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Low Rank Approximation 

� A is an n x n matrix

� A is typically well-approximated by low rank matrix

� E.g., high rank because of noise

� Goal: find a low rank matrix approximating A

� Easy to store in factored form 

� Data more interpretable



What is a Good Low Rank Approximation? 

Singular Value Decomposition (SVD)

Any matrix A = U	ΣV�

� U has orthonormal columns

� Σ is diagonal with non-increasing positive 

entries down the diagonal

� V� has orthonormal rows

� Rank-k approximation: Ak = U�Σ�V�
�

Ak = argminrank k matrices B

|A-B|F

(|C|F = (Σi,j Ci,j
2)1/2 )

Computing Ak exactly is 

expensive 

T



Approximate Low Rank Approximation 

� [CW13] output a rank k matrix A’, so that with 

probability > 2/3, 

|A-A’|F ≤(1+ε) |A-Ak|F,

in nnz(A) + n ⋅	poly(k/ε) time



Structure-Preserving Low Rank Approximation

� Let A be an arbitrary n x n matrix

� Instead of just finding a rank-k matrix A’ for which |A-A’|F is small, 

suppose we also require A’ to be positive semidefinite (PSD)

� A’ is symmetric and all eigenvalues are non-negative

� Covariance matrices, kernel matrices, Laplacians are PSD

� Approximate them for efficiency

� Roundoff errors may make a PSD matrix non-PSD

� We do not assume A is PSD but want A’ to be PSD



Structure-Preserving Low Rank Approximation

� Goal: output a PSD rank-k matrix A’ for which |A-A’|F is small

� Can assume A is symmetric 

� 	A = 	A
��

+ A
���

, where	A�,�
��

=	
��,����,�

�
and A�,�

���
=	

��,����,�

�

� A − A′ �� = A�� − A′ �
� + A��� �

�

� Compute A
��

in nnz(A) time

� What is the best PSD rank-k approximation A�,�		to A?

� Lemma: Ak,+ is obtained by zeroing out all but the top k positive eigenvalues in 

eigendecomposition of A 

� If A = U	D	U�, then A�,� =	UD�,�U
�

� If A has fewer than k positive eigenvalues, zero out all except these eigenvalues



Our Result for PSD Low Rank Approximation

� (PSD low rank approximation result): In nnz(A) + n poly(k/ ε) time, can find 

a PSD rank-k A’ so that

|A-A’|F ≤(1+ε) |A-Ak,+|F

� Previous work

� “Nystrom method” based on uniform sampling requires incoherence 

assumptions on A

� [GM] Weaker bound |A-A’|F ≤	|A-Ak,+|F + ϵ|A − A�,�|* where |. |∗ is 

nuclear norm

� [WLZ] Running time at least n�k/ϵ and A’ has a larger rank k/ϵ



Our Result for PSD Column Subset Selection

� (PSD Column Subset Selection): In nnz(A)log n + n poly(k(log n)/ ε) time, find 

a subset C of O(k/ϵ) columns of A so that A’= CUC� is rank-k, PSD, and  

|A-A’|F ≤(1+ε) |A-Ak,+|F

� Column subsets preserve sparsity, interpretability

� Most previous results require incoherence assumptions or achieve weaker 

guarantees in terms of the nuclear norm

� [WLZ] Get O
�

*
columns but running time at least n�k/ϵ and rank(A’) = k/ϵ



Talk Outline

� Low Rank PSD Approximation

� Pitfalls of Usual Approach

� SF ϵ, k Property

� Error Term Lemmas

� Solving a Small Problem Quickly

� Low Rank PSD Column Subset Selection



Pitfalls of Usual Approach

� [CW09,HMT,BWZ] Choose random matrices R, S

� R has k/ϵ columns and S has k/ϵ rows

� A- = 	argmin
												2�3���	�456�

ARXSA − A �
� and |A-A’|F ≤(1+ε) |A-Ak|F

� Compute AR and SA in nnz(A) time

� To solve for A’, solve 

� 	min
						2�3���	5

TℓARXSAT2 − TℓAT2 �
�, where Tℓ, T2 are random 

� [FT] poly(k/ϵ) time

� Need R = S� for A’ to be symmetric, but analysis 

requires x�SAR
�
= Θ x�SA

�
for all x !

