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Abstract

We prove strong lower bounds for the space com-
plexity of �������
	 -approximating the number of dis-
tinct elements �
� in a data stream. Let � be the size
of the universe from which the stream elements are
drawn. We show that any one-pass streaming algo-
rithm for �������
	 -approximating � � must use ����������
space when ������������ !#"�$&% , for any '�(*) , im-

proving upon the known lower bound of � �+� � � for
this range of � . This lower bound is tight up to a fac-
tor of ,.-0/1,2-3/4� . Our lower bound is derived from
a reduction from the one-way communication com-
plexity of approximating a boolean function in Eu-
clidean space. The reduction makes use of a low-
distortion embedding from an 5�6 to an 5 � norm.

1 Introduction

Let a �87 � ��9:9:9��;7=< be a sequence of elements,
which we will refer to as a stream, from a universe
of size � , which we denote by > �@?A�CB+)D�:9�9:9E�;�GFH
I

. In this paper we examine the space complex-
ity of algorithms that count the number of distinct
elements �
�J�K�
�=� a 	 in a. All algorithms will be
given one-pass over the elements of a, which are ar-
ranged in adversarial order. An algorithm A is said
to ���+�;�
	 approximate � � on stream a if A outputs
a number L� � such that Pr >.MDL� � F�� � MN(O�P� � ?RQO� .
Since there is a provable deterministic space lower
bound of �S���T	 for computing or even approximat-
ing � � within a multiplicative factor of � HVU �W	 [1],
there has been considerable effort to devise random-
ized approximation algorithms.

There are several practical motivations for de-X
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signing space-efficient algorithms for approximat-
ing �
� . Computing the number of distinct elements
is very valuable to the database community. Query
optimizers can use ��� to find the number of unique
values in a database with a certain attribute with-
out having to perform an expensive sort on the val-
ues. With commercial databases approaching the
size of 100 terabytes, it is infeasible to make mul-
tiple passes over the data since the sheer amount of
time spent looking at the data is prohibitive.

Other applications include networking: internet
routers that only get one quick view at incoming
packets can gather the number of distinct destina-
tion addresses passing through them with only lim-
ited memory. For an application of � � algorithms
to detecting Denial of Service attacks, see [2].

There have been a multitude (e.g., [7, 1, 4]) of
algorithms proposed for computing � � in a data
stream, beginning with the work of Flajolet and
Martin [7]. The best known algorithm was pre-
sented in [4] and ���+�;�
	 approximates � � in spaceZ �[� � � �\� 6 ,2-3/4,.-0/4�^]_,.-0/1�`,.-0/a�� 	=,.-0/b�c 	 . In this pa-
per we will take � to be constant.

For reasonable values of � and � (e.g., �d�fe�g 6 ,�@� H )�h ), the storage bound of the algorithms is
dominated by the

H\i � 6 term. If one wants even
better approximation quality (e.g., ��� H h ), the
quadratic dependence on

Hji � constitutes a severe
drawback of the existing algorithms. This raises the
question (posed in [4]) if it is possible to reduce the
dependence on

H\i � . Till now, the best known lower
bound for the problem was �S��,2-3/1�k] Hji �P	 [1, 3].

In this paper we answer this question in the neg-
ative. In particular, we show that any algorithm
for approximating �
� up to a factor of � H ]f�W	 re-
quires �S� Hji � 6 	 storage, as long as

Hji �l�nm&�o�lpq	
for certain rs(k) . This matches (up to a factor of,2-3/4,.-0/4� for small � , and ,2-3/t� Hji �W	 for large � ) the
upper bound of [4].



