Low-Rank PSD Approximation in Input-Sparsity Time

Kenneth L. Clarkson and David P. Woodruff
IBM Research Almaden

Low Rank Approximation

- A is an $n \times n$ matrix
- A is typically well-approximated by low rank matrix
- E.g., high rank because of noise
- Goal: find a low rank matrix approximating A
- Easy to store in factored form
- Data more interpretable

What is a Good Low Rank Approximation?

Singular Value Decomposition (SVD)

Any matrix $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$

- U has orthonormal columns
- Σ is diagonal with non-increasing positive entries down the diagonal
- V^{T} has orthonormal rows
- Rank-k approximation: $\mathrm{A}_{\mathrm{k}}=\mathrm{U}_{\mathrm{k}} \Sigma_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}^{\mathrm{T}}$

$$
(\mathbf{A})=\left(\mathbf{U}_{k}\right)\left(\Sigma_{k}\right)\left(\mathbf{V}_{k}^{\top}\right)+(\mathbf{E})
$$

$A_{k}=\operatorname{argmin}_{\text {rank } k \text { matrices } B}$ $|A-B|_{F}$
$\left(|C|_{F}=\left(\Sigma_{i, j} C_{i, j}\right)^{1 / 2}\right)$

Computing A_{k} exactly is expensive

Approximate Low Rank Approximation

- [CW13] output a rank k matrix A', so that with probability > 2/3,

$$
\left|A-A^{\prime}\right|_{F} \leq(1+\varepsilon)\left|A-A_{k}\right|_{F},
$$

in nnz(A) + n $\cdot \operatorname{poly}(k / \varepsilon)$ time

Structure-Preserving Low Rank Approximation

- Let A be an arbitrary $\mathrm{n} \times \mathrm{n}$ matrix
- Instead of just finding a rank-k matrix A^{\prime} for which $\left|A-A^{\prime}\right|_{F}$ is small, suppose we also require A^{\prime} to be positive semidefinite (PSD)
- A^{\prime} is symmetric and all eigenvalues are non-negative
- Covariance matrices, kernel matrices, Laplacians are PSD
- Approximate them for efficiency
- Roundoff errors may make a PSD matrix non-PSD
- We do not assume A is PSD but want A' to be PSD

Structure-Preserving Low Rank Approximation

- Goal: output a PSD rank-k matrix A^{\prime} for which $\left|A-A^{\prime}\right|_{F}$ is small
- Can assume A is symmetric
- $A=A^{\text {sym }}+A^{\text {asym }}$, where $A_{i, j}^{\text {sym }}=\frac{A_{i, j}+A_{j, i}}{2}$ and $A_{i, j}^{\text {asym }}=\frac{A_{i, j}-A_{j, i}}{2}$
- $\left|A-A^{\prime}\right|_{F}^{2}=\left|A^{\text {sym }}-A^{\prime}\right|_{F}^{2}+\left|A^{\text {asym }}\right|_{F}^{2}$
- Compute $A^{\text {sym }}$ in nnz(A) time
- What is the best PSD rank-k approximation $A_{k,+}$ to A ?
- Lemma: $A_{k,+}$ is obtained by zeroing out all but the top k positive eigenvalues in eigendecomposition of A
- If $A=U D U^{T}$, then $A_{k,+}=U D_{k,+} U^{T}$
- If A has fewer than k positive eigenvalues, zero out all except these eigenvalues

Our Result for PSD Low Rank Approximation

- (PSD low rank approximation result): In nnz(A) + n poly(k/ ε) time, can find a PSD rank-k A' so that

$$
\left|A-A^{\prime}\right|_{F} \leq(1+\varepsilon)\left|A-A_{k,+}\right|_{F}
$$

- Previous work
- "Nystrom method" based on uniform sampling requires incoherence assumptions on A
- [GM] Weaker bound $\left|A-A^{\prime}\right|_{F} \leq\left|A-A_{k,+}\right|_{F}+\epsilon\left|A-A_{k,+}\right|_{*}$ where $|\cdot|_{*}$ is nuclear norm
- [WLZ] Running time at least $n^{2} k / \epsilon$ and A^{\prime} has a larger rank k / ϵ

