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Abstract

This is a short survey of my work in data streams and related appli-
cations, such as communication complexity, numerical linear algebra, and
sparse recovery. The goal is give a non-technical overview of results in data
streams, and highlight connections between these different areas. It is based
on my Presburger lecture award given at ICALP, 2014.

1 The Data Stream Model
Informally speaking, a data stream is a sequence of data that is too large to be
stored in available memory. The data may be a sequence of numbers, points,
edges in a graph, and so on. There are many examples of data streams, such as
internet search logs, network traffic, sensor networks, and scientific data streams
(such as in astronomics, genomics, physical simulations, etc.). The abundance of
data streams has led to new algorithmic paradigms for processing them, which
often impose very stringent requirements on the algorithm’s resources.

Formally, in the streaming model, there is a sequence of elements a1, . . . , am

presented to an algorithm, where each element is drawn from a universe [n] =

{1, . . . , n}. The algorithm is allowed a single or a small number of passes over
the stream. In network applications, the algorithm is typically only given a single
pass, since if data on a network is not physically stored somewhere, it may be
impossible to make a second pass over it. In other applications, such as when data
resides on external memory, it may be streamed through main memory a small
number of times, each time constituting a pass of the algorithm.

The algorithm would like to compute a function or relation of the data stream.
Because of the sheer size, for many interesting problems the algorithm is neces-
sarily randomized and approximate in order to be efficient. One should note that
the randomness is in the random coin tosses of the algorithm rather than in the
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stream. That is, with high probability over the coin tosses of the algorithm, the
algorithm should correctly compute the function or relation for any stream that is
presented to it. This is more robust than say, if the algorithm assumed particular
orderings of the stream that could make the problem easier to solve.

In this survey we focus on computing or approximating order-independent
functions f (a1, . . . , am). A function is order-independent if applying any permu-
tation to its inputs results in the same function value. As we will see, this is often
the case in numerical applications, such as if one is interested in the number of
distinct values in the sequence a1, . . . , am.

One of the main goals of a streaming algorithm is to use as little memory
as possible in order to compute or approximate the function of interest. The
amount of memory used (in bits) is referred to as the space complexity of the
algorithm. While it is always possible for the algorithm to store the entire se-
quence a1, . . . , am, this is usually extremely prohibitive in applications. For exam-
ple, internet routers often have limited resources; asking them to store a massive
sequence of network traffic is infeasible. Another goal of streaming algorithms
is their processing time, i.e., how often it takes to update their memory contents
when presented with a new item in the stream. Often items in streams are pre-
sented at very high speeds and the algorithm needs to quickly update the data
structures in its memory in order to be ready to process future updates.

For order-independent functions, we can think of the stream as an evolution
of an underlying vector x ∈ Rn. That is, x is initialized to the all zero vector, and
when the item i appears in the stream, x undergoes the update

xi ← xi + 1,

that is, the items i are associated with coordinates of x, and insertions of items
cause additive updates to x. The goal when computing an order-independent func-
tion f is to compute (or approximate with high probability) f (x), where x is the
vector at the end of the stream after all insertions have been performed.

2 Distinct Elements
One of the earliest works on streaming was that of Flajolet and Martin in 1985
[25], who studied the distinct elements problem. In this problem, the function
f (a1, . . . , am) is equal to

|{a1, . . . , am}|,

that is, the cardinality of the set of items a1, . . . , am, which is just the number of
distinct items in the sequence a1, . . . , am. This problem is often called the F0-
problem, denoted F0(x), for reasons we will see in Section 3.



The F0 problem has many applications in relational databases. One example
is query optimization, in which a user wants to select records in a database whose
attributes satisfy a certain predicate [56, 29]. This often involves decomposing the
query into a sequence of simpler queries, so that the set of records resulting from
the execution of these simpler queries coincides with the set of records obtained
via executing the original query. One often would like to choose these simpler
queries in such a way that the number of distinct records at each intermediate step
is small. By solving the F0 problem at intermediate steps one can choose how to
decompose the query so as to reduce the overall computation time.

