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Abstract

We give algorithms for approximation by low-rank positive semidefinite (PSD) matrices. For
symmetric input matrix A ∈ Rn×n, target rank k, and error parameter ε > 0, one algorithm finds

with constant probability a PSD matrix Ỹ of rank k such that ‖A− Ỹ ‖2F ≤ (1+ε)‖A−Ak,+‖2F ,
where Ak,+ denotes the best rank-k PSD approximation to A, and the norm is Frobenius. The
algorithm takes time O(nnz(A) log n) + npoly((log n)k/ε) + poly(k/ε), where nnz(A) denotes
the number of nonzero entries of A, and poly(k/ε) denotes a polynomial in k/ε. (There are
two different polynomials in the time bound.) Here the output matrix Ỹ has the form CUC>,
where the O(k/ε) columns of C are columns of A. In contrast to prior work, we do not require
the input matrix A to be PSD, our output is rank k (not larger), and our running time is
O(nnz(A) log n) provided this is larger than npoly((log n)k/ε). We give a similar algorithm that
is faster and simpler, but whose rank-k PSD output does not involve columns of A, and does not
require A to be symmetric. We give similar algorithms for best rank-k approximation subject
to the constraint of symmetry. We also show that there are asymmetric input matrices that
cannot have good symmetric column-selected approximations.



1 Introduction

A number of matrices that arise in machine learning and data analysis are symmetric positive
semidefinite (PSD), including covariance matrices, kernel matrices, Laplacian matrices, random dot
product graph models [21], and others. A common task related to such matrices is to approximate
them with a low-rank matrix, for efficiency or statistical inference; spectral clustering, kernel PCA,
manifold learning, and Gaussian process regression can all involve this task.

These matrices can be very large, and so there has been an increasing emphasis on efficiency in
the task of low-rank approximation, even at the cost of some reduction in approximation quality. In
recent years, methods for low-rank approximation based on random projections, row and column
sampling, and other such sketching techniques have been found, that are quite efficient, with
running times that in some situations are dominated by the number of nonzero entries nnz(A) for
input matrix A ∈ Rn×n [20]. However, many of these techniques do not readily yield low-rank
approximations that satisfy the fundamental constraint of being PSD, or indeed, even symmetric.
(We will consider only symmetric PSD matrices, that is, being PSD will imply being symmetric,
as is the usual convention. We will generally assume that input matrix A is symmetric.)

There is, however, a substantial literature on the Nyström method and its descendants; for
a PSD matrix A, integer k, and error parameter ε > 0, these methods return a PSD low-rank
approximation CUC>, where the rank rk(U) of U is k, the columns of C are columns of A, and
the number of columns of C depends on k and ε.

These methods can be quite fast: the classical Nyström algorithm obtains the rows of C by uni-
form sampling, and thereafter obtains U by operations on C; that is, it can be sublinear in nnz(A).
However, the approximation error bounds for this method are weak, and Ω(

√
n) samples may be

required [19]. Some sharper bounds have been found, for the restricted class of low coherence
matrices [14]. More generally, Nyström-related algorithms select columns of A under a sampling
distribution that is adaptive, that is, derived from A. The probability of sampling a column is
commonly proportional to a leverage score, for example the squared Euclidean norm of the cor-
responding column of a matrix whose rows comprise the top k eigenvectors of A. Such adaptive
sampling methods yield sharper bounds; for example, with Õ(k/ε2) column samples, the approx-
imation error ‖A− CUC>‖F can be bounded by ‖A−Ak‖F + ε‖A−Ak‖∗, where Ak is the best
rank-k approximation to A (not necessarily PSD), ‖‖F is the Frobenius norm, and ‖‖∗ is the trace
(nuclear) norm [12]. (Since ‖A‖∗ is the `1 norm of the singular values of A, and ‖A‖F their Eu-
clidean norm, ‖A‖∗ ≥ ‖A‖F and can be much larger.) The best current bound with respect to
approximation quality (but not run-time) seems to be ‖A− CUC>‖F ≤ (1 + ε)‖A−Ak‖F , with
O(k/ε) columns sampled [18].

While populating C from the columns of A is very attractive, since such columns are “repre-
sentative” and heuristically as sparse as A, it is also of interest to construct C using non-adaptive
methods such as random projections, that are typically faster and require fewer passes over the
data. Here such a sketching matrix S, perhaps comprising independent Gaussian entries, or a
sparse embedding matrix [5, 15] or an OSNAP [17, 2, 8] would be applied to A to obtain the sketch
AS, with fewer columns than A, to be used to construct a low-rank approximation to A.

A natural idea to apply such sketches for approximation by symmetric or PSD matrices would
be to adapt schemes for the asymmetric case, such as [4], where the approximation matrix with
guaranteed small Frobenius relative error has the form AR(SAR)+SA. The sketching matrices S
and R are sign (±1) matrices, and ()+ is the Moore-Penrose pseudo-inverse. Here one might try
analogously AR(R>AR)+R>A as a PSD approximation to PSD matrix A, but the analysis does
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not seem to extend to this idea; a similar scheme A ≈ AQ(Q>AQ)+Q>A was proposed but not
analyzed [13], where Q is an orthonormal basis for the columspace of AR. The same authors do
give an analysis for QQ>AQQ>; these constructions are more expensive to compute than our goal
here, however.

We refer the reader to [12] for further discussion and references on low-rank PSD approximation.

1.1 Our results

We give algorithms for symmetric rank-k approximation, and PSD rank-k approximation, with
relative error bounds with respect to the Frobenius norm. Our most notable result is the following.

Theorem 1 [Quoting Theorem 20] For given integer k ≥ 1 and ε > 0, and symmetric A ∈ Rn×n,
there is mB = O(k/ε) such that there are matrices B ∈ Rn×mB with each column of B a column of

A, and U ∈ RmB×mB with rk(U) = k and PSD, with ‖A−BUB>‖2F ≤ (1 + ε)‖A−Ak,+‖2F . These
matrices can be found in O(nnz(A) log n) + (n+d)poly((log n)k/ε) + poly(k/ε) time, with constant
probability.

Here Ak,+ is the best rank-k PSD approximation to A; the form of Ak,+ is described in
Lemma 19.