1.1 Overview of techniques and technical
results

One way of establishing a lower bound is to
lower bound the communication complexity of
computing certain boolean functions and reduce
them to that of computing u�v [3]. In this model
there are two parties, Alice and Bob, who have in-
puts w and x respectively and wish to compute the
value of a boolean function y{zow}|;x�~ with probability
at least �=�R� . The idea is that Alice can run a distinct
elements algorithm � on w and transmit the state �
of � to Bob. Then Bob can plug � into his copy of� and continue the computation on x . This compu-
tation will return a number �u
v which is a z[�����P~
approximation to u v zow��{x&~ with probability at least����� . If �u v can be used to determine y{z�w}|;x&~ with
error probability less than � , then the communica-
tion cost is just the space used by � , which must
be at least the one-way communication complexity
of computing y{zow
|[x�~ . In [1] the authors reduce the
communication complexity of computing equality��� z�w}|;x&~ to computing u
v�zowT�Rx�~ . Since the ran-
domized communication complexity of

�a� zow
|[x�~
is �bzo�.�0�4��~ , this established an �Sz��2�3�1��~ lower
bound for computing u�v .

We would like to obtain lower bounds in terms
of the approximation error � . In [3] the one-way
communication complexity of the � -set disjointness
problem is used to derive an �Sz\��\~ space lower
bound for approximating u v . Here Alice is given
a set wO�n� ��� with � w����¡  ¢ and Bob is given a
set x£�¤� �@� with � xA���¥��¦§� . Furthermore, both
parties are given the promise that either x��Gw orx�¨�w@��© . In case of the former, u v z�wª�tx&~4�G  ¢ and
in the latter u
v=zow��«x�~4�   ¢a¬ ��¦­� . Hence, an algo-
rithm which z��+|;�
~ approximates u�v can distinguish
these two cases. However, this reduction is partic-
ularly weak since Alice can replace the u{v approx-
imation algorithm with an algorithm which simply
samples ®�z � � ~ of the elements ¯+° of � ��� , checks if¯+°V±lw , and sends the result to Bob. This motivates
the search for promise problems which use the full
power of a distinct elements algorithm as a subrou-
tine.

Given a stream a, its characteristic vector ² a is
the � -dimensional vector with ³ th coordinate 1 iff
element ³ of � �@� appears in a. Note that u v z a ~ is just
the Hamming weight of ² a. One natural boolean
function to consider is the following: Alice and Bob
are given w
|[x´±fµ+¶D|:�0·   with the promise that ei-

ther ¸Jzow
|[x�~�¹   ¢��º��� , in which case y{z�w}|[x�~4�`¶ ,
or ¸Jzow
|[x�~S»   ¢ , in which case y{zow}|;x�~��K� . Here¸Jzow}|;x�~ denotes the Hamming distance between w
and x , that is, the number of bit positions in whichw and x differ. Alice and Bob view their inputs w
and x as characteristic vectors of certain streams a ¼
and a ½ . The value u v z a ¼1� a ½
~ is then just the Ham-
ming weight of w1¾§x , the bitwise OR of w and x . By
constraining the weights of the inputs w and x to be
close to each other and less than   ¢^����� , one can
use an z��+|;�
~Vu
v -approximation algorithm to deter-
mine the value of y{z�w}|;x&~ with error probability at
most � . Unfortunately, it is rather difficult to lower
bound the one-way communication complexity of y
directly.

Fix � and set ¿À�¡¿Ez��P~f� ���Á , where we as-
sume ¿ is a power of 2 for convenience. In this pa-
per we consider the one-way communication com-
plexity of computing the following related promise
problem Â�Ã Á zo¿[~ . Alice has a vector wÄ±£� ¶�|:�:�ÆÅ with
small rational coordinates and with �.� w{�2� ¢ �Ç� . Bob
has a basis vector x drawn from the standard ba-
sis µjÈ � |:É:É�É:|�È Å · of Ê�Å . Both parties are given the
promise that either Ëow}|;x�Ì��¡¶ or Ë�w}|;x&ÌÀ� �Í Å ,where Ë[|�Ì denotes Euclidean inner product. We
show the one-way communication complexity of
deciding Â Ã Á zo¿[~ with error probability at most �
when w}|;x are drawn from a uniform distribution is�Szo¿[~ . We do this by using tools from information
theory developed in [5] which generalize the notion
of VC-dimension [10] to shatter coefficients.