It is not too hard to show (see, e.g., [2]) that any algorithm which computes
F0(x) exactly requires Ω(n) bits of storage. That is, up to a constant factor in the
space complexity, the optimal algorithm is simply to maintain a bit vector x̂ where
x̂i = 1 if and only if item i has appeared in the stream.

Therefore we settle for outputting an approximation to F0(x) with high proba-
bility, that is, the algorithm should with probability at least 99%, output a number
Z for which

(1 − ε)F0(x) ≤ Z ≤ (1 + ε)F0(x), (1)

where ε > 0 is a user-specified accuracy parameter.
It turns out that randomized approximation algorithms achieving (1) can be

much more efficient. Namely, it is possible for such algorithms to achieve O(1/ε2+

log n) bits of space and O(1) processing time per item [40]. Provided ε is not too
small, this can provide an exponential improvement in space over the algorithm
which simply stores x̂.

One may ask how it is even possible to do better than the Θ(n) space bound of
storing x̂. We give a brief intuitive argument here. Suppose we were to choose a
random hash function h : [n] → [B], for a number B = O(1) of “hash buckets”.
For each of the B hash buckets b, we retain only a single bit which indicates
whether or not for some item i we have seen in the stream it holds that h(i) = b.
When seeing item i in the stream, we compute h(i), and set the bit associated with
h(i) to equal 1 if it is currently equal to 0; otherwise we leave it set to 1. The idea is
that if F0 ≈ B, we can estimate F0 by looking at the fraction of the bits associated
with buckets which are equal to 1. If h were truly random, the probability a hash
bucket is equal to 0 is (1 − 1/B)F0 , and so the expected number of buckets which
are 0 is equal to

B · (1 − 1/B)F0 .

If F0 ≈ B, when inverting this expression one can obtain a reasonably accurate
approximation to F0. On the other hand, if F0 ≈ 2B, say, then if we randomly
select half of the items in [n] to apply the hash function to, we can estimate F0

restricted to this half of items. Since we chose this half randomly, we would expect



the true number of distinct items to be twice this value. Similarly, we can create
estimates for all scales F0 ≈ 2iB. Of course, this is just an intuition and only for
a constant-factor approximation rather than a (1 + ε)-approximation; getting the
optimal parameters requires additional tricks for which we refer the reader to [40].

Despite the efficiency of this algorithm, one could ask if the quadratic depen-
dence on 1/ε is necessary, or if this can be further reduced. This would make
sense if highly accurate approximations are desired, e.g., if ε = .001. It is known
that the quadratic dependence is indeed necessary, and moreover, Ω(1/ε2 + log n)
bits of space is needed in order to achieve (1), showing the above algorithm is
optimal up to constant factors [32, 57]. To prove the lower bound, a new problem
called the Gap-Hamming Problem in communication complexity was introduced,
as described below.

There is a standard way of proving lower bounds on the memory required
of a data stream algorithm by using two-player communication complexity [2].
The basic idea is to have two players, named Alice and Bob, each hold inputs
x, y ∈ {0, 1}n to some communication problem g. Alice uses her input x to create a
stream s(x), while Bob uses his input to create a stream s(y). If Alg is a streaming
algorithm, Alice can run Alg on s(x), and transmit the memory contents of Alg to
Bob, who can continue the computation on s(y). If from the output of Alg on the
concatenation of streams s(x) and s(y), Bob can solve a problem g(x, y), then the
amount of communication must be at least the 1-way communication complexity
of g, which is the minimum possible number of bits Alice can send to Bob to solve
g (where the minimum is over all protocols correct on g with probability at least
99%, of the maximum number of bits Alice sends on any of her inputs and any of
her random strings).

In the Gap-Hamming Problem, Alice and Bob are promised that the Hamming
distance ∆(x, y) satisfies:

∆(x, y) > n/2 + εn, or ∆(x, y) < n/2 − εn,

We let g(x, y) = 1 in the former case, while g(x, y) = 0 in the latter case. It was
shown in [32, 57] that the randomized 1-way communication complexity of this
problem is Ω(1/ε2) bits. The proof was simplified in [35], and extended to 2-way
communication (in which Alice and Bob can both send messages to each other) in
[17], improving both upon the results for 1-way communication as well as earlier
partial results for 2-way communication in [13, 14]. The work of [17] was later
simplified in [53].