Our Result for PSD Column Subset Selection

- (PSD Column Subset Selection): In nnz(A)log $n+n \operatorname{poly}(k(\log n) / \varepsilon)$ time, find a subset C of $O(k / \epsilon)$ columns of A so that $A^{\prime}=C U C^{T}$ is rank-k, PSD, and

$$
\left|A-A^{\prime}\right|_{F} \leq(1+\varepsilon)\left|A-A_{k,+}\right|_{F}
$$

- Column subsets preserve sparsity, interpretability
- Most previous results require incoherence assumptions or achieve weaker guarantees in terms of the nuclear norm
- [WLZ] Get $O\left(\frac{k}{\epsilon}\right)$ columns but running time at least $n^{2} k / \epsilon$ and $\operatorname{rank}\left(A^{\prime}\right)=k / \epsilon$

Talk Outline

- Low Rank PSD Approximation
- Pitfalls of Usual Approach
- SF($\epsilon, \mathrm{k})$ Property
- Error Term Lemmas
- Solving a Small Problem Quickly
- Low Rank PSD Column Subset Selection

Pitfalls of Usual Approach

- [CW09,HMT,BWZ] Choose random matrices R, S
- R has k / ϵ columns and S has k / ϵ rows
- $A^{\prime} \underset{\text { rank-k ARXSA }}{\operatorname{argmin}}|A R X S A-A|_{F}^{2}$ and $\left|A-A^{\prime}\right|_{F} \leq(1+\varepsilon)\left|A-A_{k}\right|_{F}$
- Compute AR and SA in nnz(A) time
- To solve for A^{\prime}, solve
- $\min _{\text {rank-k }}\left|T_{\ell} A R X S A T_{r}-T_{\ell} A T_{r}\right|_{F}^{2}$, where T_{ℓ}, T_{r} are random
- [FT] poly (k / ϵ) time
- Need $R=S^{T}$ for A^{\prime} to be symmetric, but analysis requires $\left|x^{T} S A R\right|_{2}=\Theta\left(\left|x^{\mathrm{T}} \mathrm{SA}\right|_{2}\right)$ for all x !

SF(ϵ, k) Property

- Given nxn input matrix A
- Compute $\mathrm{S}^{*} \mathrm{~A}$ using a sketching matrix S with $\mathrm{k} / \varepsilon \ll \mathrm{n}$ rows. S.A takes random linear combinations of rows of A

- Let P be the $\mathrm{n} \times \mathrm{n}$ projection matrix onto the row span of SA
" $[\mathrm{S}, \mathrm{CW}, \mathrm{MM}, \mathrm{NN}, \ldots]|\mathrm{A}(\mathrm{I}-\mathrm{P})|_{\mathrm{F}}^{2} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2}$
= P is $\operatorname{SF}(\epsilon, \mathrm{k})$ if $|\mathrm{A}(\mathrm{I}-\mathrm{P})|_{2}^{2} \leq \frac{\epsilon}{\mathrm{k}}\left|\mathrm{A}-\mathrm{A}_{\mathrm{k}}\right|_{\mathrm{F}}^{2} \quad$ (recall $|\mathrm{B}|_{2}=\sup _{\mathrm{x}}|\mathrm{Bx}|_{2} /|\mathrm{x}|_{2}$)

SF(ϵ, k) Property

= $\mathrm{SF}(\epsilon, \mathrm{k})$ property implies usual theory

$$
\begin{aligned}
& |A(I-P)|_{F}^{2} \\
& =\left|A_{k}(I-P)\right|_{F}^{2}+\left|\left(A-A_{k}\right)(I-P)\right|_{F}^{2} \text { by Pythagorean theorem } \\
& \leq k \cdot\left|A_{k}(I-P)\right|_{2}^{2}+\left|\left(A-A_{k}\right)(I-P)\right|_{F}^{2} \text { since } A_{k} \text { has rank } k \\
& \leq k \cdot|A(I-P)|_{2}^{2}+\left|\left(A-A_{k}\right)(I-P)\right|_{F}^{2} \text { since }|A(I-P) x|_{2} \geq\left|A_{k}(I-P) x\right|_{2} \text { for all } x \\
& \leq k\left(\frac{\epsilon}{k}\right)\left|A-A_{k}\right|_{F}^{2}+\left|\left(A-A_{k}\right)(I-P)\right|_{F}^{2} \text { by } S F(\epsilon, \text { k) property } \\
& \leq \epsilon\left|A-A_{k}\right|_{F}^{2}+\left|A-A_{k}\right|_{F}^{2} \text { since projections don't increase norms }
\end{aligned}
$$

