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Low Rank Approximation

A is an n X n matrix

A is typically well-approximated by low rank matrix
E.g., high rank because of noise

Goal: find a low rank matrix approximating A
Easy to store in factored form
Data more interpretable



What is a Good Low Rank Approximation?

Singular Value Decomposition (SVD)
Any matrix A= U XV!T
U has orthonormal columns
2 is diagonal with non-increasing positive
entries down the diagonal
VT has orthonormal rows

Ak = argmlnrank k matrices B
|A-B]

(ICle = (Zi,j Ci,j2)1/2)

Rank-k approximation: A, = U, 2, Vi

Computing A, exactly is
expensive




Approximate Low Rank Approximation

[CW13] output a rank k matrix A’, so that with
probability > 2/3,

[A-Ar =(1+€) |A-Adlr

iIn nnz(A) + n - poly(k/e) time



Structure-Preserving Low Rank Approximation

Let A be an arbitrary n x n matrix

Instead of just finding a rank-k matrix A’ for which |A-A’|c is small,
suppose we also require A’ to be positive semidefinite (PSD)

A’ is symmetric and all eigenvalues are non-negative

Covariance matrices, kernel matrices, Laplacians are PSD
Approximate them for efficiency

Roundoff errors may make a PSD matrix non-PSD
We do not assume A is PSD but want A’ to be PSD



Structure-Preserving Low Rank Approximation

Goal: output a PSD rank-k matrix A’ for which |A-A'|z is small

Can assume A is symmetric
Ajj—Aji

sym asym sym Aji+Aj; asym
A= AT 4 AT ,whereAi";’ =%andA1jy = —=

A= A'Pp = |AY™ — A'|§ + [A*Y™ [}

Compute A*™ in nnz(A) time
What is the best PSD rank-k approximation Ay , to A?

Lemma: A . is obtained by zeroing out all but the top k positive eigenvalues in
eigendecomposition of A

IfA =UDUT, then A, = UDy, U’
If A has fewer than k positive eigenvalues, zero out all except these eigenvalues



Our Result for PSD Low Rank Approximation

(PSD low rank approximation result): In nnz(A) + n poly(k/ €) time, can find
a PSD rank-k A’ so that
ANl <(1+e) |A-A e

Previous work

“Nystrom method” based on uniform sampling requires incoherence
assumptions on A

[GM] Weaker bound |A-A'|¢ < |A-A, .| + €|]A — Ay ;|- where |.|, is
nuclear norm

[WLZ] Running time at least n“k/e and A’ has a larger rank k/e



Our Result for PSD Column Subset Selection

(PSD Column Subset Selection): In nnz(A)log n + n poly(k(log n)/ €) time, find
a subset C of O(k/e) columns of A so that A= CUC" is rank-k, PSD, and

A-A: <(1+€) [A-A e
Column subsets preserve sparsity, interpretability

Most previous results require incoherence assumptions or achieve weaker
guarantees in terms of the nuclear norm

[WLZ] Get O (15) columns but running time at least n?k/e and rank(A’) = k/e
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Pitfalls of Usual Approach

[CWO09,HMT,BWZ] Choose random matrices R, S

R has k/e columns and S has k/e rows A
A’ = argmin |ARXSA — Al and |A-A'| <(1+¢€) |A-A ¢
rank—k ARXSA
Compute AR and SA in nnz(A) time l

To solve for A, solve ARXSA

min__|T,ARXSAT, — T,AT,|%, where T,, T, are random
rank—k X

[FT] poly(k/€) time l

Need R = ST for A’ to be symmetric, but analysis
T,ARXSAT,

requires |x"SAR|, = © (|xTSA|2) for all x !