Using the reduction above, these communication lower bounds for the Gap-
Hamming Problem imply that any streaming algorithm, even if allowed a constant
number of passes, requires Ω(1/ε2) bits of memory in order to achieve the guar-
antee in (1). For the details of this reduction, we refer the reader to [57].



The Gap-Hamming Problem has emerged as an interesting problem in its own
right, and has found applications in information complexity [16, 10], distributed
functional monitoring [58], linear algebra [21], differential privacy [46], and lower
bounds for graph sparsifiers [6].

3 Frequency Moments
The streaming model was revived in 1996 by Alon, Matias, and Szegedy [2] who
studied the problem of estimating the frequency moments Fp(x), where

Fp(x) =

n∑
i=1

xp
i .

Equivalently, Fp(x) = ‖x‖p
p is the p-th power of the `p-norm of x. Interpreting 00

as 0, it follows that F0 coincides with the number of non-zero coordinates of x,
that is, the number of distinct elements. In general, frequency moments Fp are
useful for summarizing the skewness of an underlying empirical distribution [24],
while applications of specific frequency moments are given below.

The second moment F2 is used for computing self-join sizes in databases, and
given that it is the square of the Euclidean norm, is a basic primitive in geometric
and linear-algebraic streaming algorithms.

The first frequency moment F1 is just
∑n

i=1 xi, which is easy to compute by
maintaining a counter in the stream. However, often one considers the turnstile
model of data streams in which one also allows items to be deleted from the
stream. That is, instead of having only updates of the form xi ← xi + 1, one
also has updates of the form xi ← xi − 1. This model is useful for summarizing
statistics of the difference of two streams, and was coined the turnstile model by
Muthukrishnan who was inspired by monitoring statistics of people in a subway
station who come and go through turnstiles [49]. In this model, computing F1 is
non-trivial [30, 39, 38] and has found applications to “robust” algorithms, such as
robust regression [54, 19, 47, 59].

As in the case for estimating F0, for estimating Fp one seeks to, with at least
99% probability, output a number Z for which

(1 − ε)Fp ≤ Z ≤ (1 + ε)Fp. (2)

By now we are getting close to obtaining optimal bounds for this problem. If the
reader has not seen this problem before, he/she may want to pause and conjecture
how the space complexity of this problem should depend on p. We saw for p = 0
the space complexity is Θ(1/ε2 + log n) bits.



It turns out that F2 is the “breaking point” for this problem, in that for 0 ≤
p ≤ 2, it is possible to achieve the guarantee of (2) using O(ε−2 log n) bits of space
[30, 43, 39, 38], but for any p > 2, a polynomial n1−2/p bits of space is required
[15, 7, 28, 34]. There are near-matching algorithms for p > 2, optimal up to
small factors in ε−1 log n [23, 33, 8, 11, 48, 5, 26, 3], which have been shown to be
optimal up to a constant factor in some regimes [45]. All the algorithms also have
very efficient processing times, at most poly(log n), and sometimes even O(1).

One technique we wish to highlight from the upper bounds is that of “sub-
sampling” and finding the “heavy-hitters”. This is the main ingredient in obtain-
ing the algorithms for Fp, for p > 2, and has had a number of applications to
obtaining algorithms for other problems in the streaming model, such as earth-
mover distance [4], mixed norms [36], sampling in the turnstile model [48, 5, 37],
sparse recovery [51], graph sparsifiers [41], and regression [59]. A very nice result
of Braverman and Ostrovsky [12] shows how this technique can be used to near-
optimally estimate a large class of functions of the form

∑n
i=1 G(xi) with various

conditions on G. Note that for Fp, G(a) = |a|p for a ∈ R.
The idea of sub-sampling is similar to what was described in Section 2 for the

distinct elements problem. Namely, we randomly keep a 2−i fraction of items in
[n], for each value of i ∈ [log n], and if S i is the subset of items kept for a given i,
we apply a hashing procedure only to those items in S i. Here, though, the hashing
is a bit different than that for the distinct elements problem. Namely, we use the
CountSketch data structure proposed by Charikar, Chen, and Farach-Colton [18];
see also the related work of Thorup and Zhang [55]. For each item j ∈ [n], we
associate a random sign σ j ∈ {−1, 1}. We also choose a random hash function
h : [n] → [B], as in the distinct elements problem. Next, we randomly partition
[n] into B buckets using h, and for the k-th such bucket we maintain the counter:

ck =
∑

j∈S i,h( j)=k

σ( j) · x j.

