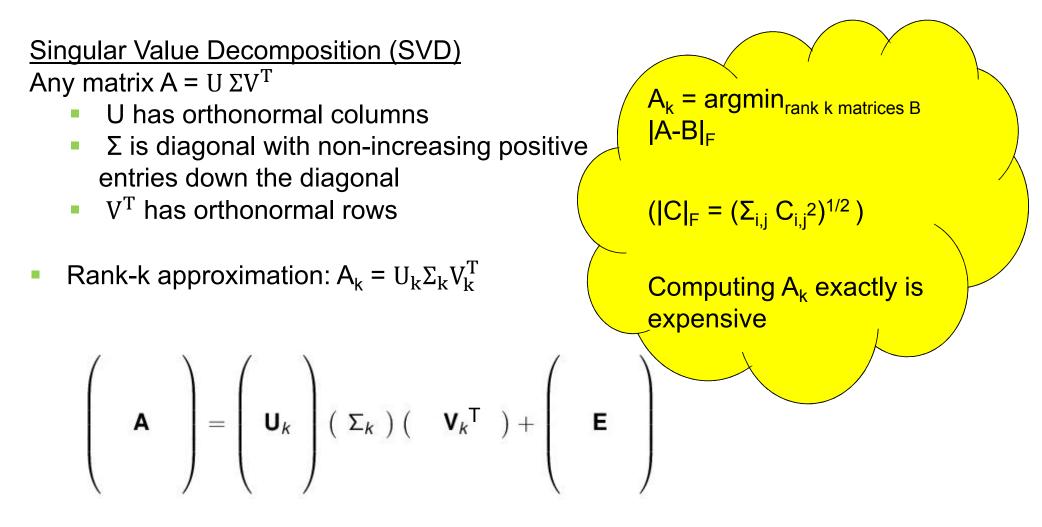
Low-Rank PSD Approximation in Input-Sparsity Time

Kenneth L. Clarkson and David P. Woodruff IBM Research Almaden

Low Rank Approximation

- A is an n x n matrix
- A is typically well-approximated by low rank matrix
 - E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
 - Easy to store in factored form
 - Data more interpretable

What is a Good Low Rank Approximation?



Approximate Low Rank Approximation

 [CW13] output a rank k matrix A', so that with probability > 2/3,

 $|A-A'|_F \leq (1+\epsilon) |A-A_k|_F$

in nnz(A) + n \cdot poly(k/ ϵ) time

Structure-Preserving Low Rank Approximation

- Let A be an arbitrary n x n matrix
- Instead of just finding a rank-k matrix A' for which |A-A'|_F is small, suppose we also require A' to be positive semidefinite (PSD)
 - A' is symmetric and all eigenvalues are non-negative
- Covariance matrices, kernel matrices, Laplacians are PSD
 - Approximate them for efficiency
- Roundoff errors may make a PSD matrix non-PSD
 - We do not assume A is PSD but want A' to be PSD

Structure-Preserving Low Rank Approximation

- Goal: output a PSD rank-k matrix A' for which |A-A'|_F is small
- Can assume A is symmetric
 - $A = A^{sym} + A^{asym}$, where $A^{sym}_{i,j} = \frac{A_{i,j} + A_{j,i}}{2}$ and $A^{asym}_{i,j} = \frac{A_{i,j} A_{j,i}}{2}$
 - $|A A'|^2_F = |A^{sym} A'|^2_F + |A^{asym}|^2_F$
 - Compute A^{sym} in nnz(A) time
- What is the best PSD rank-k approximation A_{k,+} to A?
- Lemma: A_{k,+} is obtained by zeroing out all but the top k positive eigenvalues in eigendecomposition of A
 - If $A = U D U^T$, then $A_{k,+} = U D_{k,+} U^T$
 - If A has fewer than k positive eigenvalues, zero out all except these eigenvalues

Our Result for PSD Low Rank Approximation

 (PSD low rank approximation result): In nnz(A) + n poly(k/ ε) time, can find a PSD rank-k A' so that