A Basic Lemma

- Lemma: For symmetric A, B with $(A-B) B=0$, and projection matrix P,

$$
|\mathrm{A}-\mathrm{PBP}|_{\mathrm{F}}^{2}=|\mathrm{A}-\mathrm{B}|_{\mathrm{F}}^{2}+|\mathrm{B}-\mathrm{PBP}|_{\mathrm{F}}^{2}+2 \operatorname{Tr}(\mathrm{~A}-\mathrm{B})(\mathrm{I}-\mathrm{P}) \mathrm{BP}
$$

SF(ϵ, k) Projections Give Good Solutions

- Lemma: If P is $\mathrm{SF}(\epsilon, \mathrm{k})$ for A , then $\left|\mathrm{A}-\mathrm{PA}_{\mathrm{k},+} \mathrm{P}\right|_{F} \leq(1+\mathrm{O}(\varepsilon)) \mid \mathrm{A}-\mathrm{A}_{\mathrm{k},+} \mathrm{I}_{\mathrm{F}}$
- Proof: Since $\left(A-A_{k,+}\right) A_{k,+}=0$, can apply the basic lemma:

$$
\left|A-P A_{k,+} P\right|_{F}^{2}=\left|A-A_{k,+}\right|_{F}^{2}+\left|A_{k,+}-P A_{k,+} P\right|_{F}^{2}+2 \operatorname{Tr}\left(A-A_{k,+}\right)(I-P) A_{k,+} P
$$

Use $\operatorname{SF}(\epsilon, k)$ property of P to show these terms are $O(\epsilon)\left|A-A_{k,+}\right|_{F}^{2}$

Finding an $\operatorname{SF}(\epsilon, k)$ Projection

- [CEMMP] implies if S is poly $(\mathrm{k} / \epsilon) \times \mathrm{n}$ i.i.d. Gaussian, Fast Hadamard Transform, or a Sparse Embedding Matrix, then $P=(S A)^{-} S A$ is $S F(\epsilon, k)$

Completing the Argument

- If P is $\mathrm{SF}(\epsilon, \mathrm{k})$ for A , then
$\mathrm{A}^{\prime}=\operatorname{argmin}_{\text {rank-k PSD PXP }} \mid \mathrm{A}-$ PXP $_{\mathrm{F}}$ satisfies

$$
\left|\mathrm{A}^{\prime}-\mathrm{A}\right|_{\mathrm{F}} \leq(1+\epsilon)\left|\mathrm{A}-\mathrm{A}_{\mathrm{k},+}\right|_{\mathrm{F}}
$$

- We can also find $P=(S A)^{-} S A$ in factored form in nnz(A) time
- How to solve for A^{\prime} ?
- Multiply by small random matrices $\mathrm{T}_{\ell}, \mathrm{T}_{\mathrm{r}}$,
solve $\mathrm{A}^{\prime}=\operatorname{argmin}_{\text {rank-k PSD PXP }} \mid \mathrm{T}_{\ell} \mathrm{AT}_{\mathrm{r}}-\mathrm{T}_{\ell}$ PXPT $\left._{\mathrm{r}}\right|_{\mathrm{F}}$
- Tiny problem but is it in polynomial time?
- We show how to solve it up to a $(1+\epsilon)$-factor quickly

Talk Outline

- Low Rank PSD Approximation
- Pitfalls of Usual Approach
- SF(ϵ, k) Property
- Error Term Lemmas
- Solving a Small Problem Quickly
- Low Rank PSD Column Subset Selection

Low Rank Column Subset Selection

- [CEMMP], together with a composition lemma, gives a $P=(S A)^{-}$SA where S is a sampling and rescaling matrix, such that P is $\operatorname{SF}(\epsilon, k)$ for A and $S A$ can be found in $n n z(A) \log n+n$ poly $\left(\frac{k}{\epsilon}\right)$ time
- S samples $O\left(\frac{k}{\epsilon}\right)$ rows of A
- Our earlier lemma implies there is a rank-k PSD solution A' = PXP
- Our earlier procedure finds X

