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Abstract

We prove strong lower bounds for the space com-
plexity of (e, 8)-approximating the number of dis-
tinct elements Fy in a data stream. Let m be the size
of the universe from which the stream elements are
drawn. We show that any one-pass streaming algo-
rithm for (e, 8)-approximating Fo must use Q (%)

space when € = §} (m_gﬁ),for any k > 0, im-

proving upon the known lower bound of ) (%) for
this range of €. This lower bound is tight up to a fac-
tor of loglogm. Our lower bound is derived from
a reduction from the one-way communication com-
plexity of approximating a boolean function in Eu-
clidean space. The reduction makes use of a low-

distortion embedding from an ly to an l; norm.

1 Introduction

Let a= ay,...,a, be a sequence of elements,
which we will refer to as a stream, from a universe
of size m, which we denote by [m] = {0,...,m —
1}. In this paper we examine the space complex-
ity of algorithms that count the number of distinct
elements Fy = Fy(a) in a. All algorithms will be
given one-pass over the elements of a, which are ar-
ranged in adversarial order. An algorithm A is said
to (e,d) approximate Fy on stream a if A outputs
a number Fy such that Pr[|Fy — Fy| > eFy] < 6.
Since there is a provable deterministic space lower
bound of £2(m) for computing or even approximat-
ing F within a multiplicative factor of (1 + €) [1],
there has been considerable effort to devise random-
ized approximation algorithms.

There are several practical motivations for de-

*This work was supported in part by NSF ITR grant CCR-
0220280 and Sloan Research Fellowship.

Supported by Akamai Presidential Fellowship for the dura-
tion of this work.

David Woodrufft
MIT
dpwood @mit.edu

signing space-efficient algorithms for approximat-
ing Fp. Computing the number of distinct elements
is very valuable to the database community. Query
optimizers can use Fj to find the number of unique
values in a database with a certain attribute with-
out having to perform an expensive sort on the val-
ues. With commercial databases approaching the
size of 100 terabytes, it is infeasible to make mul-
tiple passes over the data since the sheer amount of
time spent looking at the data is prohibitive.

Other applications include networking: internet
routers that only get one quick view at incoming
packets can gather the number of distinct destina-
tion addresses passing through them with only lim-
ited memory. For an application of Fy algorithms
to detecting Denial of Service attacks, see [2].

There have been a multitude (e.g., [7, 1, 4]) of
algorithms proposed for computing Fy in a data
stream, beginning with the work of Flajolet and
Martin [7]. The best known algorithm was pre-
sented in [4] and (e,d) approximates Fy in space
O(((%)2 loglogm-+logmlog 1)log 3). In this pa-
per we will take § to be constant.

For reasonable values of m and € (e.g., m = 232,
€ = 10%), the storage bound of the algorithms is
dominated by the 1/€? term. If one wants even
better approximation quality (e.g., € = 1%), the
quadratic dependence on 1/e constitutes a severe
drawback of the existing algorithms. This raises the
question (posed in [4]) if it is possible to reduce the
dependence on 1/e. Till now, the best known lower
bound for the problem was Q(logm + 1/¢) [1, 3].

In this paper we answer this question in the neg-
ative. In particular, we show that any algorithm
for approximating Fy up to a factor of (1 + €) re-
quires Q(1/€?) storage, as long as 1/e¢ = o(m®)
for certain o > (. This matches (up to a factor of
loglog m for small €, and log(1/e) for large €) the
upper bound of [4].