A nice property of this data structure is that we can obtain an unbiased estimate
of x j as σ( j) · ch( j). Indeed, looking at the contents of the bucket h( j), we have

E[σ( j) · ch( j)] = E[σ( j)2x j +
∑

j, j′,h( j′)=h( j)

σ( j)σ( j′)x jx j′]

= x j +
∑

j, j′,h( j′)=h( j)

x jx j′E[σ( j)σ( j′)]]

= x j,

where the second equality follows from linearity of expectation and that σ( j)2 = 1
since σ( j) ∈ {−1, 1}, while the third equality follows from the fact that for j , j′,
E[σ( j)σ( j′)] = 0. The role of h is not so clear from the above analysis of the



Figure 1: The CountSketch data structure with n = 10.

expectation, but becomes clear when looking at the variance. Indeed, one can
show that the variance of the estimate is O(F2(xS i)/B), where xS i denotes the
vector for which xS i

j = x j for j ∈ S i, and xS i
j = 0 for j < S i.

The above data structure, when combined with sub-sampling, can be used to
obtain the guarantee of (2). This data structure can also be used to find “heavy
hitters”, since if x2

j is much larger than O(F2(x)/B), one can obtain an accurate
estimate to |x j|. By performing independent repetitions of this data structure, one
can in fact recover the indices j for which |x j| is large.

Another feature is that this data structure is a linear map. That is, it can be
expressed as S · x, where S is a matrix with B rows and n columns. Given the
vector x as input, the data structure simply performs matrix-vector multiplication.
Since the mapping is linear, it is easy to update in the presence of insertions and
deletions of items in the stream. Indeed, if xi ← xi + 1, this corresponds to
S · x← S · x + S i, where S i is the i-th column of S . Similarly, if xi ← xi − 1, this
corresponds to S · x ← S · x − S i. This makes the above algorithms particularly
useful for processing streams in the turnstile model. This property also is very
useful for numerical linear algebra applications, as we show in Section 5.

4 Characterization of Turnstile Streaming Algorithms
As noted, the algorithm for Fp can actually be represented as computing S · x,
where S is a matrix drawn from a structured family of random matrices before



the stream begins. The algorithm also works in the turnstile model. Curiously, all
known algorithms in the turnstile model have the following form:

1. Choose a random matrix S independent of x before the stream begins.

2. Maintain the “linear sketch” S · x in the stream.

3. Output an arbitrary function of S · x.

One cannot help but ask if the optimal algorithm for computing any function or
relation in the turnstile model has the above form.

In recent work [44] with Li and Nguyen we show that the answer is yes, up
to a log n factor. More precisely, up to a log n factor in the space complexity,
the optimal algorithm samples a matrix S uniformly from O(n log n) hardwired
matrices before the stream begins, maintains S · x while processing the stream,
and then outputs a function of S · x at the end of the stream.

We do want to point out some caveats with this result. One is that the algorithm
can’t necessarily store S in small space, nor compute the output function given S ·x
in small space. This can be handled by allowing the algorithm to be non-uniform,
so that the algorithm need only sample uniformly from a fixed set of O(n log n)
hardwired matrices. One also needs to hardwire all the possible answers given
S · x. Despite this, it turns out that when proving lower bounds these restrictions
don’t matter, and the above characterization gives a simpler proof strategy for
proving lower bounds than using 1-way communication complexity, the latter of
which was discussed in Section 2. Indeed, this characterization allows one to
prove lower bounds for linear sketches, which then imply the same lower bounds
in the streaming model. We refer the reader to [44] for further details.