Other Results

- Symmetric Matrices
- Analogous results for nnz(A) time for finding a rank-k symmetric approximation to A, and for column/row subset selection
- Low Rank Approximation with Tail Guarantee
- Let $\mathrm{t}=2 \mathrm{k} / \epsilon$
- A PSD rank-k matrix A^{\prime} can be found in nnz(A) $+n$ poly $\left(\frac{k}{\epsilon}\right)$ time with

$$
\left|A-A^{\prime}\right|_{F}^{2} \leq\left|A-A_{k,+}\right|_{F}^{2}+\left|A_{t+k}-A_{t}\right|_{\mathrm{F}}^{2}
$$

Conclusion and Open Questions

- First rank-k PSD approximation of an arbitrary matrix A in nnz(A) time
- Optimal $O\left(\frac{k}{\epsilon}\right)$ columns/rows for rank-k PSD subset selection, in nnz(A) $\log n$ time
- Similar results for symmetric approximations
- Should be able to improve the time for column/row subset selection to nnz(A) using known techniques
- High-level question - quickly find low rank approximations with additional structure, such as being PSD

What is $\mathrm{A}_{\mathrm{k},+}$?

- $\mathrm{A}=\mathrm{UDU} \mathrm{U}^{\mathrm{T}}$ is eigendecomposition
- $\left|A-A_{k,+}\right|_{F}^{2}=\left|D-U^{T} A_{k,+} U\right|_{F}^{2}$, where $U^{T} A_{k,+} U$ is PSD and rank k
- Let $\mathrm{D}_{\mathrm{k},+}$ be the best rank-k PSD approximation to D
- $\left|D-U^{T} A_{k,+} U\right|_{F}^{2} \geq\left|D-D_{k,+}\right|_{F}^{2}=\left|U D U^{T}-U D_{k,+} U^{T}\right|_{F}^{2}=\left|A-U D_{k,+} U^{T}\right|_{F}^{2}$
- $A_{k,+}=U D_{k,+} U^{T}$

But what is $D_{k,+}$, the best rank k PSD approximation to diagonal matrix D?

Solving the Small Problem

- How to solve for $\mathrm{A}^{\prime}=\operatorname{argmin}_{\text {rank-k PSD PXP }}\left|\mathrm{T}_{\ell} A \mathrm{~T}_{\mathrm{r}}-\mathrm{T}_{\ell} \mathrm{PXPT}_{\mathrm{r}}\right|_{\mathrm{F}}$?
- Can find A^{\prime} minimizing this up to a $1+\epsilon$ factor
- Write $S A=R \Sigma W^{T}$ in its $S V D$, so $P=(S A)^{-} S A=W W^{T}$
- $\mathrm{A}^{\prime}=\operatorname{argmin}_{\text {rank-k PSD PXP }}\left|T_{\ell} A T_{r}-\left(T_{\ell} W\right) W^{T} X W\left(W^{T} T_{r}\right)\right|_{F}$
- Write $\left(T_{\ell} W\right)=U_{\ell} \Sigma_{\ell} V_{\ell}^{\mathrm{T}}$ and $\left(W^{\mathrm{T}} \mathrm{T}_{\mathrm{r}}\right)=\mathrm{U}_{\mathrm{r}} \Sigma_{\mathrm{r}} \mathrm{V}_{\mathrm{r}}^{\mathrm{T}}$ in their SVD, use that all their singular values are $1 \pm \epsilon$, and after some algebra,

$$
\mathrm{X}=\left[\frac{\mathrm{M}+\mathrm{M}^{\mathrm{T}}}{2}\right]_{\mathrm{k},+} \text { where } \mathrm{M}=\mathrm{V}_{\ell} \Sigma_{\ell}^{-1} \mathrm{U}_{\ell}^{\mathrm{T}} \mathrm{~T}_{\ell} \mathrm{AT}_{\mathrm{r}} \mathrm{~V}_{\mathrm{r}} \Sigma_{\mathrm{r}}^{-1} \mathrm{U}_{\mathrm{r}}^{\mathrm{T}}
$$