Note that in contrast to almost all previous results:

• the work is O(nnz(A) log n) for at least some inputs (large enough ε, dense enough A);

• the returned matrix has the target rank k, and not larger (not bicriteria);

• the input matrix need not be PSD;

• the number of columns is O(k/ε), which is optimal (see e.g. [3] and its references);

• the approximation quality is relative error in Frobenius norm.

Only [18] has the same number of columns and approximation quality, but it does not have the other
features. Only classical Nyström has a similar or faster running time, but its quality bounds are
poor, as noted, except for restricted inputs. Several previous algorithms could be easily modified to
have outputs that are rank k and/or PSD, but there are few reported that do so and have quality
guarantees. An algorithm with rank-k outputs [10] is slower than that here, and has weaker quality
bounds. Algorithms with PSD output for non-PSD input, and quality guarantees, do not seem
to be reported. Since numerical errors, input errors, and other issues can result in matrices that
“should” be PSD and are not, this is significant.

A recent related paper featuring a fast algorithm with strong performance guarantees [16] is
for a related, but different problem: for kernels of the form BB>, a good low-rank approximation
to B is found. Such an approximation is useful, but simple examples show that in general a
(1 + ε)-approximation to B can be an arbitrarily bad (as a function of the singular values of B)
approximation to BB>, so this does not address the problem we study.

While our algorithm does not require input A to be PSD, we do require that it be symmetric.
Note, though, in the non-column-selection case, the best symmetric approximation to A is the best
symmetric approximation to (A+A>)/2, see Lemma 13, and (A+A>)/2 can be formed in nnz(A)
time. Thus, we can also quickly provide a good rank-k symmetric or PSD approximation to A even
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when A is not symmetric. There is a natural question here: for general asymmetric A, might it be
possible to select columns of A to obtain a matrix C, and rows of A to obtain a matrix R, such
that there is a matrix U with CUR symmetric, and CUR close to A? Theorem 26 states that this
is not possible.

We have the following result on column selection, using adaptive sampling, for symmetric (not
necessarily PSD) approximation. We use the notation A−k ≡ A−Ak.

Theorem 2 [Quoting Theorem 17] For given integer k ≥ 1 and ε > 0, and symmetric A ∈ Rn×n,
there is mB = O(k/ε) such that there are matrices B ∈ Rn×mB with each column of B a column of

A, and U ∈ RmB×mB with rk(U) = k, with ‖A−BUB>‖2F ≤ (1 + ε)‖A−k‖2F . These matrices can
be found in O(nnz(A) log n) + (n+ d)poly((log n)k/ε) + poly(k/ε) time, with constant probability.

Note that the quality guarantee is with respect to the best rank-k approximation to A.
We have an algorithm for symmetric approximation using oblivious sketching; this algorithm is

faster than for PSD approximation, and since the sketching matrices are oblivious, only one pass
is needed over the data to obtain the sketches.

Theorem 3 [Quoting Theorem 18] A matrix X̃DX̃>, where X̃ ∈ Rn×k and D is diagonal, such
that

‖A− X̃DX̃>‖2F ≤ (1 + ε)‖A−k‖2F
can be found in O(nnz(A)) +O(nε−2−γk3+γ) + poly(k/ε) time.

The quantity γ can be arbitrarily small, at the cost of an increase of a constant factor in the
runtime.

We have a similar result for PSD approximation.

Theorem 4 [Quoting Theorem 21] A matrix Ỹ Ỹ >, where Ỹ ∈ Rn×k, such that

‖A− Ỹ Ỹ >‖2F ≤ (1 + ε)‖A−Ak,+‖2F

can be found in O(nnz(A)) +O(nε−2−γk3+γ) + poly(k/ε) time.

Finally, we have a variant algorithm for rank-k PSD approximation.

Theorem 5 [Quoting Theorem 25] Let t ≡ 2k/ε. A PSD rank-k matrix Ỹ such that

‖A− Ỹ ‖2F ≤ ‖A−Ak,+‖
2
F + ‖At+k −At‖2F

can be found in O(nnz(A)) +O(n+ d)poly(k/ε) + poly(k/ε) time.

Note that ‖At+k −At‖2F ≤ ε‖A−k‖2F , and can be that large. That is, this result is no better
for general A than Theorem 3. However, some input matrices might have rapidly enough decaying
spectrum that ‖At+k −At‖2F is much smaller than ε‖A−k‖2F . This is true trivially if rk(A) < t, but
would also be true for matrices comprising the sum of a low-rank matrix and small-enough random
noise. An example matrix Protein with rapid spectral decay is discussed in [12].
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1.2 Techniques, and Outline

The algorithmic technology we use is sketching, including leverage-score sampling [20] and sparse
embeddings, or more generally OSNAP [5, 17, 15, 8], allowing fast reduction of input matrices to
smaller matrices whose columnspaces and rowspaces contain good approximations to the rows and
columns of the input.

The machinery of our use of these techniques is given in §3, stating that there are thin matrices
Z based on sketching (Lemma 11) and sampling (Lemma 12) that are fast to compute, and such
that minimizing ‖ZXZ> −A‖F over rank-k symmetric X, or ‖ZY Z> −A‖F over rank-k PSD Y ,
gives good rank-k symmetric and PSD approximations to A.

Lemma 8 of §3 shows quantitatively how a good columnspace translates to a good low-rank
PSD approximation, and a good low-rank symmetric approximation. Its proof involves standard
matrix machinery, such as properties of the trace, the matrix Pythagorean theorem, properties of
projections, and von Neumann’s trace inequality.

We also use fast sketching to accelerate our solution to the optimization problem of finding
the promised low-rank approximations within columnspaces; Lemma 15 of §4 gives our use of this
machinery for this purpose.

Having shown that good columnspaces can be found quickly (as columnspaces of sketches), and
that they can be used quickly to find low-rank approximations, we put these tools to use, first to
find low-rank symmetric approximations, in §5, and then to find low-rank PSD approximations, in
§6.

Our variant algorithm is given in §7, and impossibility result (for symmetric column-selected
approximation of asymmetric matrices) in §8.

2 Notation and Preliminaries

Let [A]k denote the best rank-k approximation to matrix A, also written Ak when convenient. Let
[A]k,+ and Ak,+ denote the best positive semidefinite (PSD) rank-k approximation to A. We will
often write A−k for A−Ak.