1.1 Overview of techniques and technical
results

One way of establishing a lower bound is to
lower bound the communication complexity of
computing certain boolean functions and reduce
them to that of computing Fp [3]. In this model
there are two parties, Alice and Bob, who have in-
puts z and y respectively and wish to compute the
value of a boolean function f(x, y) with probability
atleast 1—4. The idea is that Alice can run a distinct
elements algorithm A on z and transmit the state S
of A to Bob. Then Bob can plug S into his copy of
A and continue the computation on y. This compu-
tation will return a number Fy which is a (1 + €)
approximation to Fy(z o y) with probability at least
1 — 6. If Fy can be used to determine f(x,y) with
error probability less than J, then the communica-
tion cost is just the space used by A, which must
be at least the one-way communication complexity
of computing f(z,y). In [1] the authors reduce the
communication complexity of computing equality
EQ(z,y) to computing Fy(z o y). Since the ran-
domized communication complexity of EQ(z,y)
is ©(logm), this established an Q(logm) lower
bound for computing Fjp.

We would like to obtain lower bounds in terms
of the approximation error €. In [3] the one-way
communication complexity of the e-set disjointness
problem is used to derive an (1) space lower
bound for approximating Fy. Here Alice is given
asetx C [m] with |[z| = 7 and Bob is given a
set y C [m] with |y| = € * m. Furthermore, both
parties are given the promise that either y C z or
yNz = . In case of the former, Fy(xoy) = 3 and
in the latter Fy(zoy) = 3 +exm. Hence, an algo-
rithm which (e, d) approximates Fy can distinguish
these two cases. However, this reduction is partic-
ularly weak since Alice can replace the Fy approx-
imation algorithm with an algorithm which simply
samples O(L) of the elements s; of [m], checks if
s; € x, and sends the result to Bob. This motivates
the search for promise problems which use the full
power of a distinct elements algorithm as a subrou-
tine.

Given a stream a, its characteristic vector vg is
the m-dimensional vector with ¢th coordinate 1 iff
element { of [m] appears in a. Note that Fy(a) is just
the Hamming weight of vg. One natural boolean
function to consider is the following: Alice and Bob
are given z,y € {0,1}™ with the promise that ei-

ther A(z,y) < T —em, in which case f(z,y) = 0,
or A(z,y) > %, in which case f(x,y) = 1. Here
A(z,y) denotes the Hamming distance between z
and y, that is, the number of bit positions in which
z and y differ. Alice and Bob view their inputs z
and y as characteristic vectors of certain streams a,,
and a,. The value Fy(a, o a,) is then just the Ham-
ming weight of 2V y, the bitwise OR of z and y. By
constraining the weights of the inputs z and y to be
close to each other and less than % — em, one can
use an (€,8) Fp-approximation algorithm to deter-
mine the value of f(z,y) with error probability at
most §. Unfortunately, it is rather difficult to lower
bound the one-way communication complexity of f

directly.

Fix € and set t = t(e) = %, where we as-
sume ¢ is a power of 2 for convenience. In this pa-
per we consider the one-way communication com-
plexity of computing the following related promise
problem II;, (¢). Alice has a vector z € [0, 1]* with
small rational coordinates and with ||z||» = 1. Bob
has a basis vector y drawn from the standard ba-
sis {e1,...,e;} of R. Both parties are given the
promise that either (z,y) = 0 or (z,y) = %,
where (,) denotes Euclidean inner product. We
show the one-way communication complexity of
deciding I, (¢) with error probability at most §
when z, y are drawn from a uniform distribution is
Q(t). We do this by using tools from information
theory developed in [5] which generalize the notion
of VC-dimension [10] to shatter coefficients.

We then reduce II;,(¢) to that of approximat-
ing Fy of a certain stream. In the reduction we
use a deterministic (1 + -y)-distorting embedding
# between an 5 and an I{ norm (defined below)

1
developed in [6], where d = O (tmi#) Al-

ice computes ¢(z) and Bob computes ¢(y). De-
pending on whether (z,y) = 0 or (z,y) = %,
llz =yl = llll3 + llyll3 — 2(x,y) will be 2
or2(1 — %) By choosing v appropriately small,
|p(z) — ¢(y)l1 ~ ||z — yl|l2. We then rationally
approximate the coordinates of ¢(z) and ¢(y) and
scale all coordinates by a common denominator.