We then reduce Â Ã Á zo¿[~ to that of approximat-
ing u
v of a certain stream. In the reduction we
use a deterministic zÎ� ¬ÐÏ ~ -distorting embeddingÑ

between an Ò Å¢ and an ÒÔÓ� norm (defined below)

developed in [6], where ÕC�Ö®K×&¿\Ø Ù�Ú z0ÛÜ ~Ý ÁßÞ . Al-

ice computes
Ñ zow­~ and Bob computes

Ñ zox�~ . De-
pending on whether Ëow}|;x�Ìà�á¶ or Ë�w}|;x&Ìà� �Í Å ,�2� w£�ÇxA�.� ¢¢ �â�2� w��.� ¢¢ ¬ �.� xA�.� ¢¢ �ÇãDËow
|[x�Ì will be ã
or ã�zÎ�S� �Í Å ~ . By choosing Ï appropriately small,� Ñ z�wq~R� Ñ zox�~:� �Ää �2� w���xA�.� ¢ . We then rationally
approximate the coordinates of

Ñ zow­~ and
Ñ z�x�~ and

scale all coordinates by a common denominator.
We convert the integer coordinates of the scaledÑ zowq~ and

Ñ z�x&~ into their unary equivalents, obtain-
ing bit strings wqå and x&å of length � , where � is
determined by parameters chosen in the reduction
(specifically, � is a function of � and Ï ). We show
how a z��Í Å �æ�+|;�
~ approximation algorithm com-



puting ç
è=é�ê=ë+ìtí�ê=îEì�ï can decide ð�ñóò3éoô[ï with proba-
bility at least õVöl÷ . Since the communication com-
plexity of ð ñ ò
éoô[ï is ô1øúùû ò , the space complexity ofé�ü+ý�÷
ï approximating ç è in a universe of dimensionþ is ÿ�� ùû ò�� . The goal is then to find the smallestþ for a fixed ü so that an é�ü�ý�÷
ï�ç è -approximation
algorithm can decide ð ñ ò0é�ô[ï . We determine þ to be� � ùû����
	�� � ù û �
� , which shows an ÿ � ùû ò � space lower
bound for üVøfÿSé þ��������� ï , for any ����� , and hence
an þ ò� lower bound for all smaller ü .
2 Preliminaries

2.1 Communication Complexity

Let ����� �"!$# %&��ý�õ(' be a Boolean func-
tion. We will consider two parties, Alice and Bob,
receiving ) and * respectively, who try to compute�{é+)
ý,*�ï . In the protocols we consider, Alice com-
putes some function -�é+)­ï of ) and sends the result
to Bob. Bob then attempts to compute �{é+)}ý.*�ï from-�é/)qï and * . Note that only one message is sent, and
it can only be from Alice to Bob.

Definition 1 For each randomized protocol ð as
described above for computing � , the communica-
tion cost of ð is the expected length of the longest
message sent from Alice to Bob over all inputs. The÷ -error randomized communication complexity of� , 0213é��«ï , is the communication cost of the optimal
protocol computing � with error probability ÷ (that
is, 354
6 ð�é+)
ý,*�ï87ø9�{é+)
ý,*�ï�:<;�÷ ).
For deterministic protocols with input distribution= , define >@?�A 1 éB�«ï , the ÷ -error = -distributional
communication complexity of � , to be the com-
munication cost of an optimal such protocol. Using
the Yao Minimax Principle, 0C1
éB�«ï is bounded from
below by > ?�A 1 for any = [12].

2.2 VC dimension

Let D øE%&�F�G�H# %&��ý:õ�'�' be a family of
Boolean functions on a domain � . Each ��IJD
can be viewed as a K �LK -bit string � ùNM
MOM �QP RSP .
Definition 2 For a subset TVUW� , the shatter co-
efficient XZY�éB�([qï of T is given by K\%&�]K ^<'`_(a(bCK , the
number of distinct bit strings obtained by restrict-
ing D to T . The c -th shatter coefficient XZY�é/D@ýdc�ï ofD is the largest number of different bit patterns one

can obtain by considering all possible �]K [ , where X
ranges over all subsets of size c . If the shatter coeffi-
cient of T is e P ^ P , then T is shattered by D . The VC
dimension of D , VCD( D ), is the size of the largest
subset TfU�� shattered by D .