Let P denote the (symmetric) PSD matrices.
Recall that A+, the Moore-Penrose pseudo-inverse of A is equal to (A>A)−1A> when A>A is

invertible. For square A, let A−> denote (A−1)>.
The spectral norm ‖A‖2 is the maximum of the singular values of A, while ‖A‖F is the Euclidean

norm of those singular values. Throughout we freely use the fact that ‖QX‖F = ‖X‖F when Q
has orthonormal columns.

In the following, unless otherwise mentioned, A is symmetric and has eigendecomposition A =
UDU>. We have [A]k = U [D]kU

>, where [D]k = Dk has i’th diagonal entry Dii when Dii is among
the top k entries of D in magnitude, and zero otherwise.

We use throughout properties of the matrix trace trX, such as its linearity, and trXY =
trY X, and ‖X‖2F = trX>X. We use the matrix version of the Pythagorean theorem: if matrices
X and Y have trX>Y = 0, then ‖X + Y ‖2F = ‖X‖2F + ‖Y ‖2F .

We use throughout standard properties of projection matrices P , such as P 2 = P , and ‖AP‖F ≤
‖A‖F . For projection P , let P̄ be the projection I − P , so PP̄ = 0.
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3 Good Projections and Sketches

In this section, we first define a particular property of projections, then show that the property
implies that the columnspaces (and rowspaces) of the projections are useful for us. We then show
how such projections can be found quickly, via sketching and via sampling.

Definition 6 (SF(ε, k) projections) For given A ∈ Rn×n, say that projection P ∈ Rn×n is
SF(ε, k) for A if

‖AP̄‖22 ≤ (ε/k)‖A−k‖2F .

For symmetric A, ‖P̄A‖22 = ‖AP̄‖22, so the same bound and condition are equivalent for P̄A.

Lemma 7 For symmetric A,B ∈ Rn×n with (A−B)B = 0, and projection P ∈ Rn×n,

‖A− PBP‖2F = ‖A−B‖2F + ‖B − PBP‖2F
+ 2 tr(A−B)P̄BP.

Proof: Using standard properties of the trace and the Frobenius norm, we have

‖A− PBP‖2F
= ‖A−B +B − PBP‖2F
= ‖A−B‖2F + ‖B − PBP‖2F

+ 2 tr(A−B)(B − PBP )

= ‖A−B‖2F + ‖B − PBP‖2F
+ 2 tr(A−B)P̄BP

Here the last equality uses (A−B)B = 0 and the linearity of the trace.

Lemma 8 Suppose P ∈ Rn×n is a projection that is SF(ε, k) for A, that is, ‖AP̄‖22 ≤ (ε/k)‖A−k‖2F .
Then

‖A− PAk,+P‖2F ≤ (1 +O(ε))∆k,+,

where ∆k,+ ≡ ‖A−Ak,+‖2F . Also

‖A− PAkP‖2F ≤ (1 +O(ε))‖A−k‖2F .

Proof: We apply Lemma 7 with B = Ak,+, using (A−Ak,+)Ak,+ = 0, so

‖A− PAk,+P‖2F
= ‖A−Ak,+‖2F + ‖Ak,+ − PAk,+P‖2F

+ 2 tr(A−Ak,+)P̄Ak,+P.

For any symmetric B and projection P , using PP̄ = 0 and matrix Pythagorus,

‖B − PBP‖2F = ‖(I − P )B‖2F
+ ‖PBP̄‖2F ≤ 2‖BP̄‖2F .
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Therefore we have for the middle term, via rkAk,+ = k and ‖Ak,+x‖ ≤ ‖Ax‖ for all x,

‖Ak,+ − PAk,+P‖2F ≤ 2‖Ak,+P̄‖
2
F

≤ 2k‖Ak,+P̄‖
2
2

≤ 2k‖AP̄‖22

and for the last term, using the von Neumann trace inequality,

2 tr(A−Ak,+)P̄Ak,+P

= 2 tr(A−Ak,+)P̄ P̄Ak,+P

≤ 2
∑
i

σi((A−Ak,+)P̄ )σi(P̄Ak,+P )

≤ 2k‖(A−Ak,+)P̄‖2‖P̄Ak,+‖2
≤ 2k‖AP̄‖22,

and so, using the SF(ε, k) condition,

‖A− PAk,+P‖2F ≤ ∆k,+ + 4k‖AP̄‖22
≤ ∆k,+ + 4k(ε/k)‖A−k‖2F
≤ ∆k,+ +O(ε)∆k,+

= (1 +O(ε))∆k,+,

as claimed. The proof for the claim for ‖A− PAkP‖2F is entirely analogous, substituting ‖A−k‖2F
for ∆k,+ = ‖A−Ak,+‖2F , and using (A−k)Ak = 0.

We need two technical lemmas, rephrasing and extending Lemmas 11 and 18 of [7].

Lemma 9 For a given integer k, there is a matrix M with ‖MM>‖2 ≤ 1, and for integer k′,

‖M‖2F /‖M‖
2
2 ≤ k

′

such that the following holds. Suppose R is a matrix drawn from a distribution such that for any
ε′ < 1 and δ < 1/2, the following holds with failure probability δ:

‖MRR>M> −MM>‖2 ≤ ε
′ (1)∣∣∣‖MR‖2F − ‖M‖

2
F

∣∣∣ ≤ ε′k′. (2)

Suppose for given ε < 1 and k, the above holds for ε′ = O(1) and k′ = O(k/ε). Then PAR is
SF(ε, k) for symmetric matrix A, where PAR is the orthogonal projection onto the column span of
AR.

Specifically, M is the matrix 1
2 [ZT ;

√
k′

c · P̄ZA], where Z has orthonormal columns is such that
‖P̄ZA‖2F ≤ 2‖A−k‖2F and ‖P̄ZA‖22 ≤ 2

k‖A−k‖
2
F , and where c = Θ(‖A−k′‖F ) is otherwise arbitrary.

Here P̄Z = I − ZZ>.

The value ‖M‖2F /‖M‖
2
2 is called the stable rank of M .
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Proof: We follow the chain of arguments in [7]. The proof of Lemma 18 of [7] shows the
following (taking transposes in that proof). Let Ā = AR. Let Z be a matrix whose columns form
an orthonormal basis for the column span of Ā. Suppose

‖P̄Z′A‖22 ≤ O(1)

(
‖A−k′‖22 +

1

k′
‖A−k′‖2F

)
, (3)

where P̄Z′ = I − Z ′(Z ′)>, and Z ′ ∈ Rn×k′ is such that its columns form an orthonormal basis for
the column span of Āk′ , which is the best rank-k′ approximation to Ā, and where k′ = O(k/ε).
Then,

‖P̄ZA‖22 ≤ O(ε/k)‖A−k‖2F ,
where P̄Z = I − ZZ>, that is, PZ = PAR is SF(O(ε), k) for A.

