledge assumptions.
For example, the family,, of convex sets describes a user’s possibilistic knowletigeia
the actual database* learned by issuing a sequence of monotone Boolean qlenies
receiving “yes” or “no” answers. Family’? of product sets describes the possibilistic

“A monotone Boolean query is a mappigy: Q — {“yes”,“no”} such that’ wy,ws € Q if Q(w1) = “yes”
andw; <w2 thenQ(w2) = “yes”.
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knowledge learned by asking, for a sequence of records hwhet not each given record
belongs to the database. All three families arelosed, barring the empty intersections
(see Remark 5.5). Therefore, for everyGeg @ the second-level knowledge séts X,

C ® ¥} andC ® X0 are intersection closed, and Section 4.1 applies. Let upatsfor
them the intervals introduced in Def. 4.4:

PROPOSITION 5.8. Assumingv; € C, we have:

{w|w; Sw < wa}, Ifwg < wo,
Iogs-(wi,w2) = ({wlws <w<wi}, ifw <wi,

{wi, wo}, if w1 L wy andwy # wo;
Iogst(wi,w2) = {wi, wa, w1 Aws, w1 Vws}; (32)
Iogzo (w1, w2) = {w]wAw, < w < w1 Vws}.

All these second-level knowledge sets satisfy the “tigtetrials” property (see Defini-
tion 4.13), and therefore the items of Theorem 4.14 appliiemt

PROOF First, let us get convinced that the sets on the right-hatedaf the above equal-
ities (32) belong to their respective familigx,, X and X2, Indeed, for all,’ < w” the
set{w|w < w < w"} is convex as an intersection of an up-set and a down-settand i
a sublattice too, because operationsnd v respect a common lower or upper bound;
hence, it is a product set (Proposition 5.7). A $et, w;} of two (or any number
of) incomparable worlds is convex because it satisfies th@idgation in (30), while set
{w1, wa, w1 Aws, w1 Vws} isthe sublattice generated by andws.

Second, let us show that the sets on the right-hand side dfaf@2subsets of all sets
that containw; andw, from their respective familiet,;, X and £7; this will prove
that these sets satisfy Definition 4.4. If a convex set costaj andws wherew; < ws
or wy < wi, then by (30) the set contains everything betwegrandw. If a sublattice
containsw; andws, then by definition it containg; Aws andw; V w,. If a product set
containsw; andws, then as a sublattice it contains A ws andw; V ws, and as a convex
set it contains everything in between. This proves thatitjig+hand sides are indeed the
intervals betweew; andws.

Finally, let us show that these intervals are “tight” by f@rig Definition 4.13. We
consider each family in turn:

K=C®2X,. If w; andw, are comparable, say; < w,, and if we pick some
world ), ¢ {wy,wa} from I (wy,ws) = {w|w1 < w < wa} and construc i (wy,wh) =
{w]w1 < w < Wwh}, the new interval will not contai,. If w; andw, are incomparable,
the original interval iSw;, ws } and there is nothing to pick as,.

K =C® Y. If w; andw, are incomparable, the original interval contains fourediff
ent worlds, and picking, say) = w; A ws reduces the interval to two worlds. df; and
wo are comparable, we start out with a two-world interval, soéhs nothing to pick as.

K = C® X0. The original intervall x (w1, ws) = {w|wi Aws < w < w1 Vwsy} can
be equivalently written as
Ik(wi,w2) = {w|Vi=1...n: wi]=wsli] = wli]=w[i]=wsli]}.
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If we pick somew), # w9 from this interval, the set of bit indice§ | w [¢] = w}[i]} will
be a strict superset dfi | w; [i] = w2 [i]}, and thereforevs will not make it into the new
interval I e (wq,wh). O

5.2 Privacy for Log-Supermodular Distributions

Let us come back to the probabilistic knowledge, specifictdl the three families of
distributions introduced by Definition 5.177;% (log-supermodular distributions)/.
(log-submodular distributions), anfl (product distributions). We shall be interested
in necessary criteria and in sufficient criteria for testimiyacy over these families. From
here onwards, the probabilistic privacy will be understavothe sense of Definition 3.5.

One way to produce a necessary criterion for probabiligii@apy is by converting the
family of probabilities into a possibilistic family of supps of these probabilities, as we
discussed in Section 3.3. We can then consider the privatjaethis possibilistic family,
and use the implication (15), repeated next:

Safer;(A,B) = Safeqgs(A,B) & Safeqgx(A, B), (33)

whereX = supp(/I). Let us instantiate this criterion for the family, of log-supermo-
dular distributions:

PrROPOSITION 5.9 H,j SAFETY. NECESSARY CRITERION
Forall A,B C Q = {0,1}" such thatSafeH;(A,B), every pair of worldsv; € AB
andw, € AB satisfies one of the following two conditions:

o wiAwy € A—B and w; Vws € B—A;
e wiAwyg € B—A and w1 Vwy € A— B.