 $|A-A'|_F \leq (1+\epsilon) |A-A_{k,+}|_F$

- Previous work
 - "Nystrom method" based on uniform sampling requires incoherence assumptions on A
 - [GM] Weaker bound $|A-A'|_F \le |A-A_{k,+}|_F + \epsilon |A A_{k,+}|_*$ where $|.|_*$ is nuclear norm
 - [WLZ] Running time at least n^2k/ϵ and A' has a larger rank k/ϵ

Our Result for PSD Column Subset Selection

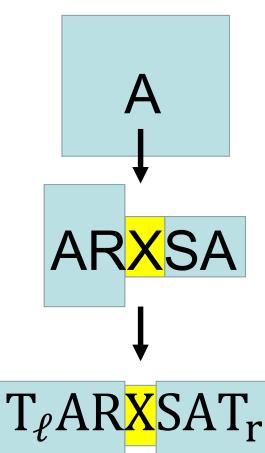
- (PSD Column Subset Selection): In nnz(A)log n + n poly(k(log n)/ ε) time, find a subset C of O(k/ε) columns of A so that A' = CUC^T is rank-k, PSD, and |A-A'|_F ≤(1+ε) |A-A_{k,+}|_F
- Column subsets preserve sparsity, interpretability
- Most previous results require incoherence assumptions or achieve weaker guarantees in terms of the nuclear norm
- [WLZ] Get $O\left(\frac{k}{\epsilon}\right)$ columns but running time at least n^2k/ϵ and rank(A') = k/ϵ

Talk Outline

- Low Rank PSD Approximation
 - Pitfalls of Usual Approach
 - SF(\epsilon, k) Property
 - Error Term Lemmas
 - Solving a Small Problem Quickly
- Low Rank PSD Column Subset Selection

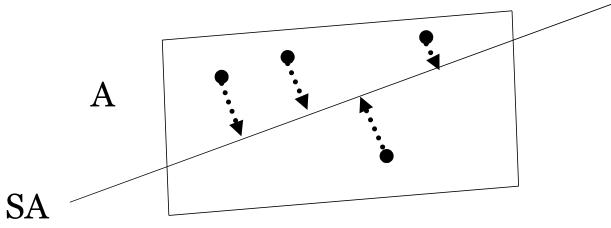
Pitfalls of Usual Approach

- [CW09,HMT,BWZ] Choose random matrices R, S
 - R has k/e columns and S has k/e rows
 - $A' = \underset{rank-k \ ARXSA}{|ARXSA A|_F^2}$ and $|A-A'|_F \le (1+\epsilon) |A-A_k|_F$
 - Compute AR and SA in nnz(A) time
- To solve for A', solve
 - $\min_{\operatorname{rank}-k\,X} |T_{\ell}ARXSAT_{r} T_{\ell}AT_{r}|_{F}^{2}, \text{ where } T_{\ell}, T_{r} \text{ are random}$
 - [FT] poly(k/ε) time
- Need $R = S^{T}$ for A' to be symmetric, but analysis requires $|x^{T}SAR|_{2} = \Theta(|x^{T}SA|_{2})$ for all x !



$SF(\epsilon, k)$ Property

- Given n x n input matrix A
- Compute S*A using a sketching matrix S with k/ε << n rows. S·A takes random linear combinations of rows of A



- Let P be the n x n projection matrix onto the row span of SA
- [S,CW,MM,NN,...] $|A(I P)|_F^2 \le (1 + \epsilon)|A A_k|_F^2$
- P is $SF(\epsilon, k)$ if $|A(I P)|_2^2 \le \frac{\epsilon}{k} |A A_k|_F^2$ (recall $|B|_2 = \sup_x |Bx|_2/|x|_2$)

$SF(\epsilon, k)$ Property

SF(ε, k) property implies usual theory

 $|A(I - P)|_{F}^{2}$

 $= |A_k(I - P)|_F^2 + |(A - A_k)(I - P)|_F^2$ by Pythagorean theorem

 $\leq k \cdot |A_k(I-P)|_2^2 + |(A-A_k)(I-P)|_F^2 \text{ since } A_k \text{ has rank } k$