In [7], it is shown that (3) holds for any Ā which is a rank-k′ spectral norm projection-cost
preserving sketch of A with error ε′ = O(1) and rank k′ = O(k/ε), that is, for which for all rank-k′

orthogonal projection matrices P ,

(1− ε′)‖A− PA‖22 −
ε′

k′
‖A− PA‖2F

≤ ‖Ā− PĀ‖22

≤ (1 + ε′)‖A− PA‖22 +
ε′

k′
‖A− PA‖2F . (4)

In Theorem 27 of [7], (4) is shown to hold, via Lemma 26 of [7], provided Ā satisfies the conditions
of Lemma 10 of [7]. Further, Lemma 10 of [7] is shown to hold if the following holds. Let M =
1
2 [ZT ;

√
k′

c ·P̄ZA], where Z has orthonormal columns is such that ‖P̄ZA‖2F ≤ 2‖A−k‖2F and ‖P̄ZA‖22 ≤
2
k‖A−k‖

2
F , and where c = Θ(‖A−k′‖F ) and c ≥ ‖A−k′‖F .

Then the stable rank of M is at most k′, and in the paragraph before section 7.1 of [7], it
is shown that provided that (1) and (2) hold, then Lemma 10 of [7] holds. This completes the
proof.

Lemma 10 Let R1 and R2 be sketching or sampling matrices drawn from distributions that each
satisfy the conditions of Lemma 9. Then PAR1R2 is SF(O(ε), k) for A.

Proof: It is enough to show (1) and (2) for R1R2 using the corresponding properties of R1 and
R2. For the second condition, using the triangle inequality we have

|‖MR1R2‖2F − ‖M‖
2
F |

≤ |‖MR1R2‖2F − ‖MR1‖2F |+ |‖MR1‖2F − ‖M‖
2
F |

≤ ε‖MR1‖2F + εk

≤ ε(1 + ε)k + εk ≤ 3εk

for small ε. Here we use ‖M‖2F ≤ k.
To show that (1) holds for R1R2, we appeal to Appendix A.3 of [9], which proves this property,

using also the norm preservation property (2) that we assume.

Lemma 11 For symmetric A ∈ Rn×n, for fixed γ > 0, there is m1 = O((k/ε)1+γ) and m2 =
O(k/ε) such that there are distributions of oblivious sketching matrices R1 ∈ Rn×m1 and R2 ∈
Rm1×m2 such that:
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• AR1 can be computed in O(nnz(A)) time, and AR1R2 can be computed in an additional
O(nm1m2) time.

• Projection PAR1R2 onto the columnspace of AR1R2 is SF(ε, k) for A.

• There is rank-k symmetric X∗ such that

‖AR1R2X
∗R>2 R

>
1 A−A‖

2

F

≤ (1 +O(ε))‖A−k‖2F .

• There is rank-k PSD Y ∗ such that

‖AR1R2Y
∗R>2 R

>
1 A−A‖

2

F

≤ (1 +O(ε))‖A−Ak,+‖2F .

Proof: We apply Lemma 9 together with Lemma 11 of [7], which says that if R1 is an OSNAP
of the given dimensions, then it satisfies the conditions of Lemma 9, and also that if R2 is a dense
JL matrix of the given dimensions, then R2 satisfies the conditions of Lemma 9. We now apply
Lemma 10, to obtain that PAR1R2 is SF(O(ε), k) for A. From Lemma 8, this implies that

‖A− PAk,+P‖2 ≤ (1 +O(ε))‖A−Ak,+‖2F .

Since Ak,+ is rank-k, and PSD, and PAk,+P is PSD and has columns in colspace(AR1R2) and
rows in colspace(AR1R2)

>, it follows that there is some PSD rank-k matrix Y ∗ such that

‖AR1R2Y
∗R>2 R

>
1 A−A‖

2

F ≤ (1 +O(ε))‖A−Ak,+‖2F ,

as claimed. A similar argument applies to show the existence of X∗ with the claimed properties.

We say a matrix R is a sampling and rescaling matrix if R samples the columns of a symmetric
n× n matrix A with replacement from a distribution p = (p1, . . . , pn) on the columns of A, and if
column j is sampled in the i-th trial, then Rj,i = 1/

√
rpj .

Lemma 12 For symmetric A ∈ Rn×n, there is m1 = Õ(k/ε) and m2 = O(k/ε) such that there are
distributions of sampling and rescaling matrices R1 ∈ Rn×m1 and R2 ∈ Rm1×m2 such that:

• R1 and R2 can be found in O(nnz(A) log n) + npoly((log n)k/ε) time.

• AR1R2 can be computed in O(nnz(A) log n) + npoly((logn)k/ε) time.

• Projection PAR1R2 onto the columnspace of AR1R2 is SF(ε, k) for A.

• There is rank-k PSD X∗ such that

‖AR1R2X
∗R>2 R

>
1 A−A‖

2

F

≤ (1 +O(ε))‖A−Ak,+‖2F .

• There is rank-k symmetric Y ∗ such that

‖AR1R2Y
∗R>2 R

>
1 A−A‖

2

F ≤ (1 +O(ε))‖A−k‖2F .
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Proof: Let M = 1
2 [ZT ;

√
k′

c · P̄ZA], where Z has orthonormal columns is such that ‖P̄ZA‖2F ≤
2‖A−k‖2F and ‖P̄ZA‖22 ≤ 2

k‖A−k‖
2
F , and where c = Θ(‖A−k′‖F ) and c ≥ ‖A−k′‖F . Here P̄Z =

I − ZZ>.
We apply Lemma 9 together with Lemma 11 of [7], which says that if R1 is a sampling and

rescaling matrix of the stated dimensions, where the sampling probabilities are proportional to
the squared column norms of M , then R1 satisfies the conditions of Lemma 9. Also, if R2 is a

BSS sampling matrix formed by applying the BSS procedure [1] to the matrix M ′ = 1
2 [W T ;

√
k′

c′ ·
P̄WAR1; v], where W has orthonormal columns is such that ‖P̄WAR1‖2F ≤ 2‖(AR1)−k‖2F and
‖P̄WAR1‖22 ≤ 2

k‖(AR1)−k‖2F , where c′ = Θ(‖(AR1)−k‖F ) and c′ ≥ ‖(AR1)−k‖F , where P̄W =
I −WW>, and where v is a row vector in which the i-th entry is the norm of the i-th column of√
k′

c′ P̄WAR1 (for a discussion on why this v is included, see the paragraph preceding section 7.1 of
[7]), then if R2 has m2 = O(k/ε) columns then R2 satisfies the conditions of Lemma 9. We now
apply Lemma 10, to obtain that PAR1R2 is SF(O(ε), k) for A. From Lemma 8, this implies that

‖A− PAk,+P‖2 ≤ (1 +O(ε))‖A−Ak,+‖2F .