PROOF. By definition and by Proposition 5.7, we hauepp (11,7 ) = 2., the family of
all sublattices. In order to apply (33), we need a test forpibesibilistic privacy predicate
Safex (A, B), whereK = Q ® Y. SinceK is N-closed, let us use the interval-based test
given by Proposition 4.5Safe (A, B) if and only if

Vwi € AB, Yws %A IQ®E::(LU1,UJ2) n (B—A) %+ O,

where we can restrict, to setAB, since forw, € B — A the formula is vacuously true.
From Proposition 5.8 we know that

IQ®E$(w1,w2) = {wh wa, w1 Aws, wy \/wg};
therefore, we hav&afex (A, B) if and only if
Vw, € AB, Vwy € AB: {wl Awa, w1 \/wg} N(B-A) # @.
Analogously, we havéSafe (A, B) if and only if
Yw, € AB, Ywy € AB: {wl Awa, w1 \/cug} N(A-B) # @.
Substituting these tests into (33) fAr = 11} and Y = X completes the proof. ]

It turns out that one can prove a sufficient criterion féf -safety that has a form very
similar to Proposition 5.9, although not quite the same. Jificient criterion relies on
the following well-known theorem introduced in [AhlswededaDaykin 1978]:
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THEOREM 5.10 FOUR FUNCTIONS THEOREM. Let L be a finite distributive lattice
and leta, 3,v,6 : L — R,. For all subsetsA, B C L denotef[A] = > ., f(a),
AVB ={aVblae A;be B},andAAB = {aAb|la € A, b € B}. Then the
inequality

ofA] - B[B] < A[AV B - §[AN B]

holds for all subsetsl, B C L if and only if it holds for one-element subsets, i. e. iff
aa) - B(b) < y(aVvb)-d(and)
for all elementsi, b € L.
PrROOF See for example [Bolldds 1986]§19. O

PROPOSITION 5.11 [T/ SAFETY: SUFFICIENT CRITERION
Forall A,B C Q = {0,1}", either one of the two conditions below is sufficient to
establishSafe,;+ (4, B) :
e ABANAB C A—-B and AB VvV AB
e ABAAB C B—A and AB V AB

B—A;
A—B.

N 1N

PROOF. Let P € I}, set the four functions as = 3 = v = § = P, and set the dis-
tributive latticeL = Q = {0,1}"™. The log-supermodularity definition and Theorem 5.10
imply v A, B C(Q

P[AB] - P|[AB] < P[AB v AB]-P|AB A AB]
< P[A-B]- P[B— 4],
where the last£” is implied by either of the two conditions assumed in ourgarsition.
It remains to recall that by Proposition 3.8

P[A] P[B] — P[AB] = P[A-B]-P[B—A] — P[AB]- P|AB],
and the definition ofafer; (A, B) given by (10). O

COROLLARY 5.12.If A is an up-set andB is a down-set (or vice versa), then
Safe;;+ (A, B).

PROOF. Let us show that, if4 and B are both up-sets, theav B = AB = A— B.
Indeed,Yw € AV B we havew = a \V b’ wherea € A andl’ € B, implyinga < w € A
andb’ < w € B; on the other handyw € AN B we havew = wVw € AV B.
Analogously, sincel and B are down-sets, alsB A A = B — A. We have:

ABCA & ABCB = ABVAB C AVB = A-B;
ABCB & ABCA = ABAAB C BAA = B-—A.

The rest follows from Proposition 5.11. If it B that is the up-set, and is the down-set,
just permuted and B everywhere in the proof.[]

8A lattice L is a partially ordered set where every pair of elementsc L has the least upper bound/ b and
the greatest lower boundA b. A lattice isdistributivewhenV a,b,c € L: aA (bVec) = (aAb)V (aAc).
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Remark5.13. Thus, if the user’s prior knowledge is assumed to b&.n a “no” an-
swer to a monotone Boolean query always preserves the profaa “yes” answer to
another monotone Boolean query. Roughly speaking, it is ©#igclose a negative fact
while protecting a positive fact. This observation is esaéchelpful whenA and B are
given by query language expressions, whose monotoniciftés obvious.

5.3 Privacy for Product Distributions

In this section we shall study the problem of checking thegmy relationSafe ; (A, B)
for setsA,B C Q = {0,1}" over the familyll = II2 of product distributions. The
independenceelationA L 70 B, defined by

Alpe B &5 vPenl: PA]P[B] = P[AB],
has been studied by Miklau and Suciu, who proved the follgwiacessary and sufficient
criterion:

THEOREM 5.14 (MIKLAU & Suciu). Forall A, B C Q, we haveA Lo B if and
only if setsA and B “share no critical coordinates,” i. e. when coordinatés2, ..., n can
be rearranged so that only[1], w[2], ..., w[k] determine ifw € A, and onlyw[k + 1],
wlk+2],...,w[k'], wherek’ < n, determine ifw € B.

PROOF See [Miklau and Suciu 2004].C]

SinceA L 7o B impliesSafe o (A, B), Miklau-Suciu criterion is a sufficient criterion
for our notion of privacy. It is not a necessary one, evenrfor 2: if we setQ) =
{00, 01, 10, 11} and fori = 1,2 defineX; by (we X;) < (w[i]=1), then we have
Safero (X1, X1 U X,) because for alP e 11

P[X;N(X1UXy)] = PIX1NXs] = P[Xi]- P[Xa] < P[Xi]- P[X;UXo),

but notX; Lo (X1 U X,) since they share a critical coordinate #1.

Another sufficient criterion is given by Corollary 5.12, ifewnote that/l? C I1}; it
impliesSafe 70 (A, B) wheneverA is an up-set and3 is a down-set, or vice versa. A little
more generally, Proposition 5.11 implies

COROLLARY 5.15 (MONOTONICITY CRITERION). Let A, B C 2 = {0,1}". Rela-
tion Safe;zo (A, B) holds if there exists a “mask” vector € 2 such that either one of the
two conditions below is satisfied fot, = 2 $ A .= {z Gw |w € A} andB, = z & B:

o A,B,NA,B, C A,—B, and A,B, v A,B, C B, —A,;
e A.B,VAB,CA,—B, and A,B, AN A,B, C B,—A,.
In particular, Safe 70 (A, B) holds ifz © A is an up-set and @ B is a down-set.