The connection between VC dimension and ran-
domized one-way communication complexity was
first explored in [9]. The following theorem lower
bounds the (one-way) communcation complexity of� in terms of information theory.

Theorem 3 For every �g�S�$�h! #i%&��ý�õ(' and
every �kjG÷kj õ , there exists a distribution = on����! such that

> ?�A 1
é��«ïml�n0éÎõ öpo@q0é�÷
ï;ïWý
where n�ø VCD é�� R ï .
The following generalization of this theorem [5] is
useful when computing rGYC>léB�(sSï is difficult.

Theorem 4 For every function �t�p�u�9!v#%w�Dý:õ(' , every cLlxrGYC> é�� R ï , and every ÷y�x� ,
there exists a distribution = on ���z! such that:

> ?�A 1
éB�«ïml �
	�� é�XZY�éB� R ý.cÔï[ï{öpc|{Oo@q0é�÷
ï
2.3 Embeddings

For a survey on low-distortion embeddings the
reader is referred to [8]. The c/}~ norm in ��} of a

vector ) is defined to be K
K )�K
K ~ ø��&� }��� ù ) ~ �w� �� . AéÎõ5���Aï -distortion embedding �L��c/}� #�cB�� is a map-
ping such that: for any �}ýd�GI�c�}� ,

õõ��p� K
K �ºöp�QK�K � ;�K�K ��é\�qïNöp��é/�
ï
K�K � ;�K
K � ö��QK
K �
We will need the following theorem [6] in our re-
duction:

Theorem 5 For every � , there exists a é[õ@���«ï -
distortion embedding ����c/}q # cB�ù with �ßø� � ô`� �d�w� � ¢¡£ ò � .
We will use the notation K )�K to mean the c ù norm of) and K
K )�K
K to mean the c+q norm of ) .



3 Reduction

We proceed as outlined in section 1.1. Recall
that ¤ is fixed, and we set ¥�¦E¥¨§�¤ª©�¦�«�¬N­®�¯±° ,
which we assume to be a power of 2 for conve-
nience. We first define and lower bound the com-
munication complexity of ²2³ ¯ §/¥,© .
3.1 Complexity of ² ³ ¯ §+¥,©
Let ´µ¦·¶w¸ ­w¹Oº
ºOº
¹ ¸w»d¼ be the standard basis of ¥
unit vectors in ½ » . We define the promise problem²�¾³ ¯ §+¥,© as follows:

² ¾³ ¯ §+¥,©¿¦ ¶�§/À ¹.Á ©mÂhÃ Ä ¹
Å¨Æ »ZÇ ´gÈ¢È�È À�È
È±¦ Å
and either É+À ¹,ÁQÊ ¦ËÄ or É+À ¹,ÁQÊ ¦ ÌÍ ¥ ¼

We will only be interested in tuples §+À ¹,Á ©ÎÂ�²2³ ¯ §/¥,©
in which the descriptions of the coordinates of À
and Á are finite, so we impose the constraint that
these coordinates be rational. We will also need
to assign probability distributions on Ï Ç�Ð to
use Theorem 4, so it will be convenient to as-
sume these rational numbers have size bounded byÑ ¦ÓÒ Ì]Ô�Õ±Ö ¥�× , where the size of a rational numberØ Ù ¦ÚÒ Ô
Õ�Ö�Û §ÝÜÞ©
ß Ô
Õ�Ö�Û §�à(©
ß Å × . We define the promise
problem ² ³ ¯ §/¥,© :² ³ ¯ §/¥,©¿¦ ¶¢§+À ¹.Á ©OÈ�§+À ¹.Á ©ÎÂz² ¾³ ¯ §/¥,© and á|â ¹ÀÞã and Á ã are rational with size ä Ñ ¼
We let Ï denote the set of all À for which there
exists a Á such that §+À ¹,Á ©ÎÂå² ³ ¯ §/¥,© , and we define Ð
similarly. For §+À ¹.Á ©æÂç² ³ ¯ §+¥,© , we define è�§/À ¹,Á ©Î¦Ä if É+À ¹.ÁQÊ ¦�Ä and è�§+À ¹,Á ©m¦ Å if É+À ¹,ÁQÊ ¦ Ûé » . As
stated in the preliminaries, we can view è�§/À ¹.Á © as a
family of functions ê�¦�¶&è(ëQ§ Á ©æì Ð�í ¶wÄ ¹
Å ¼8È ÀLÂÏz¼ , where è ë § Á ©5¦îè�§+À ¹,Á © .
Theorem 6 The »ï th shatter coefficient of ê is