We convert the integer coordinates of the scaled
¢(x) and ¢(y) into their unary equivalents, obtain-
ing bit strings z’ and y' of length m, where m is
determined by parameters chosen in the reduction
(specifically, m is a function of € and 7). We show
how a (\/LZ = ¢€,0) approximation algorithm com-



puting Fy(ag o ay) can decide II;, (t) with proba-
bility at least 1 — §. Since the communication com-
plexity of I, (¢) is t = %, the space complexity of
(€, 0) approximating Fg in a universe of dimension
m is Q (6%) The goal is then to find the smallest
m for a fixed € so that an (¢,d) Fp-approximation
algorithm can decide IT;, (). We determine m to be
w (}9 log (%)) , which shows an (eiz) space lower
bound fore = Q(m™ e ), forany k& > 0, and hence
an m3? lower bound for all smaller e.

2 Preliminaries
2.1 Communication Complexity

Let f : X x Y — {0,1} be a Boolean func-
tion. We will consider two parties, Alice and Bob,
receiving z and y respectively, who try to compute
f(z,y). In the protocols we consider, Alice com-
putes some function A(z) of z and sends the result
to Bob. Bob then attempts to compute f(z,y) from
A(z) and y. Note that only one message is sent, and
it can only be from Alice to Bob.

Definition 1 For each randomized protocol 11 as
described above for computing f, the communica-
tion cost of 11 is the expected length of the longest
message sent from Alice to Bob over all inputs. The
d-error randomized communication complexity of
I, Rs(f), is the communication cost of the optimal
protocol computing f with error probability 6 (that

is, Pr{II(z,y) # f(@,y)] < ).

For deterministic protocols with input distribution
w, define D, 5(f), the d-error p-distributional
communication complexity of f, to be the com-
munication cost of an optimal such protocol. Using
the Yao Minimax Principle, Rs(f) is bounded from
below by D,, s for any p [12].

2.2 VC dimension

Let F = {f : X — {0,1}} be a family of
Boolean functions on a domain X'. Each f € F
can be viewed as a |X'|-bit string f1 ... fx|.

Definition 2 For a subset S C X, the shatter co-
efficient SC(fs) of S is given by |{f|s}sex| the

number of distinct bit strings obtained by restrict-
ing F to S. The l-th shatter coefficient SC(F,1) of
F is the largest number of different bit patterns one

can obtain by considering all possible f|s, where S
ranges over all subsets of size l. If the shatter coeffi-
cient of S is 2!51, then S is shattered by F. The VC
dimension of F, VCD(F), is the size of the largest
subset S C X shattered by F.

The connection between VC dimension and ran-
domized one-way communication complexity was
first explored in [9]. The following theorem lower
bounds the (one-way) communcation complexity of
f in terms of information theory.

Theorem 3 For every f : X x Y — {0,1} and
every 0 < & < 1, there exists a distribution p on
X X Y such that

Dys(f) = £(1 = Hx(3)),
where £ = VCD(fx).

The following generalization of this theorem [5] is
useful when computing VCD(fx) is difficult.

Theorem 4 For every function f : X x )Y —
{0,1}, every Il > VCD(fx), and every 6 > 0,
there exists a distribution pon X x Y such that:

Dyus(f) 2 10g(SC(fx,1)) — - Ha(6)

2.3 Embeddings

For a survey on low-distortion embeddings the
reader is referred to [8]. The I} norm in R of a

1
vector 2 is defined to be ||z||, = <E:.:1 :cf) A

(1 + ~y)-distortion embedding ¢ : It — ¢ is a map-
ping such that: for any p, q € I%,

1
13 P dll- < llé@) = ¢(@)lls <llp - all-

We will need the following theorem [6] in our re-
duction:

Theorem 5 For every -y, there exists a (1 + 7)-

distortion embedding ¢ : 15 — 1 with d =
log(2)

0 (t°52).