PROOF. By Proposition 5.11, either condition impli€afe ;- (A., B.), which in turn
implies Safe ;o (A., B.). Finally, we haveSafer;o (A., B,) < Safeo (A, B) because
the set of distribution® (> ® w) overw € Q whereP € 112 is the same a&l? itself. [

It turns out that both the Miklau-Suciu and the monotonicitiyeria are special cases of
another simple yet surprisingly strong sufficient criterfor Safe ;o (A, B). This sufficient
criterion shall be called theancellation criterion because its verification is equivalent to
cancelling identical monomial terms in the algebraic exgi@mfor the difference

P[AB]- P[AB] — P[AB]- P|AB], (34)

Journal of the ACM, \Vol. V, No. N, Month 20YY.



30 . A. Evfimievski, R. Fagin and D. Woodruff

where P is a product distribution written as in (25). Recall that egsion (34) equals
P[A]P[B] — P|AB], see Proposition 3.8. In order to formulate the criterionambina-
torial (rather than algebraic) terms, we need the followdegjnition:

Definition5.16. Thepairwise matching functiomatch(u, v) maps a paifu, v) of vec-
tors fromQ = {0, 1}™ to a singlematch-vectorw = match(u,v) in {0, 1, *}™ as follows:
if wli] =v[i];

* if wl] # v[i].
For example, paif01011,01101) gets mapped int01xx1. We say thav € (2 refinesa

match-vectorw whenwv can be obtained fromv by replacing its every star with a 0 or a 1.
For every match-vectap, define the following two sets:

Vi

I
—_
3
£
=
|
—
£
S

Box(w) = {v € Q ’ v refinesw};
Circ(w) = {(u,v) € Qx Q| match(u,v) =w}.

Remark5.17. Function thatch” satisfies the following property: for all, v, u’, v’
in {0,1}", we have

match(u,v) = match(uv',v") & wAv=u AV & uvv=u V. (35)
Indeed, a coordinate that has the same bit-valug amdv stays the same in A v and
u V v, while a coordinate that is different tnversusv has value 0 it A v and 1 inu V v.

Hence, givennatch(u, v), we can reconstruct bothh A v andu V v by replacing thex's
with O’s for u A v and with 1's foru \ v; and vice versa.

Now we are ready to state the cancellation criterion, which sufficient criterion for
Saferro (A, B), and also state a necessary criterion of a similar form, dangarison:

PROPOSITION 5.18 (CANCELLATION CRITERION). For all A, B C €, in order to
establishSafe;;o (4, B) itis sufficient to verify the following:

Vwe {0,1,%}": |(AB x AB) N Circ(w)| < |(AB x AB) N Circ(w)|.  (36)
On the other hand, for ald, B C €, if Safe;;o (4, B) holds, then:

Vwe {0,1,%}" : |(AB x AB) N Box(w)?| < |[(AB x AB) N Box(w)?|. (37)
Here Box(w)? denotesBox(w) x Box(w), and |S| denotes the size of s&t

PROOF Two subsetsS, S’ C Circ(w) satisfy|S| < |S’| if and only if there is an
injective function that maps' into S’. As the preimages ahatch(, -) the setCirc(w)
are all mutually disjoint and form a partition 6f x Q2. Hence, condition (36) is equivalent
to the existence of an injective functidn from AB x AB to AB x AB that maps each
partition cell to itself, that is:

VYue AB, Yv e AB: match(u,v) = match (F(u,v)). (38)

Suppose we have such & and letP € II2. By Proposition 5.2, sincé is a product
distribution, we haveP(w;)P(w2) = P(w1 Awz)P(wr Vws) for all wi,ws € Q, and
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therefore

P[A] P[B] — P[AB] = P|AB|P[AB] — P|AB] P[AB] (Prop.3.8

= ) Pw)P(ws) — Y P(wi) P(wh) (39)
wleA:B w|€AB
wz€B—A wéEAB

= > PwiAwy) P(wiVws) — > P(wjAwh) P(w)Vwh).
w1€EA—-B wiEAB
w2€B—A wheAB

Every term in the right summation is canceled by an identiah in the left summation,
with (w1,ws) = F(w},w}). The two terms are identical due to property (35). After the
cancellation, we are left with a non-negative expressiod,that proveSafe ;o (4, B).

To prove the necessary criterion (37), take some matctervect {0, 1, x}™ and con-
sider the following product distribution defined as in Ecp)By its vector(p1, pa, . . ., pn)
of bit probabilities:p; = wlé] if w[i] = 0or 1;p; = 1/2if w[i] = *. Then for all vectors
v € Box(w) we haveP(v) = 1/2* wherek = the number of stars im; for all other
vectorsP(v) = 0. Thereforey S C Q : P[S] = 27%-|S N Box(w)|, and inequality (37)
is equivalent taP[AB] P[AB] < P[AB] P[AB], which holds due t&afe ;o (4, B). O

We hope that the combinatorial simplicity of the sufficieritarion given by Proposi-
tion 5.18 will allow highly scalable implementations thaipdy in real-life database au-
diting scenarios, where setsand B are given via expressions in a query language. The
theorems below justify our interest in the cancellatiotecion:

THEOREM 5.19. If sets A, B satisfy the Miklau-Suciu criterion, they also satisfy the
cancellation criterion.

PrROOFR Assume that we have rearranged the coordinates so that.fhly. k] deter-
mine ifw € A, and onlyw[k+1...n] determine ifv € B (see Theorem 5.14). To prove
the cancellation condition (36), let us define an injectivaction F from AB x AB to
AB x AB that satisfies thexatch-preservation property (38), as follows:

F(u,v) = F(u[l..klulk+1..n], v[l..k]v[k+1...n])
i= (u[l..k]vlk+1..n], v[l..k]u[k+1..n]).