SF(e, k) Property

Given n x n input matrix A

Compute S*A using a sketching matrix S with k/e << n rows. S-A takes
random linear combinations of rows of A

SA

Let P be the n x n projection matrix onto the row span of SA

[S,CW,MM,NN,...] IA(I = P)|2 < (1 + €)|A — Ay|%

P is SF(g k) if JA(I — P)|5 < ElA — Al (recall |B|, = sup|Bx|,/Ix|5)
X



SF(e, k) Property

SF (€, k) property implies usual theory
A0 - P)|}
= |Ax(I—P)|Z + |(A — A (I — P)|z by Pythagorean theorem
<k-|[A-=P)5+ [(A— A - P)|z since Ay has rank k

<k-|[A0-P)|5+ [(A—A)JA-P)|z since |A(I — P)x|, = |Ax(I — P)x|, for all x
<k (1) IA—Al? + 1(A - AQU - P)[2 by SF(e k) property

< e|A — Agl% + |A — Ai|Z since projections don’t increase norms



A Basic Lemma

= Lemma: For symmetric A, B with (A-B)B = 0, and projection matrix P,

|A—PBP|2 = |A—BJ|% + |B—PBP|% + 2Tr(A — B)(I — P)BP



SF(e, k) Projections Give Good Solutions

= Lemma: If P is SF(¢ k) for A, then |A-PAy L P|r <(1+0(¢)) |A-Ay 4l
Proof: Since (A — Ay 4 )Ay 4+ = 0, can apply the basic lemma:

|A = PALP|- = |A— Ay |s + |Ais — PAP| + 2Tr(A — Ay, ) (I — P)Ay 4 P

)

Use SF(g, k) property of P to show these terms are O(e)|A — Ay + 12:



Finding an SF(e,k) Projection

= [CEMMP] implies if S is poly(k/e) x n i.i.d. Gaussian, Fast Hadamard
Transform, or a Sparse Embedding Matrix, then P = (SA)~SA is SF(g, k)

10 0-101
- 001000

) P-H-D , 000010

% g 0-10000




Completing the Argument

If P is SF(€, k) for A, then
A = argminrank_k PSD PXP |A — PXP'F satisfies A

A —Alp < (1 +e)|A— A,
We can also find P = (SA)~SA in 1
factored form in nnz(A) time
How to solve for A'?
= Multiply by small random matrices Ty, T;, 1
solve A" = argmingank_k psp pxp | TeAT, — T,PXPT,|¢

Tiny problem but is it in polynomial time? T{P X PTI‘

= We show how to solve it up to a (1 + €) —factor quickly
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Low Rank Column Subset Selection

[CEMMP], together with a composition lemma, gives a P = (SA)~SA
where S is a sampling and rescaling matrix, such that P is SF(¢, k) for A

and SA can be found in nnz(A)logn + n poly(g) time

k
€

S samples O( ) rows of A

Our earlier lemma implies there is a rank-k PSD solution A’ = PXP

Our earlier procedure finds X



Other Results

Symmetric Matrices

Analogous results for nnz(A) time for finding a rank-k symmetric
approximation to A, and for column/row subset selection

Low Rank Approximation with Tail Guarantee
Lett=2k/e

A PSD rank-k matrix A’ can be found in nnz(A) + n poly (lf) time with
, 2
JA-A'|E < |A — Ak,+|F + [Apyk — Aclf



Conclusion and Open Questions

First rank-k PSD approximation of an arbitrary matrix A in nnz(A) time

Optimal O (15) columns/rows for rank-k PSD subset selection, in nnz(A) logn
time

Similar results for symmetric approximations

Should be able to improve the time for column/row subset selection to
nnz(A) using known techniques

High-level question — quickly find low rank approximations with additional
structure, such as being PSD



A =UDUT is eigendecomposition
2
A —Ag.| =D —UT A, Ul where UT Ay , U is PSD and rank k
Let Dy . be the best rank-k PSD approximation to D
2
D —UT A, UZ=|D- Dk+| luDUT — U[)k,+UT|F =|A — UD,,UT|?

Ay = UDy 4 U"
But what is Dy, ., the best rank k PSD approximation to diagonal matrix D?

D,
zm+—nﬁ+m_—n@
0 Yl Yb - .
Dy + Is diagonal matrix with top

k non-negative eigenvalues of A



Solving the Small Problem

HOW tO SOIVe for A’ = argminrank_k PSD PXP |T£ATI« — T{)PXPTrll::?
Can find A" minimizing this up to a 1+e factor
Write SA = REIWT in its SVD, so P = (SA)"SA = WWT

A" = argmin,an—k psp pxp | TeATy — (T, W)WTXW (WTT,) |F

Write (T,W) = U,Z,V, and (WTT,) = U.Z, V] in their SVD, use that all
their singular values are 1 + ¢, and after some algebra,

T
X = [MZM ] where M = V,2;UTT,AT,V,2-1UT
k,+