Ì(ð ¯¨ñóòôwõ » .
Proof For any subset ö9¦÷¶w¸ ã ò ¹Oº
ºOº ¸ ã¨øô ¼úùfû of»ï vectors, we define À|ü to be the normalized aver-
age Ûé »<ý9þdÿ ü ¸ . From our assumptions on ¥ , the
coordinates of À ü are rational with size bounded
above by

Ñ
. We define the set Ï ­ ùVÏ as Ï ­ ¦¶
À ü È
ö÷ù Ð ¼ . The claim is that every length- ¥ bit

string with exactly »ï 1s will occur in the truth table
of è�� ò . Consider any such string with 1s in posi-
tions â ­ ¹Oº
ºOº¨¹ â øô , and let öÚ¦ ¶w¸ ã ò ¹
ºOº
º ¸ ãªøô ¼ . Then

for all ¸�Â�ö , É+ÀÞü ¹ ¸ Ê ¦ É Ûé » ý þdÿ ü ¸ ¹ ¸ Ê ¦ Ûé » so
that è ë�� §/¸`© ¦ Å , and for all ¸ �Â�ö , É+ÀÞü ¹ ¸ Ê ¦ Ä
since ÀÞü is in an orthogonal subspace to ¸ , and
hence è ë�� §/¸`©C¦÷Ä . Since there are ¬ » øô °�� Ì�ð ¯¨ñóòô&õ »
such strings, the theorem follows.

Corollary 7 For all �	� ­ï , the one-way communi-
cation complexity ½�
(§�è © is �C§/¥,© .
Proof We can apply Theorem 5 so long as ¥�
����� §Bè�� ò © , but this is clear since È û�È ¦�¥ so that
for all subsets � ­ ù�� ,

����� §Bè�� ò © ä�¥ . We de-
duce that there exists an input distribution � such
that

����� 
 §�è © is at least Ô
Õ�Ö §�� � §�è�� ò ¹ ¥,©,©���¥�� Û § �(© �¥¨§ � Û § ­ï ©!�"� Û § �(©.©,©C¦#�C§+¥,© . By the Yao minimax
principle [12] the corollary follows.

We will need the following connection between $ »Ûdistances and dot products: Let §+À ¹,Á ©"ÂÚ² ³ ¯ §+¥,© .
Using the relation È
È Á �îÀ�È
È Û ¦·È�È Á È�È Û ß È
È À�È�È Û �
Ì É/À ¹,ÁQÊ , the property that È
È Á È
È ¦ÚÈ�È À�È
È ¦ Å , and the
inequality

Í Å �p¤%� Å � ®Û for Ä�� ¤&� Å , we see:

è�§/À ¹.Á ©�¦ËÄ ' È
È Á ��À�È�È Û ¦ Ì' È
È Á ��À�È�È�¦ Í Ìè�§/À ¹.Á ©�¦ Å ' È
È Á ��À�È�È Û ¦ Ì � (Í ¥' È
È Á ��À�È�È�¦ Í Ì ) Å � ÌÍ ¥� Í Ì § Å � ÅÍ ¥ ©
3.2 Embedding $ »Û into $ Ø�* ³,+ ñ » õ­

Let -p¦.-]§+¥,© be a function to be specified later.
Let / be a § Å ß0- © -distortion embedding /çì1$ »Û í $32­ ,
with 4@¦65�7O¥�8 9;: ñ ò< õ= ¯?> , as per Theorem 6. Alice and
Bob can construct the same embedding / locally
without any communication overhead. Let §/À ¹,Á ©
be an instance of ²�³ ¯ §+¥,© and let Alice possess À and
Bob possess Á . Alice computes /�§/ÀÞ© , Bob com-
putes /�§ Á © . By the distance-distorting properties of/ , we have:

ÅÅ ß@- ä È /�§+À|©OÈ ¹ È /�§ Á ©
È�ä Å (1)

È
È Á ��À�È
È
Å ßA- ä È /�§ Á ©!�A/�§+À|©OÈxäyÈ
È Á ��À�È
È (2)



3.3 Rational Approximation

We will need the coordinates of BDCFEHG and BDCFIJG
to be rational. This will change K BDCFEHGLK , K BMC IJGLK , andK BMC ENGPOQBDCFIJGRG�K , but not by much if we choose a
good rational approximation. We fix a functionS@TUS C VRG	WHXZY[X to be specified later. Let \ S1]
denote the set of nonnegative integers less than S .
Let ^�_�` denote the fractional part of a real number_ , so that _aOb^�_�` is an integer. Then it easily
follows that for any real number _ , there exists a
unique c T c�CF_�Ged"\ S�] with fhg.^�_�`iObjk gmlk . For
this value of c we define the rational approximationn C _�G of _ to be

n C _�G T C _oOp^�_�`�Giq jk . For ar
-dimensional real vector s T CF_ l�t�uLu�uLt _wvwG , we

define
n CFsxG T C n C _ l G tLuLu�uyt n CF_wv�GRG .

By our choice of rational approximation, we
have: K BDCFEHGLK1O rS g?K n C3BDCFEHGRG�KzgQK BDCFENG�K�q rS (3)K BDCFIJGLK�O rS g{K n C3BDC IxG|GLKigQK BDCFIJGLK�q rS (4)

K BDC IxG!OABDC ENGLK1O rS g}K n C�BDCFIJGRG!O n C3BDCFEHGRGLK (5)

K n C3BDCFIJG|G~O n C3BDC ENGRG�Kzg?K BDCFIJG�O@BMC ENG�K�q rS (6)

3.4 Reduction to Distinct Elements

Alice and Bob now convert their transformed in-
puts to integer vectors. To do this, they scale each
coordinate by S , scaling the norm of their vectors byS . For

r
-dimensional vectors s T CFs l�t�uLuLu�t s1vwG , letc�CFsxG denote the vector C S�� s lwt�uLuLu�t S�� s1v�G , so that Al-

ice and Bob now have c�C n C�BMC ENG|GRG and c�C n C3BDCFIJG|GRG
respectively.

The idea is to convert each of these integer coor-
dinates to their unary representation so that we can
reduce this problem to that of computing Hamming
distances between bit strings. Since K n C3BDCFEHGRG�K�gK BMC ENG�K1q vk g�� , each coordinate of

n C3BDCFEHGRG is ra-
tional with absolute value less than or equal to � .
Hence, each coordinate of c�C n C�BDCFENG|GRG is an integer
with absolute value less than or equal to � S . For
each integer � , Oi� S g���g�� S , we define its unary
equivalent ��CF��G to be a bit string of length � S with
first � S q.� bit positions to be 1s, and remaining
bit positions to be 0s, namely, �DC ��G Tm�w����� k f � k�� � .

For a
r
-dimensional integer vector s T C s l�tLu�uLuLt s1vwG

with coordinates in the range \,Oi� S t � S1] , we de-
fine ��CFsxG to be CF��CFs l G t�uLu�uLt ��CFs v G|G . For any two
such vectors s l t s � with coordinates in \�Oi� S t � S1] ,
it is easy to see that K s l O�s � K T#� CF��CFs l G t ��CFs � GRG ,
where � refers to Hamming distance. Let EH� T�DC�c�C n C�BDCFENG|GRG|G and Ix� T �DC�c�C n C�BMC IJGRGRG|G . Note that
both EN� and Ix� are bit strings of length CF� S q � G r .