5 An Application to Linear Algebra
One well-studied problem in the numerical linear algebra community is the least
squares regression problem. The goal of this line of work is to fit a number of
observed points to a line, or more generally to a hyperplane, while minimizing the
sum of squared vertical distances to the hyperplane. Cutting to the chase, one can
express the least squares regression problem using the following matrix notation.
Given an n × d matrix A and an n × 1 vector b, compute

argminx∈Rd‖Ax − b‖2.

Typically n � d, i.e., the problem is over-constrained and there need not exist a
solution to the equation Ax = b. We thus settle for a randomized approximation:
with probability at least 99%, output a vector x′ ∈ Rd for which

‖Ax′ − b‖2 ≤ (1 + ε)minx‖Ax − b‖2. (3)



A beautiful work of Tamás Sarlós [52] observed that if S is a random projec-
tion onto a low dimensional subspace, one can apply the following “Sketch and
Solve Paradigm”:

1. Compute S · A and S · b.

2. Output x′ = argminx∈Rd‖S Ax − S b‖2.

The role of S in the above is to reduce A from an n × d matrix to an n′ × d matrix
where n′ � n and often is independent of n. Similarly, the vector b is replaced by
an n′ × 1 vector. Thus, the “hard part” of solving the regression problem is done
in the much lower-dimensional sketch space, replacing A with S A and b with S b,
for which classical algorithms are now more efficient. One can choose S so that
S A is a poly(d/ε) × d matrix.

The bottleneck in the approach above is computing the matrix-matrix product
S · A. Sarlós observed that if one chooses S to be a fast Johnson-Lindenstrauss
transform [1], then one can compute S · A in only O(nd log n) time, leading to an
overall algorithm for regression in O(nd log n)+poly(d/ε) time. If n � d, this is a
considerable improvement over the classical algorithm for least squares regression
which takes Θ(nd2) time (or O(nd1.376) using fast matrix multiplication).

In recent work with Clarkson [22], we show that if instead of choosing S to be
a fast Johnson-Lindenstrauss transform, if we choose S to be a CountSketch ma-
trix, as described in Section 3, the correctness of the Sketch and Solve Paradigm
still holds, that is, (3) holds. Moreover, S A is a poly(d/ε)× d matrix, with a larger
poly(d/ε) factor, but the regression problem in the sketch space minx ‖S Ax−S b‖2
can be solved much more efficiently than in the original space.

Importantly, the matrix-matrix product S · A can now be computed in only
O(nnz(A)) time, where nnz(A) denotes the number of non-zero entries of A. This
gives an overall running time for regression of O(nnz(A)) + poly(d/ε). In a num-
ber of applications A is a sparse matrix, with O(n) non-zero entries, and this gives
overall running time O(n)+poly(d/ε), improving the O(nd log n)+poly(d/ε) time
algorithm one would get using fast Johnson Lindenstrauss transforms. The run-
ning time is also optimal for any algorithm achieving the guarantee of (3), up to
the poly(d/ε) factors. A number of followup works improved the poly(d/ε) fac-
tors [9, 42, 47, 50], making the algorithms applicable even when n is not too much
larger than d.

6 Conclusions
Techniques for data streams give efficient ways of compressing big data, which is a
broadly applicable goal in computer science. We have seen one application of the



CountSketch data structure to speeding up algorithms in numerical linear algebra.
Another application of CountSketch is to sparse recovery, or compressed sensing.
Here there is an unknown vector x that is known to be well-approximated by a
sparse vector y, and the goal is to recover an approximation to y given only a linear
sketch S · x of x for a matrix S with a small number of rows of the user’s choice.
Letting S be the matrix implementing CountSketch, or variants of this, leads to
algorithms for sparse recovery achieving the optimal number of measurements in
the classical randomized setting [27], as well as further improvements when one
allows the rows of S to be chosen adaptively [31].

There are many other applications of data streams to computer science which
I did not cover, such as to graph algorithms (e.g., lower bounds for sparsification
[6]) and machine learning (e.g., sampling techniques for classification and mini-
mum enclosing ball [20]). Given the nature of this survey, it is somewhat focused
on my own contributions. There are many other extremely interesting topics in
data streams I did not cover, but hopefully this at least gives a glimpse into the
techniques developed in this area.
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