That is, functionF'(u, v) swaps the last — k coordinates between the first and the second
argument. The result ofiatch(u, v) is the same as the resultwhitch (F(u,v)) because,
coordinate-wise, the same bits are matched. TherefonmapsCirc(w) into itself, for
every match-vectow.

Why doesF map AB x AB into AB x AB? Take anyu € AB andv € AB, and
denote(z,y) = F(u,v). The firstk coordinates ofc are the same as of, thereforex
belongs taA just like u does; the last — k coordinates of: are the same as of therefore
x belongs toB just like v does. Analogously, the firét coordinates of; are the same as
of v, soy ¢ A, and the lask. — k coordinates of are the same as af, soy € B. It
follows that(z,y) in AB x AB. [

THEOREM 5.20. If sets A, B satisfy the monotonicity criterion, they also satisfy the
cancellation criterion.
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Before we show that the cancellation criterion subsumesnibieotonicity criterion, let
us observe the following fact:

LEMMA 5.21.Vw € {0,1,%}",V S C Circ(w) define
58 = {(uVv v vAu)]|(uv), (W,0) €S} (40)
Then we havedS C Circ(w) and|dS] = |S].
PrROOF First, let us provéS C Circ(w) by showing that
(u,v), (u',v") € Circ(w) = (uVv', vAu') e Circ(w)

Indeed, take soméu,v) and (v/,v’) in Circ(w), then by definitionmatch(u,v) =
match(u/,v") = w. Letz be w with all stars replaced by 0, ang be w with all
stars replaced by 1. As explained in Remark 5.17, we have uAv = v’ Av' and
y=uVv=u Vv Then,

(uVUYAN(wAY) = (uAvAd)V (W AvAY) = (e AW)V (2 Av) =z Ve =

(uVo )V (wAd) = (uVo' Vo)A (uvo' Vi) = (yVo')AlyVu) = yAy = .
Again by the same reasoning as in Remark 5.17, the above iggpalmply
match(u Vo', v Au') = w, and thereforéu vV o', v A u') € Circ(w).

The proof of|§5] > |S| is based on the Marica-Séhheim inequality [Marica and

Schbnheim 1969] (see also Section 19 in [Bolsh1986], and [Aharoni and Holzman
1993)), which states that U C {0, 1}™ and for operationv — ' := w A —w':

|AU| > |U|, where AU = {w—uw'|w, ' € U}.

Observe that in pairéu,v) € Circ(w) vectoru can be computed from by inverting

the bits that correspond to stars«dn Therefore, we can replace all pairs in the subsets
S anddS of Circ(w) by their second vectors, without change in the cardinalitthese
subsets. We can also discard all non-starnfjrcoordinates, because they are the same in
all vectors. Denote thus projectétandéS by S andgg, and denote vectors, v, u’, v’
without the non-star coordinates by?, @', v'. We haveii = —o, @' = —¢’, and:

55 = {oAd | (u,v), (u,0') €8} = {6 A—d"| 0,9 €5}
= AS, implying |6S| = 65| = |AS| > |S| = |S|. O
Having proven Lemma 5.21, we are now ready to prove Theor&m 5.
PROOF(THEOREM5.20). LetA, B C Q = {0,1}" be two sets that satisfy the mono-

tonicity criterion (Corollary 5.15). Thefz € Q2 suchthatsetd, = z¢AandB, = z:&B
satisfy either one of the following two conditions:

e A,B,ANA.B, C A, —B, and A.B, V A,B, C B, — A;
e A.B,V AB, CA,—B, and A,B, N A,B, C B, — A,.
We want to show that they satisfy the cancellation crite(ioa. the sufficient criterion in
Proposition 5.18).
First, note that, for every € (2, setsA and B satisfy the cancellation criterion if and

only if setsz ¢ A andz @ B also do, becausg, z) & Circ(w) = Circ(z @& w). Therefore,
we can assume that= 00...0 and ignore it. In what follows, we shall assume without
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loss of generality tha#l, = A and B, = B satisfy the second of the two conditions (if
they satisfy the first, just swap the order of pairg §):

ABV AB C AB, AB AN AB C AB. (42)
Let us take an arbitrary match-vectore {0, 1, x}", define
S = (AB x AB) n Circ(w)

and show that|S| < |(AB x AB) N Circ(w)|. Indeed, by Lemma 5.21, for sét
defined in (40) we havéS C Circ(w) and|S| < [6S]. By (41) all pairs inéS are in
AB x AB: every pair has the forrfw, vV v/, v A u/) whereu andv belong toAB whereas
u’ andv’ belong toA B. Therefore (36) holds, and the cancellation criterionistad. [

Remark5.22. The sufficient condition in the cancellation criterig not necessary.
Here is a pair of sets that satisfies the privacy prediSate;;o (4, B), but does not satisfy
the cancellation criterion:

A = {011,100,110,111}; B = {010,101,110,111}.

Sets(A—B) x (B—A) and AB x AB can be conveniently represented in the form of
a table:

A—B | B—A | match match | AB | AB
100 010 #%0) *%0) 110 | 000
100 101 10% g 110 | 001
011 010 01 Kook 111 | 000
011 101 Hx1 *x1 111 | 001

We can see thatd B x AB N Circ(xxx)| = 0 and|AB x AB N Circ(sxxx)| = 2 for these
sets, violating (36). In the expression f®{A] P[B] — P[AB], written as in (39), the
product terms for thex0-matching pairs and for thex1-matching pairs cancel each other.
The remaining terms result in expression

P2 (1—pa)?-ps(1—ps) + (1—p1)%-p?-ps(1—ps)
= 2-p1(1 = p1) - p2(l —p2) - p3(1 — p3),
which is non-negative due to inequality + 32 > 2xy.

6. THE COMPUTATIONAL COMPLEXITY OF TESTING SAFETY

We use techniques from multivariate polynomial optimizatio test safety with respect to
certain familiesiI of prior distributions on an agent’s knowledge. Recall thaetA C Q
is II-safe givenB C Q when for all distributions? € I, we haveP[A | B] < P[A], or
equivalently,P[AB] < P[A] - P[B]. As in some previous sections, we identify the Qet
of possible worlds with the hyperculfe, 1}".

For eachz € {0,1}", we create variableg, € [0,1]. We consider those families
IT consisting of distributiongp,).,c 0,1}~ that can be described by a finite numbeof
polynomial inequalities, together with the standard distion equality and inequalities:

a1((Pz)zeqo,137) = 0,. .., 0 ((P2)zefo,13n) = 0,
Z:EE{O,I}" px = 17 va‘ pm > O
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We call such a familyiT algebraic For example, if we had the family of log-submodular
distributions, then for alt, y € {0,1}", we would have the constraipip, — pzayPavy =
0. For the family of log-supermodular distributions, we wibihstead have, ,pqvy —
pzpy = 0. Finally, for the family of product distributions, we woultve bothp,p, —
DPzAyPavy = 0 andpx/\ypx\/y — papy 2 0.

For setsA and B, and a familyII of distributions, we define the sé&f (A, B, IT) of
distributions(p ) »¢ 10,1}~ that satisfy

S pw>D e > by

wEAB €A yEB
a1((Pa:)me{o,1}n) =>0,..., ar((pz)m€{07l}7L) >0
Z486{0,1}71 p: = 1, Yz p, > 0.

The following proposition is an equivalent algebraic fotation of the fact that in order
for Safer; (A, B) to hold, there cannot be a single distributiBre II for which P[AB] >
P[A] - P[B]. It follows immediately from the definition ok (A, B, IT).

PROPOSITION 6.1. Safer; (A, B) if and only if the sef( (A, B, IT) is empty.

We are interested in algorithms that decide emptinegs§(of, B, II) in time polynomial

or nearly polynomial inV 4fon. Recall that corresponds to the total number of possible
records, and for a world € {0, 1}", recordi occurs inw if and only ifw; = 1.

6.1 Specific Distributions

In this section we obtain efficient algorithms for testinfe$ty for certain interesting fam-
ilies II of distributions.

We first obtain a necessary and sufficient condition4oB C {0, 1}™ to be safe with
respect to the familyl of product distributions by providing a deterministic afigom. Its
running time isN°(g12 N) which is essentially polynomial for all practical purpes&he
key observation is that whil& (A, B, IT) is N = 2"-dimensional for general families of
distributions, for product distributions it can be embedideo R™.

Indeed, it is easy to see thai(A, B, IT) can be defined in variablgs,...,p, € R
constrained by;(1 — p;) > 0, and for whichP[AB] > P[A] - P[B], whereP(w) =
T, p (1 —pi)t =+l forallw € {0,1}". We can write this with, variables anch + 1
inequalities. Notice that the inequalif§[AB] > P[A] - P[B] can have an exponential
number of terms im. We apply the following simplified form of Theorem 3 of Basu,
Pollack, and Roy [Basu et al. 1996]:

THEOREM 6.2. Given a setK = {3,...,5,-} of r polynomials each of degree at
mostd in s variables with coefficients iR, the problem of deciding whether there exist
X1,...,Xs € Rforwhichg, (Xy,...,Xs) >0,...,6.(Xy,...,Xs) =0, can be solved
deterministically withr(rd)°(®) bit operations, where- is the number of bits needed to
describe a coefficientify, ..., G,.

We apply this theorem to the s&t = K (A, B, IT). From the program above it is easy to
see thatr, r, d, ands are all linear inn, and so emptiness (and hence safety) for product
distributions can be decided it (") = NOUgleN) time,

The algorithm of Basu, Pollack, and Roy uses sophisticateds from algebraic ge-
ometry overR, and we cannot do it justice here. The general approach takesuch
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algorithms is to reduce a system of polynomial inequalitite a system of polynomial
equalities by introducing slack variables, and then coinlgithe multivariate polynomial
equalitiesp; (x) = 0 into a single equality(x) ef >, p(z) = 0. One finds the critical
points ofq(z), that is, the se¥: of common zeros of its partial derivatives over the com-
plex fieldC. By perturbingg(x) and applying Bzout’'s Theorem, one can show thgg|
is finite. Various approaches are used to find the subdgedf V. of real-valued points.
SinceVy, is finite, once it is found; is evaluated on each of its elements and the mini-
mum value is taken. The main step is findivig, and approaches based orb@Gmer bases,
resultant theory, and homotopy theory exist (see [Parrith Sturmfels 2001]). The algo-
rithm of [Basu et al. 1996] may be practical. Indeed, a simdllgorithm of Canny was
implemented [Canny 1993].

We remark that a simple trick allows one to further reducertiming time to(| 4| +
|B|)CUele(AI+IBD)  First, observe that if either| or | B| is at least/N, then

NO(glogN) _ (JA] + ‘BDO(lglg(IAIHB\))’

and in this case we can simply run the algorithm above. Otiserwve have thatA| -
|B| < N. Now, notice that the uniform distribution in which eagh= 1 is a product
distribution. In order forP[AB] < P[A]P[B] for this distribution, we nee(@ <
'AII\',LBl, or equivalently,N|AB| < |A| - |B|. If AB # (), then sincdA| - |B] < N we
cannot haveV|AB| < |A| - |B|. On the other hand, il B = (), thenP[AB] < P[A]P|B]
for any product distribution. It follows that ifA| - |B| < N, testing safety reduces to
testing whether or nafl and B intersect, which can be done jmly(|A| + | B|) time by
a simple sorting algorithm. Thus, in all cases, the time dewity of testing safety for
product distributions ig| A| 4 | B|)©Usle(Al+IBD),

This approach generalizes to other algebraic familieslescribed bypoly(n) con-
straints andD(n) variables. For instance, a family of distributions for whie, = p,
whenever the Hamming weight efandy are equal is described ly+ 1 variables.