A

ARXSA

ℓ 2



SF ϵ, k Property

SA

A

� Given n x n input matrix A

� Compute S*A using a sketching matrix S with k/ε << n rows. S⋅A takes 

random linear combinations of rows of A

� Let P be the n x n projection matrix onto the row span of SA

� [S,CW,MM,NN,N] A(I − P) �
� ≤ 1 + ϵ A − A� �

�

� P	is	SF ϵ, k if A I − P �
� ≤

*

�
A − A� �

� (recall B � = sup
F
Bx �/ x �)	



SF ϵ, k Property

� SF(ϵ, k) property implies usual theory

A I − P �
�

= A� I − P �
� + A − A� I − P �

� by Pythagorean theorem

≤ k ⋅ A� I − P �
� +	 A − A� I − P �

� since A� has rank k

≤ k ⋅ A I − P �
� +	 A − A� I − P �

� since A I − P x � ≥ A� I − P x � for all x

≤ k	
*

�
A − A� �

� +	 A − A� I − P �
� by SF(ϵ, k) property

≤ ϵ	 A − A� �
� + A − A� �

� since projections don’t increase norms



A Basic Lemma

� Lemma: For symmetric A, B with (A-B)B = 0, and projection matrix P,

A − PBP �
� = A − B �

� + B − PBP �
� + 2Tr A − B I − P BP



SF ϵ, k Projections Give Good Solutions

� Lemma: If P is SF(ϵ, k) for A, then |A-PA�,�P|F ≤(1+O(ε)) |A-Ak,+|F

� Proof: Since A − A�,� A�,� = 0, can apply the basic lemma:

A − PA�,�P �

�
= A − A�,� �

�
+ A�,� − PA�,�P �

�
+ 2Tr A − A�,� I − P A�,�P

Use SF(ϵ, k) property of P to show these terms are O ϵ A − A�,� �

�



Finding an SF(ϵ,k) Projection

� [CEMMP] implies if S is poly(k/ϵ)	x n i.i.d. Gaussian, Fast Hadamard 

Transform, or a Sparse Embedding Matrix, then P = SA �SA is SF(ϵ, k)

1 0  0 -1 0 1

0 0  1  0  0 0

0 0 0  0  1 0

0 -1  0  0  0 0    



Completing the Argument 

� If P is SF(ϵ, k) for A, then 

A- = argmin2�3���	J6K	J5J	 A − PXP �	satisfies 

A- − A � ≤ 1 + ϵ A − A�,� �

� We can also find P = SA �SA in 

factored form in nnz(A) time

� How to solve for A’?

� Multiply by small random matrices Tℓ, T2,

solve A- = argmin2�3���	J6K	J5J	 TℓAT2 − TℓPXPT2 �

� Tiny problem but is it in polynomial time?

� We show how to solve it up to a 1 + ϵ −factor quickly

A

P   X  P

ℓ 2
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Low Rank Column Subset Selection

� [CEMMP], together with a composition lemma, gives a P = SA �SA
where S is a sampling and rescaling matrix, such that P is SF(ϵ, k) for A 

and SA can be found in nnz(A)log n + n poly
�

*
time

� S samples O
�

*
rows of A

� Our earlier lemma implies there is a rank-k PSD solution A’ = PXP

� Our earlier procedure finds X



Other Results

� Symmetric Matrices

� Analogous results for nnz(A) time for finding a rank-k symmetric 

approximation to A, and for column/row subset selection

� Low Rank Approximation with Tail Guarantee

� Let t = 2k/ϵ

� A PSD rank-k matrix A’ can be found in nnz(A) + n poly
�

*
time with

A − A- �
� ≤ A − A�,� �

�
+ AO�� − AO �

�



Conclusion and Open Questions

� First rank-k PSD approximation of an arbitrary matrix A in nnz(A) time

� Optimal O
�

*
columns/rows for rank-k PSD subset selection, in nnz A log n

time

� Similar results for symmetric approximations

� Should be able to improve the time for column/row subset selection to 

nnz(A) using known techniques

� High-level question – quickly find low rank approximations with additional 

structure, such as being PSD



What is A�,�?

� A = U	D	U� is eigendecomposition

� A − A�,� �

�
= |D	 − U� A�,�	U|�

�,	where U� A�,�	U is PSD and rank k

� Let D�,� be the best rank-k PSD approximation to D

� |D	 − U� A�,�	U|�
� ≥ D − D�,� �

�
= UDU� − UD�,�U

�
�

�
= |A − UD�,�U

�|�
�

� A�,� =	UD�,�U
�

But what is RS,�, the best rank k PSD approximation to diagonal matrix D?

[

[

≥ D� − YO �
� + D� − YU �

�YO 	Y2
YV			YU

D� 0

0 			D� [

[

D D�,�

-

F

2

D�,� is diagonal matrix with top 

k non-negative eigenvalues of A 



Solving the Small Problem

� How to solve for A- = argmin2�3���	J6K	J5J	 TℓAT2 − TℓPXPT2 �?

� Can find A’ minimizing this up to a 1+ϵ factor

� Write SA = RΣW� in its SVD, so P = SA �SA = WW�

� A- = argmin2�3���	J6K	J5J	 TℓAT2 − (TℓW)W
�XW	(W�T2)	 �

� Write (TℓW) = UℓΣℓVℓ
�	 and W�T2 = U2Σ2V2

� in their SVD, use that all 

their singular values are 1 ± ϵ, and after some algebra, 

X =
Y�YZ

�
�,�

where M = VℓΣℓ
�[Uℓ

�TℓAT2V2Σ2
�[U2

�


