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DEFINITION
Consider a stream (i.e., an ordered list) S = a1, a2, . . . , an of elements ai ∈ [m] def= {1, 2, . . . ,m}. For i ∈ [m], its
frequency fi is the number of times it occurs in S. The k-th frequency moment Fk of S, for real k > 0, is defined
to be Fk(S) =

∑
i∈[m] f

k
i . Interpreting 00 as 0, we also define F0 this way, so that it equals the number of distinct

elements in S. Observe that F1 = n is the length of S. In the database community, F2 is known as the repeat
rate or Gini’s index of homogeneity. It is also natural to define F∞ = max1≤i≤m fi.

It is usually assumed that n is very large and that algorithms which compute the frequency moments do
not have enough storage to keep the entire stream in memory. It is also common to assume that they are
only given a constant (usually one) number of passes over the data. It is also assumed that the stream is
presented in an arbitrary, possibly worst-case order. This necessitates the use of extremely efficient randomized
approximation algorithms. An algorithm A (ε, δ)-approximates the kth frequency moment Fk if for any input
stream S, Pr[|A(S)−Fk(S)| ≤ εFk(S)] ≥ 1− δ, where the probability is over the coin tosses of A. Here, by A(S)
we mean that A is presented items in S one-by-one. Efficiency is measured in terms of the amount of memory
and update time of the algorithm.

MAIN TEXT
The frequency moments were introduced by Alon, Matias, and Szegedy [1] in their seminal paper in 1996, and are
important statistics for massive databases. Indeed, efficient algorithms for estimating F0 can be used by query
optimizers for finding the number of unique values of an attribute without having to perform an expensive sort
on the entire column. Efficient algorithms for F2 are useful for determining the output size of self-joins and for
error estimation in the context of query result sizes and access plan costs. Moreover, Fk for k ≥ 2 can indicate the
amount of skew of a data stream, and this can determine which algorithms to use for data partitioning. These
values can also be used to detect denial-of-service attacks. In general, Fk for large k can be used to approximate
the most frequent value, potentially more efficiently than computing this value directly.

There is a large body of work on bounding the memory required of Fk-approximation algorithms. In their
original work, Alon, Matias, and Szegedy surprisingly showed that F2 can be (ε, δ)-approximated using only
O( lg 1/δ

ε2 (lg n + lgm)) bits of memory. It is now known that Fk for k ≤ 2 can be (ε, δ)-approximated in 1-pass
using O( lg 1/δ

ε2 ) bits of space, up to a polylog nm factor, and there is an almost matching Ω(1/ε2) lower bound
for 1-pass algorithms. For k > 2, a sequence of work showed that Fk can be approximated in O(m1−2/k log 1/δ)
space, up to a poly(log nm, 1/ε) factor, and there is an almost matching Ω(m1−2/k) bound. The memory required
for approximating F∞ is Θ(m). Note that for k > 2 the memory required depends polynomially on m, whereas
for k ≤ 2 the dependence is logarithmic. The known algorithms use a clever combination of hashing (with limited
independence), sketching, and bucketing ideas. The corresponding lower bounds come from reductions from
problems in communication complexity, and draw from tools in combinatorics and information theory.

There are several natural questions about the computational complexity of frequency moments which remain
unanswered. For instance, for constant δ, it is unknown if Fk for 0 ≤ k ≤ 2 can be approximated more efficiently
if more than one pass (but still a constant number) is allowed. Also, it is unknown how efficiently Fk can be
approximated if the stream elements arrive in a random order.
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