Even when the familyll of distributions requiresV variables to describe, in certain
cases we can obtain a polynomial-time algorithm for testiafety with respect td7.
Indeed, if the constraints; definingl have degree at mo8tand there are only a constant
numberr of them, an algorithm in [Grigoriev et al. 2003] shows how &xidle emptiness
of K (A, B, IT) in N°) time. This algorithm makes black-box use of the earlier aigm
of Basu, Pollack, and Roy [Basu et al. 1996]. As an optimizgtive note that if there are
multiple linear equality constraints; (X, ..., X;) = 0, itis helpful to combine them into
a single quadratic constrailt, L? = 0. This is because the running time is exponential
in the number of constraints.

6.2 Hardness Results
As the following theorem shows, even when the numlds not too large, we may need
to restrict the class of distributiodg that we consider in order to efficiently test safety.

THEOREM 6.3. If NP ¢ P/poly®, then there is an algebraiff for which the number
of constraints igpoly(V), each constraint has degree at m@stand for which deciding
Safer; (A, B) cannot be done ipoly(NV) time. This holds even if the deciding algorithm

9Recall thatP/poly is the set of languagek for which there exists a polynomial-time algorithrh and an
infinite advice sequenc@n. ),en such that for every € {0,1}*, A(a||,z) = lifand onlyifz € L.
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is allowed to preprocess the distributidii with an unbounded amount of computational
work, provided that the output of its preprocessing stagepisly (V)-length bit string.

Before proving the theorem, we first recall the optimizawablemMAX-CUT. For an
undirected unweighted gragh = (V, E) ont vertices, a cufS of G is a setS C V of
vertices, and the cut size of the cut is the number of edgdsamié endpoint irt’ and the
otherinV \ S. A maximum cut is a cut of the largest possible cut sizé&inThe number
of such edges is called the maximum cut siZé&), and the problenMAX-CUT is the
problem of computingy(G). Note that one does not need to output a cut realizif(g)

to solve theMAX-CUT problem. However, given an oracle for computing), there is
a standard reduction to obtain a maximum cut by iterativeletihg edges and checking
whether they change the maximum cut size. Assuniing N P, it is known [Karp 1972]
thatMAX-CUT cannot be solved in polynomial time.

We further restrict theIAX-CUT problem so that is a power of2. This is possible
because we can increase the number of verticéshof less than a factor &, so that now
the number of vertices is a power 2f If we make the vertices that we add be isolated
vertices, then the maximum cut size@fremains the same.

Definition 6.4. The problenspecial MAX-CUT is the problem of determining whether

v(G) > i%%t;, given that the numberof vertices ofG is a power of2.

LEMMA 6.5. AssumingP # NP, special MAX-CUT cannot be solved ipoly(t)
time.

ProOOF Notice thatMAX-CUT on graphg=’ on ﬁ vertices cannot be solvedijrnly(¢)-
time assuming® # N P. This is because if there wergaly (¢)-time algorithm for solving
MAX-CUT on graphs orf[ vertices, the same algorithm would bpdaly (¢)-time algorithm
for solvingMAX-CUT on graphs ort vertices. Itis not hard to show that any grafihon
ﬁ vertices satisfie8 < y(H) < 24, where the latter inequality is aczhieved be takifigo
be a bipartite clique with vertices in each part. Itis easy to see that 352

We need the fact that for every even integep 2 and non-negative integer < %,
there is a grapti,. on s vertices withy(H,) = r. This can be proven by induction on
even integers. Itis clearly true fors = 2, since we can takél, to be the empty graph on
2 vertices, and{; to be a single edge. Suppose inductively, that it is trueséone value
of s > 2. We want to show that for every< S+2) , there is a graply,- on s + 2 vertices
with v(G,.) = r. This clearly holds for < -, since we can také', to be the disjoint
union of H,. and2 isolated vertices. Far > %, let.S be a maximum cut off,: /4. Denote
the vertices off 2,4 by V. Letu andv be two vertices not itv’. We connect: to a subset
of vertices inS andwv to a subset of vertices il \ S so that the total number of edges
added isr — ﬁ The cutS U {v} is a maximum cut of the newly constructed gragh
since allr edges inG, part|C|pate in the cut. This works for all < - + s. Notice that

(”2) — % =s+1.1fr=2 + s + 1, then we also connectto v, WhICh increases the
cut size ofS U {v} by one. Th|s proves the inductive step
Returning to the proof of the lemma, for eackvith 0 <

3t vertices withry(.J,.) = r.
Given a graphH on i vertices, consider the graplis on ¢ vertices, wherd,. is the
disjoint union ofH with J,.. Theny(I,,) = v(H) +~(J,) = v(H) +r. Sincey(H) < g—i
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and~(.Jy) = 0, we have that(Io) < 263 On the other hand, sinegJo2 /1) = % >
1%50‘5; , we have thaty(Ig2 /64) > %. Thus, there is some minimal valueofor which
y(I) > %. For this value of-, we havey(H) = [% —r. Thus, by solvingpecial
MAX-CUT for each grapH,., we can determine(H ). It follows thatspecial MAX-CUT

cannot be solved ipoly(t) time, if P £ NP. [J
We now prove Theorem 6.3.