Let �%VyCFEHG denote the number of 1s in bit string E .
Since K c�C n C3BDC ENGRG|GLK T �%VyC E � G and K c�C n C�BDCFIJGRG|GLK T�%VyCFIx��G , combining (1), (3) and (4), we see that:S�� �� q@� O rS�� g��%VyCFE � G�g S���� q rSM�S � �� qA� O rS � g��%VyC I � Gzg S � � q rS �
Also, since � C EN� t Ix��G T K c�C n C3BDCFEHGRG|G�Oc�C n C�BDCFIJGRG|GLK T S K n C3BDCFEHGRG"O n C3BDCFIJG|GLK , com-
bining (2), (5), and (6), we observe:S K�K I O¡E�K�K� q@� O r g � CFE � t I � G�g S K�K IPO¡E�K�K�q r

(7)

We now transform these observations on Hamming
distances into observations on the number of dis-
tinct elements of streams. Alice and Bob can pre-
tend their bit strings EH� and Ix� are the characteristic
vectors of certain streams a ¢�£ and a ¤y£ in a universe
of size CF� S q � G r . There are an unbounded num-
ber of streams that Alice and Bob can choose from
which have characteristic vectors EH� and Ix� . They
choose two such streams arbitrarily, say a ¢ £ and a ¤ £ ,
which will be fed into local copies of an ¥D¦ approx-
imation algorithm. Let a ¢�£¨§ a ¤y£ be the stream which
is the concatenation of streams a ¢ £ and a ¤ £ , so that
its characteristic vector is just the bitwise OR EH��©%Iª�
of E«� and Ix� .
Claim 8 Let EN� t Iª� t a ¢ £ t a ¤ £ be as above. Suppose¬ l C S Gzg­�%VyCFEN�®G t �%VyC Ix�®G%g ¬ � C S G for some

¬ l C S Gzg¬ � C S G functions of S . Then
¬ l C S G0q{¯�° ¢ £®± ¤ £,²� g¥ ¦ C a ¢ £ § a ¤ £ G�g ¬ � C S G�q�¯�° ¢ £�± ¤ £�²� .

Proof As noted above, ¥ ¦ C a ¢ £ § a ¤ £ G is just�%VyCFEN��©PIª��G . Let ³ be the number of positions which
are 1 in Ix� but 0 in EN� . Then � CFEN� t Ix�®G T C �%VyCFEN�FG�OCF�%VyC Ix�®G�O�³LG|GyqP³ T �%VyCFEN�®G�O0�%VyC Iª��Gyq ��³ , so that ³ Tl� C � C E«� t Ix�®G�q��%VyCFIx��GDO¡�iVyCFE«�FG|G and �iVyCFEN�y©0Iª�®G T�%VyCFEN��G;q�³ T l� C � C E«� t Ix�®G�q@�iVyCFE«�FGMq@�%VyC Ix��G|G . The
claim follows from the bounds on �iVyCFEH��G t �%VyCFIx�FG .



Now suppose ´�µ ¶�·|¸x¹!º6» . Then ¼�¼ ¶¾½o¸�¼�¼�ºÀ¿ Á , so
that we have ÂyÃ ÄÅRÆÈÇ ½�É�Ê­ËoµF¶NÌ�·R¸xÌ�¹ by (7). By Claim
8 we conclude,ÍMÎ µ a Ï�Ð�Ñ a ÒyÐ3¹ÔÓÀ½�Õ ÉÁpÖ ×Ø ÖAÙ Ö × ¿ ÁÁ Ö Á Ùº�½�Õ ÉÁ Ö × Ú Ø Ö ÅÃ Ä�ÛØ Ö@Ù
On the other hand, if ´�µ ¶�·R¸J¹!º Ø

, we have

¼�¼ ¶�½¡¸�¼�¼ªÜ ¿ Á�Ý Ø ½ Ø¿ Þ�ß
so that Ëhµ ¶ Ì ·R¸ Ì ¹�Ü × Ý ¿ Á Ý Ø ½ Ø¿ Þ ß Ö É