Since Ak,+ is rank-k, and PSD, and PAk,+P is PSD and has columns in colspace(AR1R2) and
rows in colspace(AR1R2)

>, it follows that there is some PSD rank-k matrix Y ∗ such that

‖AR1R2Y
∗R>2 R

>
1 A−A‖

2

F ≤ (1 +O(ε))‖A−Ak,+‖2F ,

as claimed. A similar argument applies to show the existence of X∗ with the claimed properties.
It remains to bound the running times.
To find R1, we first need to find the matrix Z. Any rank-2k matrix Z for which ‖P̄ZA‖2F ≤

2‖A−2k‖2F can be used, since this condition implies ‖P̄ZA‖2F ≤ 2‖A−k‖2F and ‖P̄ZA‖22 ≤ 2
k‖A−k‖

2
F .

Such a Z can be found in nnz(A) + npoly(k) time [5]. One can also compute an estimate c to
‖A−k‖F in this amount of time [5]. Finally, one can compute the squared column norms of P̄ZA
by left-multiplying by a matrix of i.i.d. Gaussian random variables with O(log n) rows, taking
O(nnz(A) log n) + npoly(k log n) time. Consequently, one can compute the sampling probabilities
and form R1 in O(nnz(A) log n) + npoly(k log n) time.

To find R2, we first need to find the matrix W . As in the previous paragraph, this can be done
in nnz(A) + npoly(k) time, given AR1, and one can also compute an estimate c′ in this amount
of time. Since M ′ only has O((k/ε) log(k/ε)) columns, we can explicitly form it. To apply the
BSS procedure to the matrix M ′, we first left-multiply M ′ by a sparse subspace embedding T with
O(k2/ε2 log(k/ε)) columns, and then run the BSS procedure on TM ′. As the column space of
M ′ has dimension O(k/ε log(k/ε)), T is a subspace embedding of this space space [5, 15, 17] with
arbitrarily large constant probability. Then TM ′ is a poly(k/ε)×poly(k/ε) matrix, and running the
BSS procedure [1] on it takes poly(k/ε) time. Moreover, as T is a subspace embedding, it preserves
spectral and Frobenius norms, and so the matrix R2 found by the BSS procedure applied to TM ′

is a valid output for the BSS procedure applied to M ′, by readjusting ε by a constant factor.
Having found R1 and R2, they can be quickly applied since they are sampling and rescaling

matrices.

4 Fast Rank-k Approximation

As shown in the last section, good columnspaces can be found, but it remains to use those
columnspaces to find good rank-k approximations. In this section, we first show how to how
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to reduce from an arbitrary square matrix to a symmetric one, then to minimizing ‖BXB> −A‖2F
over X.

Lemma 13 Given B ∈ Rn×n,

argminX=X>
rk(X)=k

‖X −B‖F

= argmin X=X>
rk(X)=k

‖X − (B +B>)/2‖F .

Proof: For symmetric X, X − (B +B>)/2 is symmetric; since (B −B>)/2 is anti-symmetric,

tr[(X − (B +B>)/2)(B −B>)/2] = 0,

and so by matrix Pythagoras

‖X −B‖2F = ‖X − (B +B>)/2‖2F + ‖(B −B>)/2‖2F .

Thus when finding the best symmetric approximation to A, we can assume that A is symmetric.

Lemma 14 For symmetric A ∈ Rn×n and B ∈ Rn×m with m ≤ n and full column rank, the
minimizer

X∗ ≡ argminrk(X)=k ‖BXB> −A‖
2

F (5)

is X∗ = T−1[Z>AZ]kT
−>, a symmetric matrix, where B = ZT with Z having orthonormal columns

and T upper triangular. For Y ∗ the optimal rank-k solution under a PSD constraint, we have
Y ∗ = T−1[Z>AZ]k,+T

−>.

Proof: Since B has full column rank, the decomposition B = ZT where Z has orthonormal
columns and T is upper triangular, has the property that T is invertible, which we will now assume.

To solve (5), we can obtain X∗0 ≡ argminrk(X)=k ‖ZXZ> −A‖
2
F and recover X∗ as T−1X∗0T

−>.

Here we have X∗0 = [Z>AZ]k. (This follows from a more general result [11], but here follows from
the properties of the trace and Frobenius norm:

‖ZXZ> −A‖2F
= ‖ZXZ>‖2F + ‖A‖2F − 2 trAZXZ>

= ‖X‖2F + ‖Z>AZ‖2F − 2 trZ>AZX

+ (‖A‖2F − ‖Z
>AZ‖2F )

= ‖X − Z>AZ‖2F + (‖A‖2F − ‖Z
>AZ‖2F )

so that

argminrk(X)=k ‖ZXZ> −A‖
2

F

= argminrk(X)=k ‖X − Z>AZ‖
2

F = [Z>AZ]k,

as claimed.)
So the solution to (5) is, as claimed, T−1[Z>AZ]kT

−>, a symmetric matrix. A similar argument
holds for the PSD case.
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Lemma 15 Let k, A, B, X∗, and Y ∗ be as in Lemma 14. For given ε, a symmetric rank-k matrix
X̃ can be found in

O(nnz(A) + nnz(B)) + poly(mk/ε)

time, such that

‖BX̃B> −A‖2F ≤ (1 + ε)‖BX∗B> −A‖2F .

Moreover, a PSD rank-k matrix Ỹ can be found in the same time bound, such that

‖BỸ B> −A‖2F ≤ (1 + ε)‖BY ∗B> −A‖2F .