 $\leq k \cdot |A(I-P)|_{2}^{2} + |(A-A_{k})(I-P)|_{F}^{2}$ since $|A(I-P)x|_{2} \geq |A_{k}(I-P)x|_{2}$ for all x

 $\leq k \left(\frac{\epsilon}{k}\right) |A - A_k|_F^2 + |(A - A_k)(I - P)|_F^2$ by SF(ϵ , k) property

 $\leq \epsilon |A - A_k|_F^2 + |A - A_k|_F^2$ since projections don't increase norms

A Basic Lemma

Lemma: For symmetric A, B with (A-B)B = 0, and projection matrix P,

 $|A - PBP|_F^2 = |A - B|_F^2 + |B - PBP|_F^2 + 2Tr(A - B)(I - P)BP$

$SF(\epsilon, k)$ Projections Give Good Solutions

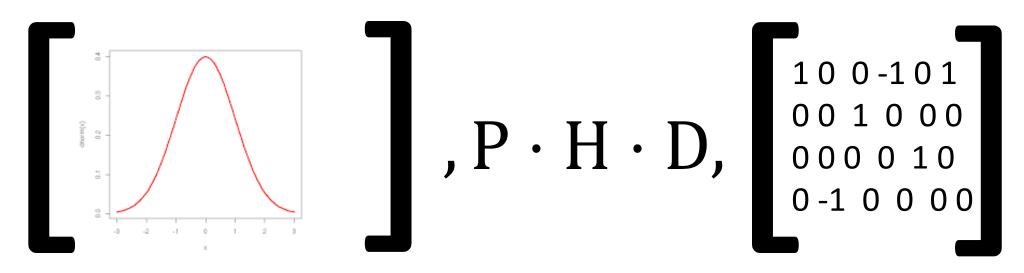
- Lemma: If P is $SF(\epsilon, k)$ for A, then $|A-PA_{k,+}P|_F \leq (1+O(\epsilon)) |A-A_{k,+}|_F$
- Proof: Since $(A A_{k,+})A_{k,+} = 0$, can apply the basic lemma:

$$|A - PA_{k,+}P|_{F}^{2} = |A - A_{k,+}|_{F}^{2} + |A_{k,+} - PA_{k,+}P|_{F}^{2} + 2Tr(A - A_{k,+})(I - P)A_{k,+}P$$

Use SF(ϵ , k) property of P to show these terms are O(ϵ) $|A - A_{k,+}|_{F}^{2}$

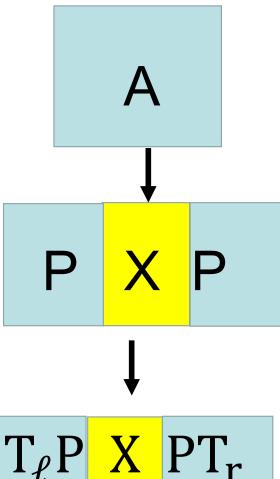
Finding an SF(ϵ ,k) Projection

• [CEMMP] implies if S is $poly(k/\epsilon) \ge n$ i.i.d. Gaussian, Fast Hadamard Transform, or a Sparse Embedding Matrix, then P = $(SA)^{-}SA$ is $SF(\epsilon, k)$



Completing the Argument

- If P is SF(ϵ , k) for A, then $A' = \operatorname{argmin}_{\operatorname{rank}-k \operatorname{PSD}\operatorname{PXP}} |A - \operatorname{PXP}|_{F}$ satisfies $|A' - A|_{F} \le (1 + \epsilon) |A - A_{k,+}|_{F}$
- We can also find P = (SA)⁻SA in factored form in nnz(A) time
- How to solve for A'?
 - Multiply by small random matrices T_{ℓ} , T_r , solve $A' = argmin_{rank-k PSD PXP} |T_{\ell}AT_r - T_{\ell}PXPT_r|_F$
- Tiny problem but is it in polynomial time?
 - We show how to solve it up to a $(1 + \epsilon)$ –factor quickly