~

We will use the notation |2| to mean the /; norm of
x and ||z|| to mean the 5 norm of z.



3 Reduction

We proceed as outlined in section 1.1. Recall
that € is fixed, and we set t = t(e) = O (%),
which we assume to be a power of 2 for conve-
nience. We first define and lower bound the com-
munication complexity of I, (2).

3.1 Complexity of II;, (¢)

Let E = {ey,...,e;} be the standard basis of ¢
unit vectors in RY. We define the promise problem
IT;, (t) as follows:

m,t) = {(z,y) €0, xEl|lz]| =1

and either (z,y) =0 or (z,y) =

2
\ﬁ}
We will only be interested in tuples (z,y) € I, (t)
in which the descriptions of the coordinates of z
and y are finite, so we impose the constraint that
these coordinates be rational. We will also need
to assign probability distributions on X x ) to
use Theorem 4, so it will be convenient to as-
sume these rational numbers have size bounded by
B = [2logt], where the size of a rational number
E = [log,(p)+1ogy(g) +1]. We define the promise
problem IT;, ():

I,(t) = {(z,9)|(z,y) € I, (t) and Vi,
x; and y; are rational with size < B}

We let X denote the set of all z for which there
exists a y such that (z,y) € II;, (t), and we define Y
similarly. For (z,y) € I, (t), we define f(z,y) =
0if (z,y) = 0and f(z,y) = 1if (z,y) = % As
stated in the preliminaries, we can view f(z,y) asa
family of functions F = {f,(y) : Y — {0,1} |z €

X}, where f5(y) = f(z,y).

Theorem 6 The %th shatter coefficient of F is
2H>(3)t,

Proof For any subset T' = {e;,,...e;, } CY of
1

i vectors, we define 7 to be the normalized aver-
age % > ecr € From our assumptions on t, the
coordinates of x are rational with size bounded
above by B. We define the set X1 C X as A} =
{z7 | T C Y}. The claim is that every length-t bit
string with exactly i 1s will occur in the truth table
of fx,. Consider any such string with 1s in posi-
tions d,...,i¢, and let T = {eil,...ei% }. Then

foralle € T, (zT,e) = (\/lz et €5 €) = % SO

that f,.(e) = 1, and foralle ¢ T, (zr,e) = 0

since 7 is in an orthogonal subspace to e, and

hence f,, (e) = 0. Since there are (;) = 2H:(3)t
4

such strings, the theorem follows. ll

Corollary 7 Forall § < %, the one-way communi-
cation complexity Rs(f) is Q(t).

Proof We can apply Theorem 5 so long as ¢t >
VCD(fx,), but this is clear since |Y| = t so that
for all subsets X; C X, VCD(fx,) < t. We de-
duce that there exists an input distribution g such
that D, 5(f) is atleastlog(SC(fx,,t))—tH2(J) =
t(H2(%) — Ha(8))) = Q(t). By the Yao minimax
principle [12] the corollary follows. ll

We will need the following connection between I}
distances and dot products: Let (z,y) € II;,(¢).
Using the relation ||y — z||*> = ||y||> + ||=]]* —
2(zx,y), the property that ||y|| = ||z|| = 1, and the
inequality /1 —e <1— 5 for0 < e < 1, we see:

f@y)=0 = |ly—zl>=2
= |ly—al =2
fla,y) =1 = ||y—w||2=2—%
= ly-al =2 1—%
1
<\/§(1_ﬁ)

3.2 Embedding I into /7*'v®"

Let v = (t) be a function to be specified later.
Let ¢ be a (1+)-distortion embedding ¢ : 1§ — 1¢,

withd = O (256

72
Bob can construct the same embedding ¢ locally
without any communication overhead. Let (z,y)
be an instance of II;, (¢) and let Alice possess z and
Bob possess y. Alice computes ¢(x), Bob com-
putes ¢(y). By the distance-distorting properties of
¢, we have:

), as per Theorem 6. Alice and

o< @l <1 Q)
W=l < o) - gl <lly—al @



3.3 Rational Approximation

We will need the coordinates of ¢(z) and ¢(y)
to be rational. This will change |¢(z)]|, |¢(y)|, and
|p(z) — ¢(y))|, but not by much if we choose a
good rational approximation. We fix a function
z = 2(t) : N = N to be specified later. Let [2]
denote the set of nonnegative integers less than z.
Let {r} denote the fractional part of a real number
r, so that » — {r} is an integer. Then it easily
follows that for any real number r, there exists a
unique s = 5(r) € [z] with0 < {r} — £ < 1. For
this value of s we define the rational approximation
Y(r) of 7 to be Y(r) = (r — {r}) + £. Fora
d-dimensional real vector v = (ry,...,rq), we

define ¥ (v) = (¥(r1), ..., ¥(rq)).

By our choice of rational approximation, we
have:

6@ - 2 < WO < bl +S 0

l¢(y)| —

[SIRSURS W

< OO <lbwl+S @
6) — 6@ ~ 2 < [9(6) ~ BB O

[¥(d() — v(6(x))| < [6(y) — o(2)] + g ©)

3.4 Reduction to Distinct Elements

Alice and Bob now convert their transformed in-
puts to integer vectors. To do this, they scale each
coordinate by z, scaling the norm of their vectors by
z. For d-dimensional vectors v = (v1,...,v4), let
s(v) denote the vector (zxv1,. .., 2%vg), so that Al-
ice and Bob now have s(¢(¢(x))) and s(¢(¢(y)))
respectively.

The idea is to convert each of these integer coor-
dinates to their unary representation so that we can
reduce this problem to that of computing Hamming
distances between bit strings. Since |[(¢(z))| <
|p(z)| + ¢ < 2, each coordinate of ¢(¢(z)) is ra-
tional with absolute value less than or equal to 2.
Hence, each coordinate of s(¢)(¢(z))) is an integer
with absolute value less than or equal to 2z. For
each integer 4, —2z < i < 2z, we define its unary
equivalent u(%) to be a bit string of length 4z with
first 22 4 4 bit positions to be 1s, and remaining
bit positions to be 0s, namely, u(i) = 1¥+22022~1,

For a d-dimensional integer vectorv = (v1, .. .,vq)
with coordinates in the range [—2z,2z], we de-
fine u(v) to be (u(vy),...,u(vq)). For any two
such vectors vy, vy with coordinates in [—2z,2z],
it is easy to see that |v; — va| = A(u(vyr),u(v2)),
where A refers to Hamming distance. Let ' =
u(s(y(4(x)))) and y' = u(s(1(¢(y)))). Note that
both z’ and y’ are bit strings of length (42 + 1)d.
Let wt(z) denote the number of 1s in bit string .

Since [s(1(¢()))| = wt(z") and [s(((y)))| =
wt(y"), combining (1), (3) and (4), we see that:

z(ﬁ—%) 5wt(x’)§z<1+;—i)
z(L—é) Swt(y')éz(ljté

1+ =z z

Also, since A(z',y') = |s(¥(¢(z))) -

s((oW)) = =z[p(d(x)) — ()|, com-
bining (2), (5), and (6), we observe:

=l aca@ ) <sly-all+a @

We now transform these observations on Hamming
distances into observations on the number of dis-
tinct elements of streams. Alice and Bob can pre-
tend their bit strings =’ and y' are the characteristic
vectors of certain streams a,r and a,s in a universe
of size (4z + 1)d. There are an unbounded num-
ber of streams that Alice and Bob can choose from
which have characteristic vectors ' and y'. They
choose two such streams arbitrarily, say a,r and ay,
which will be fed into local copies of an Fy approx-
imation algorithm. Let a s oa, be the stream which
is the concatenation of streams a,s and a,, so that
its characteristic vector is just the bitwise OR z' Vy'
of z’ and y'.