Proof: A similar scheme to the following was used in [3] and elsewhere. We use oblivious sparse
embeddings [5, 17, 15, 8], to quickly reduce to subproblems of size poly(k/ε).

First we use sparse embeddings to reduce to a more well-conditioned problem, as follows. We
have that there is mS = O(m2/ε2) such that there is a sparse embedding matrix S ∈ RmS×n such
that with constant probability, S has the sparse embedding property that for all x, ‖SBx‖2 =
(1 ± ε)‖Bx‖, and SB can be computed in O(nnz(B)) time. Suppose that indeed S is a sparse
embedding. Given B, we compute the decomposition SB = QT , where Q has orthonormal columns
and T is upper triangular. Moreover, since B has full rank, so does SB, and so T is invertible,
and Z ≡ BT−1 has singular values 1 ± ε. (Please note: we leave Z in factored form: we do not
explicitly compute it.)

We will find rank-k symmetric X0 with ‖ZX0Z
> −A‖2F ≤ (1 + ε) minrk(X)=k

X=X>
‖ZXZ> −A‖2F ,

and then return X̃ = T−1X0T
−>. (Again, T−> ≡ (T−1)>.)

We now want to minimize ‖ZXZ> −A‖2F , over rank-k symmetric X.
From [3], we have the following. There ism`,mr = poly(k/ε) so that there are sparse embedding

distributions such that for S` ∈ Rm`×n and Sr ∈ Rn×mr under those distributions,

W̃ , Ṽ ≡ argminW∈Rm×k

V ∈Rk×m

‖S`ZWV Z>Sr − S`ASr‖
2

F

satisfies
‖ZW̃ Ṽ Z> −A‖2F ≤ (1 + ε) min

W∈Rm×k

V ∈Rk×m

‖ZWV Z> −A‖2F .

Moreover S`ASr can be computed in O(nnz(A)) time, and S`Z = S`BT
−1 and Z>Sr = T−>B>Sr

can be computed in O(nnz(B) + m2(m` + mr)) time, by computing (S`B)T−1 and T−>(B>Sr).
The matrices S`Z and Z>Sr are well-conditioned: they have singular values all 1± ε, and have full
column (resp. row) rank.

Also: with constant probability, for S` and Sr under these distributions, the minimizer X∗ to

minrk(X)=k

X=X>
‖ZXZ> −A‖2F satisfies the condition that:

‖S`(ZX∗Z> −A)Sr‖F = (1± ε)‖ZX∗Z> −A‖F . (6)

Therefore if we constrain W̃ , Ṽ to have W̃ Ṽ symmetric, the resulting solution X0 will have cost

‖ZX0Z
> −A‖2F within 1 + ε of the cost of using X∗, so it is enough to find

X0 ≡ argminrk(X)=k

X=X>
‖S`ZXZ>Sr − S`ASr‖

2

F .
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Let S`Z and Z>Sr have (economical) SVDs S`Z = U`Σ`V
>
` and Z>Sr = UrΣrV

>
r , so that Σ`

and Σr are invertible m×m matrices. Let Û` and V̂r be such that [ U` Û` ] and [ Vr V̂r ] are orthogonal
matrices. We have, using matrix Pythagorus,

‖S`ZXZ>Sr − S`ASr‖
2

F

= ‖U`Σ`V
>
` XUrΣrV

>
r − S`ASr‖

2

F

= ‖Σ`V
>
` XUrΣr − U>` S`ASrVr‖

2

F

+ ‖U>` S`ASrV̂r‖
2

F + ‖Û>` S`ASrVr‖
2

F .

Since the last two terms are constant and nonnegative, it is enough to minimize

‖Σ`V
>
` (X − V`Σ−1` U>` S`ASrVrΣ

−1
r U>r )UrΣr‖

2

F

= ‖Σ`V
>
` (X − Â)UrΣr‖

2

F ,

where

Â ≡ V`Σ−1` U>` S`ASrVrΣ
−1
r U>r

= (S`Z)+S`ASr(Z
>Sr)

+.

By the well-conditioned-ness properties, for any matrix D, ‖Σ`V
>
` DUrΣr‖F = (1±ε)‖D‖F , and so

it suffices to solve minrk(X)=k

X=X>
‖X − Â‖2F . From Lemma 13 above, the minimizer is [(Â+ Â>)/2]k;

this requires poly(k/ε) time to find, given Â. Note that S`Z ∈ Rm`×m, and is computable in
nnz(B) + poly(mk/ε) time, computing it by writing it as (S`B)T−1.

Recovering X̃ as T−1X0T
−>, as noted above, the lemma statement for symmetric approximation

follows.
For the PSD case, the same argument applies, except that X∗ becomes Y ∗, and S` and Sr

satisfy (6) for the corresponding expression with Y ∗, and finally, we find the best rank-k PSD
approximation to Â, which is [(Â+ Â>)/2]k,+.

5 Rank-k Symmetric Approximation

In this section, we put the machinery together to show that a sampling and sketching can be used
to obtain good rank-k symmetric approximations. For the sampling case, we give a scheme using
optimal rank-k CUR decompositions.

Lemma 16 ([3]) For A ∈ Rn×d, given integer k ≥ 1 and ε > 0, there are mC = O(k/ε) and
mR = O(k/ε) such that there are are matrices

• C ∈ Rn×mC with each column of C a column of A;

• U ∈ RmC×mR with rk(U) = k;

• R ∈ RmR×d, with each row of R a row of A, and with

• ‖A− CUR‖2F ≤ (1 + ε)‖A−k‖2F .

12



These matrices can be found in O(nnz(A) log n) + (n+ d)poly((log n)k/ε) + poly(k/ε) time.

Theorem 17 For given integer k ≥ 1 and ε > 0, and symmetric A ∈ Rn×n, there is mB =
O(k/ε) such that there are matrices B ∈ Rn×mB with each column of B a column of A, and

U ∈ RmB×mB with rk(U) = k, with ‖A−BUB>‖2F ≤ (1 + ε)‖A−k‖2F . These matrices can be found
in O(nnz(A) log n) + (n+ d)poly((log n)k/ε) + poly(k/ε) time, with constant probability.

(Here poly() appears twice because the associated polynomials are different.)