Proof of Theorem 6.3: Putn = 1 + 2log, t, so thatN = 2t2. For eachu € [t] o

{1,2,...,t}, associate an elemen}, € {0,1}". Associate each s& = {u,v} C [t] of
size2 with a distinct elemengs € {0,1}™. Call such anS a2-set. LetD, and D, be
disjoint subsets og unassociated elements{f, 1}™. Assume that™ is notinD; U D5,
and is not associated with aByset. Note that all of this is possible beca{BgU D, | = t2
and the number of elements associated withset is(g) < g while onlyt elements are
associated with a valug,. Thus, there are at least
3t2 5  3t?
N 5 t=2t 5 t>0

unassociated elements{f, 1}" and not inD; U D5 (for sufficiently larget).

We definell by the following constraints. For eachsetS = {u,v}, include the
constraint:

1 1
Pys = 360p,, (20t —va> + 360pz, (20t —pwu) .

For eachu € [t], include the constraint:

1
0 = ps, (2015 _pxu)-

From this we deduce that,, € {0, 5~ }. Moreover, we claim thap,, € {0, ;&>}. To

see this, note that fo$ = {u, v}, there are four cases: (), = p., =0, (2) p., =0
andp,, = 57, (3) Pe, = 357 andp,, = 0, and (4)p,, = P, = 55;- We see that in cases

(1) and (4), we have,, = 0, while in cases (2) and (3) we hapg, = ;-
Foreach: € D1UDs, putp, = 2% Forthose: ¢ D;UD,U{0"} that are unassociated

with any2-set, putp, = 0. Finally, put

pon = 1= D pye— > Pe.— Y, De
]

2-setsS={u,v} u€lt z€D1UD>
We thus have,
t 9 1 1
=1 =t — =t — > 0.
bo (2) 1062 " 20t 212

Observe thap, > 0 forall z € {0,1}" and)_, p. = 1.

The constraints definingl are equality constraints, which can each be converted into
two inequality constraints. Observe thét is algebraic and non-empty, the number of
constraints ipoly(N), and the constraints defining have degree at mo&t Moreover,
each constraint can be described witflog V) bits.

Given an input grapldé? = ([t], E) and a paramete¥, observe that the verticese [t]
can be partitioned into two setsand|[¢] \ J, whereu € J if and only if p,, = 0. If
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€ [t]\ J, thenp,,, = 20t Then, by the case analysis aboyg, = 1&2 if and only if
one endpoint o¢ is in J and the other is ifie] \ J. Puty(G) = if). Putm =3 5Dy,

Hence, the maximum value of is 2} = 21,
We define query setd and B as follows. LetF1 C D, be an arbitrary subset of size
2;:‘17; , which is an integer fot > 512. Let F, C D, be an arbitrary subset of sﬁél%.

Let A = Ueepye U F1, andB = UeEEye U Fy. ThenAB = Uccgy.. Then, using that
for eachz € D; U D, we havep, = the constrainP[A] P[B] < P[AB] becomes

2f2 1

247 \ 2
( +1024) <m, (42)

sinceP[A] = P[B] = P[Ueepye UFs] = m+ 5 - 27 — i 1+ 247 and P[AB] =

The quadratic formula shows that this inequality holds d anly if
(1 247 3 1 247 3 )

5 1024 16’2 1024 T 16
We showed thatn < ( , and so if

<10 1247 3\ 365
4608’

2 1024 16

then inequality (42) cannot hold.

We now turn to showing the converse, namely, thatGf > 436605? then inequality (42)
does hold for some distribution iff. So suppose that(G) > 295 If, also,¥(G) <
9. (1 — 2T 1 3 then by choosing the vertices in a maximum cutfo be the set
of verticesv for whichp,, = 0, we have thatn € (3 — 21T — 3 1 24T 4 3 ang
so inequality (42) holds.

The only wrinkle comes whef(G) is larger thani? - (1 — 217 4 2.} In this case it
suffices to exhibit a cut whose cut size lies in the mterval

(10 2247 3P\ 10 (17 247¢7 N 3t
S \9 \ 2 1024 16 /)7 9 \ 2 1024 16 ’
By assumption on the maximum cut size, there is a £wwith cut size at Ieas% .

% — 21%7;42 + 3t2) LetS = {vi,...,v,.}. Consider the sequence of cutg = S, S; =

S\ {vi},S2 = S\ {v1,v2},...,0. The difference in cut sizes between consecutive cuts
in this sequence is bounded by- 1, the maximum degree of a vertex @ Notice that

the length of interval is & - % = Q(#?). Since the last cut in the sequence, namigly,
has cut sizé), it follows that some cut in the sequence has cut size whiahiisterval I

(for sufficiently larget). By the arguments above, it follows thB{A] P[B] < P[AB].

it follows that P[A] P[B] < P[AB] if and only if 7(G) > 10 - (& — 28 — 37) —

i%%t; . By Lemma 6.5, this cannot be solvedyinly () = poly(N) time unlessP? = N P.
To prove the theorem, we must also allow the deciding algariaccess to aoly (IV)-
length bit string which does not depend on the query set@nd B. In this case, if
Safer; (A, B) could be decided ipoly (/) time, thenSpecial MAX-CUT on graphs con-
taining ¢t vertices could be solved ipoly(¢) time given apoly(¢)-length bit string, and

hence by the reduction in Lemma 6/ AX-CUT could also be solved ipoly(¢) time
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given apoly(t)-length bit string. But this implies there is/poly-algorithm for solv-
ing MAX-CUT, and sinceMAX-CUT is N P-complete, this would impyW P C P/poly.
This contradicts the assumption of the theorem.

6.3 Heuristics

For most families of distributions we will have to settle &oheuristic or an approximation
for testing safety. If the program describifif A, B, IT) is multilinear (e.g., one can show
this is the case for log-submodular and log-supermodusaributions), there are heuristics
such as branch-and-bound or cutting-plane techniques.p&ge 2 of [de Campos and
Cozman 2005].

Here we describe the arguably most practical heuristic,sthm-of-square$euristic,
introduced in [Shor 1987; Shor and Stetsyuk 1997; Parril@020which works even for
systems that are not multilinear. This heuristic was imgetad with great success in
[Parrilo and Sturmfels 2001]. IiK(A, B, IT) is non-empty, that iSafe; (A, B) does not
hold, then the heuristic is guaranteed to report thH&t4, B, IT) is non-empty. On the
other hand, there may be a false negative in the sense tRat4f B, IT) is empty, and so
Safer; (A, B) holds, then the heuristic may report that A, B, IT) is non-empty, meaning
that Safe;; (A, B) does not hold. One can reduce the likelihood of a false negty
increasing a parametér given in the following description of the method.

The problem of minimizing a degreémultivariate polynomialf over a setk’ C R*
is equivalent to finding the maximum € R for which f(z) — v > O forall z € K.
Let P{(K) be the set of all polynomials iR[z1, ...,z of degree at most which are
non-negative on every point i. Thus, our problem is to find the maximume R for
which f — v € P¢(K).

It is unknown how to optimize oveP{ (K) efficiently, and so the following indirect
route is taken. Define the sEE :

22:{femx1,...,xs]|391,...,gteR[xl,...,xs]s.t.fzzgzlgf}.

Notice that:? is a subset of non-negative polynomials, as every sum ofreguaf poly-
nomials is non-negative. It turns out that is in fact a strict subset of the non-negative
polynomials, as shown non-constructively by Hilbert, andstructively by Motzkin who
provided the polynomial

M(x,y,2) = zty? + 2%y* 4 25 — 3229222,
Motzkin showedM (x,y, ) is non-negative ofR?, yet inexpressible as a sum of squares
of polynomials. It turns out that every non-negative polyimal can be written as a sum of
squares of rational functions (functions of the fajrtw) /h; («) for polynomialsg; andh;),
which was Hilbert's 17th problem, solved by Artin in 1927. Wht? fails to capture all

non-negative polynomials, the following proposition isampelling reason for studying
it. The proposition is folklore, and is proven using semiaiédi programming.

PROPOSITION 6.6. For f € R[zy,...,z;] of bounded degree, the tesf(z) € %2”
can be done ipoly(s) time.

Let =27 be thosef (z) € £? of degree at most. Thenx?9 C P{(R). To minimizef(z)
overR?, we find the largesk € R for which f(x) — A € 2 via a binary search ohand
the proposition above. The valuéas a lower bound orf (x) and in practice almost always
agrees with the true minimum gf[Parrilo and Sturmfels 2001].
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To minimize f(z) over a setK constrained by polynomials, we need a few more tools.
We could reduce the problem to minimizing a single polyndngia mentioned in Section
6.1, but the following may work better in practice. We follthe presentation in [Carama-
nis 2001].

Definition 6.7. The Algebraic Cone generated by eleméhts. ., 5; € R[zq, ...,z
is the set

ABr,. . B) EH{f Ry, m] | f=n+ Y ur [ 6}

ICt] i€l
wheren and then; are in¥?, and[t] = {1,2,...,t}.

Thus, the algebraic cone can be thought of as the set of aleafbmbinations of all pos-
sible products of polynomials,, . . ., 3;, where the coefficients of the affine combination
are taken fron2.

Definition 6.8. The Multiplicative MonoidM (s, .. ., ;) generated by, ..., 3; €
R[z1,...,z4] is the set of finite products of th&, including the empty product which we
set tol.

The key result is a simplified form of the Positivstellend&izngle 1974]:

THEOREM 6.9. Given polynomialy fi,..., fa, } {91, -, Gt} IN R[zq, ..., 2], the
set
K Y {2 eR: fi(x) >0,g;(x) #0,i € [t1],] € [ta]}
is empty if and only if3F € A(f1,..., f;,) andG € M(g1,...,gs,) for which F + G?
is the zero polynomial.

Thus, for a sef( described byf;, andg; of the form above, we considéf’ = K N {z €
R |y — f(z) 20, f(z) — v # 0}. K" is empty if and only iff (x) > v forallz € K.

Heuristics implemented in practice work by choosing a dedrveundD, generating
alG € M(f —~,91,--.,9:,) of degree at mosb (there are at mosty suchG), and
checking if there is ad’ € A(y — f, f1, ..., fi,) for which F + G? = 0 via semidefinite
programming. This is efficient for constait, which usually suffices in practice. Better
algorithms for special cases are based on alternative fofrtise Positivstellensatz; see
[Putinar 1993; Schiidgen 1991].

7. CONCLUSION

We presented a novel approach to privacy where only gairan§idence in a sensitive fact
is illegal, while losing confidence is allowed. We showed thé relaxation is significant
and permits many more queries than with well-known apprescin exchange, this gave
us an opportunity to relax prior knowledge assumptions bdycurrent standards. Our
hope is that work in this direction will help bridge the gapvieeen theoretical soundness
and practical usefulness of privacy frameworks.

One possible future goal is to obtain a better understanalirige families of sets and
distributions that arise in practice, and to understandtidrehey admit efficient privacy
tests. Another goal is to apply the new frameworks to onlpredctive) auditing, which
will require the modeling of a user’s knowledge about theitaud query-answering strat-
egy.
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