Claim 8 Let z',y',a,,a, be as above. Suppose

B1(2) < wt(z"), wt(y') < Pa(2) for some B1(z)
B2(z) functions of z. Then B1(z) + M
Folw 0ay) < fas) + 2220

ININA

Proof As noted above, Fy(a, o a,) is just
wt(z' Vy'). Let ¢ be the number of positions which
are 1 iny’ but 0in z'. Then A(z',y") = (wt(z") —
(wt(y")—c))+c = wi(z")—wt(y')+2¢, so thatc =
2 (A(',y") + wi(y') — wt(z")) and wt(z' Vy') =
wt(z')+c = § (A, y") + wi(z') +wit(y')). The
claim follows from the bounds on wt(z'), wt(y'). W



Now suppose f(z,y) = 0. Then ||z —y|| = V2, s0
that we have %3 —d < A(z',y") by (7). By Claim
8 we conclude,
3d 2
z + 22

F; ' ’ > ——
0@y cay) > 2 "1y T 252y

z(1+ %

On the other hand, if f(z,y) = 1, we have

lo-ull < V2 (1- )

so that

Al y') < 2 (x/i (1 - %) + g)

by (7), and hence by Claim 8 we have

z z d
Fo(agroay) < z4d+ —=-— —=+ =
o v) S V2 V2t 2

3_d+z(1+i)_i
2 v2/) V2

It remains to choose z and 7y so that these two cases

can be distinguished by an <e = %, 5) approxima-
tion algorithm for distinct elements. Let €' = c* €
for some small constant ¢ to be determined shortly.
Suppose we have an (€', §) Fp-approximation algo-
rithm which can distinguish these two cases. Back
substituting € for %, we want:

1 €2

o (Fe(eg)-m) @

- (i ()

If d = o (ze¢), there exists a constant €y such that for
all € < €p, (8) is equivalent to:

()3

o055 ()

Setting ¢ = ?)(\flTl)’ one finds after some algebra

that for sufficiently small, but constant €, one can

sety = O(e).

Our computations mean thatd = O (% log (%))
so that d = o(ze) so long as we set z =
w (% log (%)) and hence in dimension O(zd) =
w (% log (L)) an (O(¢),0) Fy approximator can
distinguish the above two cases with error proba-
bility at most 4, which means by the reduction that
it must take €2 (%) space.

Let m = © (5 log (%)). Then we see that for
alle = Q (m_ﬁ , forany k > 0, there is a space

lower bound of € (%) on (e, §) approximating the
number of distinct elements in a universe of size m.

4 Conclusions

We have shown a tight space lower bound of
Q (%) on (e,0) approximating the number of dis-
tinct eleqlents in a universe of size m when € =
Q (m_m), for any k£ > 0.

The upper bound of o(m ) on 1 /€ can be some-
what relaxed by strengthening the analysis pre-
sented in this paper. For example, one could use
a randomized embedding of the relevant I§ vectors
into [{; this would give d = O(log t/~?) and lead to
a somewhat higher upper bound on 1/e. Instead of
following along these lines, we mention that, very
recently, the second author managed to improve the
upper bound on 1/e to m'/2 [11], which is opti-
mal. The approach of that paper is as follows. Ob-
serve that one can reformulate the reductions given
in Section 3 as a method for constructing a set of
vectors in {0, 1}™ that results in a large bound for
the shatter coefficient of the function f(z,y). The
set is constructed indirectly: first, the vectors are
chosen in [£, then they are mapped into [{, and then
finally into the Hamming space. This indirect route
blows up the dimension of the vectors by a poly-
nomial factor. Instead, in [11], the vectors are con-
structed directly in the Hamming space via a (fairly
involved) probabilistic argument.
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