Proof: As with [18], we use the optimal CUR decomposition of [3] as a black box.
Let C, U , and R be the matrices of Lemma 16 for the given k and ε. Let B ≡ [ C R> ]. Let U

have the factorization WV for W ∈ RmC×k, V ∈ Rk×mR . Then

Û ≡
[

W
0mR×k

]
[ 0k×mC

V ]

has BÛB> = CUR, so Û has

‖BÛB> −A‖ ≤ (1 + ε)‖A−k‖2F .

From Lemma 14 and Lemma 15, there are symmetric rank-k matrices X∗ and X̃ with

‖BX̃B> −A‖2F ≤ (1 + ε)‖BX∗B> −A‖2F
≤ (1 + ε)‖BÛB> −A‖2F
≤ (1 + ε)2‖A−k‖2F ,

where X̃ can be found in O(nnz(B)) + poly(mk/ε) = poly(k/ε) time. Returning X̃ as U , and
adjusting constants in the quality bounds, the theorem follows.

Theorem 18 A matrix X̃DX̃>, where X̃ ∈ Rn×k and D is diagonal, such that

‖A− X̃DX̃>‖2F ≤ (1 + ε)‖A−k‖2F

can be found in O(nnz(A)) +O(nε−2−γk3+γ) + poly(k/ε) time.

Proof: Let R1 and R2 be as in Lemma 11. By that lemma, it suffices to solve

min
X=X>
rk(X)=k

‖AR1R2XR
>
2 R
>
1 A−A‖

2

F .

We apply Lemma 15, with B of that lemma AR1R2, and m = poly(k/ε); this yields a solution
X0 with Ã ≡ AR1R2X0R

>
2 R
>
1 A with distance to A within 1 + ε of best possible, so that with the

distance bound of Lemma 11 we have Ã within (1+O(ε)) of best possible distance to A of a rank-k
matrix.

We modify the procedure of Lemma 15 slightly, so that sketching by S, S` and Sr is done before
sketching by R1 and R2; that is, the multiplication is (SAR1)R2, and so on. This implies that all
such work takes nnz(A) + poly(k/ε).

It remains to compute X̃ = AR1R2X1, where rank-k matrix X0 has the eigenexpansion X0 =
X1DX

>
1 . We compute in the order AR1(R2X1), taking O(nε−2−γk3+γ) as claimed. The result

follows.
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6 Rank-k PSD Approximation

The well-known general form of Ak,+ is given in the following lemma, with a proof included for
completeness.

Lemma 19 For A = UDU> and Ak,+ as above, Ak,+ = UDk,+U
>, and Dk,+ has i’th diagonal

entry Dii when Dii is among the top k nonnegative entries of D, and zero otherwise.

Proof: If B is PSD and rank k, then so is U>BU , and so (recalling the eigendecomposition
A = UDU>)

‖B −A‖2F = ‖U>BU −D‖2F
≥ ‖Dk,+ −D‖2F
= ‖UDk,+U

> −A‖2F ,

and so Ak,+ = UDk,+U
>.

Since nonzero off-diagonal entries for Dk,+ can only increase the distance to D, and similarly
for positive diagonal entries for the i’th entry of Dk,+ when Dii < 0, we have Dk,+ = [D+]k, where
D+ has i’th entry equal to Dii when that entry is positive, and all other entries zero. The lemma
follows.

Theorem 20 For given integer k ≥ 1 and ε > 0, and symmetric A ∈ Rn×n, there is mB = O(k/ε)
such that there are matrices B ∈ Rn×mB with each column of B a column of A, and U ∈ RmB×mB

with rk(U) = k and PSD, with ‖A−BUB>‖2F ≤ (1+ε)‖A−Ak,+‖2F . These matrices can be found
in O(nnz(A) log n) + npoly((logn)k/ε) + poly(k/ε) time, with constant probability.

Proof: We use the sampling matrices R1 and R2 of Lemma 12. It suffices to solve

min
Y ∈P

rk(Y )=k

‖AR1R2Y R
>
2 R
>
1 A−A‖

2

F ,

recalling that P is the set of PSD matrices. We apply Lemma 15 with B = AR1R2, and use the
PSD case of the lemma.

Theorem 21 A matrix Ỹ Ỹ >, where Ỹ ∈ Rn×k, such that

‖A− Ỹ Ỹ >‖2F ≤ (1 + ε)‖A−Ak,+‖2F

can be found in O(nnz(A)) +O(nε−2−γk3+γ) + poly(k/ε) time.

Proof: The proof is very close to that of Theorem 18. Let R1 and R2 be as in Lemma 11. By
that lemma, it suffices to solve

min
Y ∈P

rk(Y )=k

‖AR1R2Y R
>
2 R
>
1 A−A‖

2

F .

We apply Lemma 15, with B of that lemma AR1R2, and m = poly(k/ε), and using the PSD case;
this yields a solution Y0 with Ã ≡ AR1R2Y0R

>
2 R
>
1 A with distance to A within 1+ε of best possible,
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so that with the distance bound of Lemma 11 we have Ã within (1+O(ε)) of best possible distance
to A of a rank-k PSD matrix.

We modify the procedure of Lemma 15 slightly, so that sketching by S, S` and Sr is done before
sketching by R1 and R2; that is, the multiplication is (S`AR1)R2, and so on. This implies that all
such work takes nnz(A) + poly(k/ε) time.

It remains to compute Ỹ = AR1R2Y1D
1/2, where rank-k matrix Y0 has the eigenexpansion

Y0 = Y1DY
>
1 , and D has nonnegative entries. We compute in the order AR1(R2Y1D

1/2), taking
O(nε−2−γk3+γ) time as claimed. The result follows.

7 Sketched PSD: a Sharper Quality Bound

Here we give an alternative scheme for low-rank PSD approximation using sketching. As discussed
in the introduction, while the quality bound for this scheme is no better in the worst case than
that of Theorem 21, it can be better for input matrices A with rapidly decaying spectra.

Lemma 22 If P is a rank-k projection, then ‖PA‖2F ≤ ‖Ak‖
2
F .

Proof: Omitted.

Lemma 23 For symmetric A,B ∈ Rn×n and projection P ∈ Rn×n,

‖A− PBP‖2F = ‖A− PAP‖2F + ‖P (A−B)P‖2F . (7)

Proof: We have

tr(A−PAP )P (A−B)P

= trP (A− PAP )P (A−B)

= tr(PAP − PAPP )(A−B) = 0,

and so by matrix Pythagoras,

‖A− PBP‖2F = ‖A− PAP + PAP − PBP‖2F
= ‖A− PAP‖2F + ‖P (A−B)P‖2F , (8)

as claimed.