× ß
by (7), and hence by Claim 8 we haveÍMÎ µ a Ï Ð Ñ a Ò Ð ¹àÊ × Ö É Ö ×¿ Á ½ ×¿ Á Þ Ö É Áº Õ ÉÁpÖ × Ý Ø Ö Ø¿ ÁÈß ½ ×¿ Á Þ
It remains to choose × and Ù so that these two cases
can be distinguished by an Ú�á º ÅÃ â ·|ã Û approxima-
tion algorithm for distinct elements. Let á ÌDºpäæå áfor some small constant ä to be determined shortly.
Suppose we have an µ á Ì ·;ã�¹ ÍMÎ

-approximation algo-
rithm which can distinguish these two cases. Back
substituting á for

ÅÃ â , we want:

µ Ø Ö á Ì ¹%Ý!Õ ÉÁ�Ö × Ý Ø Ö Ø¿ Á ß ½ á ×¿ Á ß (8)

ÜÀµ Ø ½ á Ì ¹&Ý�½�Õ ÉÁ Ö ×Ø Ö@Ù Ý Ø Ö Ø¿ Á ßiß
If É ºèç�µ × á ¹ , there exists a constant á Î such that for
all á Ü á Î , (8) is equivalent to:

µ Ø Ö á Ì ¹&Ý × Ý Ø Ö Ø¿ Á ß ½ á ×¿ Á ßÜQµ Ø ½ á Ì ¹&Ý ×Ø Ö@Ù Ý Ø Ö Ø¿ Á ß%ß
Setting ä	º ÅéLê Ã Ä ÆMÅ�ë , one finds after some algebra
that for sufficiently small, but constant á , one can
set Ù ºèìíµ á ¹ .

Our computations mean that Éíºèî�ï ÅðFñ!ò�ó1ô ï Å ð�õ�õ
so that Éöº ç�µ × á ¹ so long as we set × º÷ ï Åð3ø ò�ó�ô ï Å ð�õ�õ and hence in dimension ìíµ × É�¹Aº÷ ï Åð3ù ò�ó�ô ï Å ð�õ�õ an µúìíµ á ¹¨·;ã�¹ Í Î

approximator can
distinguish the above two cases with error proba-
bility at most ã , which means by the reduction that
it must take û�ï Åð ü õ space.

Let ýþºÿìÀï Åð3ù ò�ó1ô ï Å ð õ�õ . Then we see that for

all á ºèû Ú ý��
�ù���� Û , for any

�	� » , there is a space

lower bound of û ï Åð ü�õ on µ á ·;ã�¹ approximating the
number of distinct elements in a universe of size ý .

4 Conclusions

We have shown a tight space lower bound ofû ï Åð3ü�õ on µ á ·|ã�¹ approximating the number of dis-
tinct elements in a universe of size ý when á ºû Ú ý
�

�ù���� Û , for any
��� » .

The upper bound of çxµFý �ù ¹ on
Ø�
 á can be some-

what relaxed by strengthening the analysis pre-
sented in this paper. For example, one could use
a randomized embedding of the relevant � âÄ vectors
into ���Å ; this would give Éíºèî�µ ò�ó1ô Þ 
 Ù Ä ¹ and lead to
a somewhat higher upper bound on

Ø�
 á . Instead of
following along these lines, we mention that, very
recently, the second author managed to improve the
upper bound on

Ø�
 á to ý Å�� Ä [11], which is opti-
mal. The approach of that paper is as follows. Ob-
serve that one can reformulate the reductions given
in Section 3 as a method for constructing a set of
vectors in ��»�· Ø���� that results in a large bound for
the shatter coefficient of the function ´�µF¶M·R¸J¹ . The
set is constructed indirectly: first, the vectors are
chosen in � âÄ , then they are mapped into ���Å , and then
finally into the Hamming space. This indirect route
blows up the dimension of the vectors by a poly-
nomial factor. Instead, in [11], the vectors are con-
structed directly in the Hamming space via a (fairly
involved) probabilistic argument.
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