Talk Outline

- Low Rank PSD Approximation
 - Pitfalls of Usual Approach
 - SF(ε, k) Property
 - Error Term Lemmas
 - Solving a Small Problem Quickly
- Low Rank PSD Column Subset Selection

Low Rank Column Subset Selection

- [CEMMP], together with a composition lemma, gives a P = $(SA)^{-}SA$ where S is a sampling and rescaling matrix, such that P is $SF(\epsilon, k)$ for A and SA can be found in nnz(A)log n + n poly $\left(\frac{k}{\epsilon}\right)$ time
- S samples $0\left(\frac{k}{\epsilon}\right)$ rows of A
- Our earlier lemma implies there is a rank-k PSD solution A' = PXP
- Our earlier procedure finds X

Other Results

- Symmetric Matrices
 - Analogous results for nnz(A) time for finding a rank-k symmetric approximation to A, and for column/row subset selection
- Low Rank Approximation with Tail Guarantee
 - Let $t = 2k/\epsilon$
 - A PSD rank-k matrix A' can be found in nnz(A) + n poly $\left(\frac{k}{\epsilon}\right)$ time with

$$|A - A'|_F^2 \le |A - A_{k,+}|_F^2 + |A_{t+k} - A_t|_F^2$$

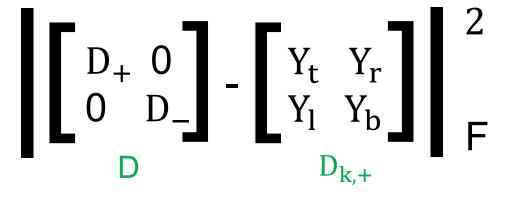
Conclusion and Open Questions

- First rank-k PSD approximation of an arbitrary matrix A in nnz(A) time
- Optimal $O\left(\frac{k}{\epsilon}\right)$ columns/rows for rank-k PSD subset selection, in nnz(A) log n time
- Similar results for symmetric approximations
- Should be able to improve the time for column/row subset selection to nnz(A) using known techniques
- High-level question quickly find low rank approximations with additional structure, such as being PSD

What is $A_{k,+}$?

- $A = U D U^T$ is eigendecomposition
- $|A A_{k,+}|_F^2 = |D U^T A_{k,+} U|_F^2$, where $U^T A_{k,+} U$ is PSD and rank k
- Let D_{k,+} be the best rank-k PSD approximation to D
- $|D U^T A_{k,+} U|_F^2 \ge |D D_{k,+}|_F^2 = |UDU^T UD_{k,+} U^T|_F^2 = |A UD_{k,+} U^T|_F^2$
- $A_{k,+} = UD_{k,+}U^T$

But what is $D_{k,+}$, the best rank k PSD approximation to diagonal matrix D?



$$\geq |D_{+} - Y_{t}|_{F}^{2} + |D_{-} - Y_{b}|_{F}^{2}$$

D_{k,+} is diagonal matrix with top k non-negative eigenvalues of A

Solving the Small Problem

- How to solve for $A' = \operatorname{argmin}_{rank-k PSD PXP} |T_{\ell}AT_{r} T_{\ell}PXPT_{r}|_{F}$?
- Can find A' minimizing this up to a $1+\epsilon$ factor
- Write SA = $R\Sigma W^T$ in its SVD, so $P = (SA)^-SA = WW^T$
- $A' = \operatorname{argmin}_{\operatorname{rank}-\operatorname{k}PSDPXP} \left| T_{\ell}AT_{r} (T_{\ell}W)W^{T}XW(W^{T}T_{r}) \right|_{F}$
- Write $(T_{\ell}W) = U_{\ell}\Sigma_{\ell}V_{\ell}^{T}$ and $(W^{T}T_{r}) = U_{r}\Sigma_{r}V_{r}^{T}$ in their SVD, use that all their singular values are $1 \pm \epsilon$, and after some algebra,

$$X = \left[\frac{M+M^{T}}{2}\right]_{k,+} \text{ where } M = V_{\ell} \Sigma_{\ell}^{-1} U_{\ell}^{T} T_{\ell} A T_{r} V_{r} \Sigma_{r}^{-1} U_{r}^{T}$$