Lemma 24 Let symmetric X ∈ Rn×n have rank t ≥ 2k/ε, and ‖A−X‖2F ≤ (1 + ε/2)∆t, where
∆t ≡ ‖A−At‖2F . Let P project onto the rowspace (or columnspace) of X. Then

‖A− PAk,+P‖2F ≤ ‖A−Ak,+‖
2
F + ‖At+k −At‖2F .

Proof: If the eigendecomposition of X is X = ZLZ> and P = ZZ>, then

‖A− PXP‖2F = ‖A− ZZ>ZLZZ>ZX‖2F
= ‖A−X‖2F ≤ (1 + ε/2)‖A−At‖2F .

That is, minrk(W )=t ‖A− PWP‖2F ≤ (1 + ε/2)∆t.
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Using (7),

(1 + ε/2)∆t ≥ min
rk(W )=t

‖A− PWP‖2F

≥ min
W
‖A− PWP‖2F

= min
W
‖A− PAP‖2F + ‖P (A−W )P‖2F

= ‖A− PAP‖2F . (9)

Using (7) again, and then (9) and Lemma 22,

‖A− PAk,+P‖2F = ‖A− PAP‖2F + ‖P (A−Ak,+)P‖2F
≤ (1 + ε/2)‖D −Dt‖2F + ‖[D −Dk,+]t‖2F .

Ordering the entries of D by magnitude, Dii is counted in the sums for both of the last two norms
just above only if i ∈ (t, t+ k], so up to a (1 + ε/2) factor,

‖A− PAk,+P‖2F ≤ ‖A−Ak,+‖
2
F +

∑
i∈(t,t+k]

D2
ii

≤ ‖A−Ak,+‖2F +
k

t
‖A−k‖2F

≤ (1 + ε)‖A−Ak,+‖2F

for t ≥ 2k/ε. The lemma follows by adjusting ε by a constant factor.

Theorem 25 Let t ≡ 2k/ε. A PSD rank-k matrix Ỹ such that

‖A− Ỹ ‖2F ≤ ‖A−Ak,+‖
2
F + ‖At+k −At‖2F

can be found in O(nnz(A)) +O(n+ d)poly(k/ε) + poly(k/ε) time.

Proof: We use the algorithm of Theorem 18 with k of that lemma equal to the given t = 2k/ε.
The projection P onto the columnspace of X̃ satisfies Lemma 24 just above. Suppose P = BB>

for B with orthonormal columns. It is enough to solve

min
Y ∈P

rk(Y )=k

‖A−BY B>‖2F ,

for which Lemma 15 gives a fast approximate solution.

8 Matrices With No Symmetric CUR Approximations

While we have found symmetric CUR decompositions of symmetric matrices in Theorem 17, one
could ask if we can find symmetric CUR decompositions of asymmetric matrices. We show that
this is not possible.

Theorem 26 Let k ≥ 4, and let A be an n × n asymmetric matrix. Suppose we want to find a
subset C of columns of A and a subset R of rows of A for which
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1. There exists a matrix U for which

‖CUR−A‖2F ≤ α · ‖A−k‖2F

2. CUR is a symmetric matrix,

where α ≥ 1 is an approximation factor. Then there exist matrices A for which no such C and R
exist, for arbitrarily large α ≥ 1.

Proof: We first prove the result for k = 4.
Suppose A has the following form: its first row equals (β, 0, 0, . . . , 0)T , its second row equals

(1, β, 1, 1, . . . , 1, 0)T , and all remaining rows equal (1, 0, 0, . . . , 0)T , where β is an arbitrarily large
real number.

The column span of A is

span{(β, 1, 1, . . . , 1), (0, 1, 0, . . . , 0)},

while the row span of A is equal to

span{(1, 0, 0, . . . , 0)T , (1, β, 1, . . . , 1, 0)T }.

Any non-zero vector in the column span ofA has support in the set {{1, 2, . . . , n}, {1, 3, 4, . . . , n}, {2}, ∅}.
Any non-zero vector in the row span of A has support in the set {{1, 2, . . . , n−1}, {1}, {2, 3, . . . , n−
1}, ∅}. Thus, for n ≥ 4, the supports of vectors in the column and row spaces of A only intersect
in the empty set, implying that the column and row spaces only intersect in the 0 vector.

It follows that if CUR is a symmetric matrix then its column and row spans are equal, and so
by the previous paragraph, CUR = 0. Hence ‖CUR − A‖2F = ‖A‖2F = 2β2 + (n − 1) + (n − 3) =
2β2 + 2n− 4.

Consider the anti-symmetric part (A − A>)/2 of A. This matrix has 0s on the diagonals and
is entirely supported on the first two rows and columns, each entry being in {1/2, 0,−1/2}, and so
‖(A − A>)/2‖2F ≤

1
4 · 4n = n. Consider the symmetric part (A + A>)/2 of A. This matrix is also

entirely supported on the first two rows and columns, and has rank at most 4. Consequently,

‖A−A4‖2F ≤ ‖A− (A+A>)/2‖2F = ‖(A−A>)/2‖2F ≤ n.

Hence, there is no symmetric matrix CUR with C in the column span of A, and R in the row span

of A, for which ‖CUR−A‖2F ≤
2β2+2n−4

n ‖A−A4‖2F , where the approximation factor 2β2+2n−4
n can

be made arbitrarily large by increasing β.
For larger k, we create a block matrix with two blocks, for which the first block is a k−4×k−4

identity matrix scaled by an arbitrarily large real number t, and the second block is the matrix A
we have just constructed. Then in any symmetric CUR decomposition, the above analysis implies
the support of any column in the span of C or row in the span of R is a (possibly empty) subset
of {1, 2, . . . , k − 4}, and so we again have that ‖CUR − A‖2F ≤ 2β2 + 2n − 4. We also have
‖A−Ak‖2F ≤ n, and so the same conclusion holds.
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9 Concluding Remarks

We note that for column selection, the dependence on nnz(A) log n should be reducible to nnz(A):
the steps needing the log factor involve the computation of the norms of the columns to be sampled;
this computation involves sketching by a matrix of independent Gaussian values. As in Theorem
41 of [6], sketching by a single column vector should be sufficient; the decrease in accuracy of
estimation can be compensated for via a manageable increase in sample size.
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